Issledovanie vliyaniya effektov konkurentsii razlichnykh tipov anizotropii na kriticheskoe povedenie mul'tisloynykh magnitnykh struktur

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the competition of single-ion anisotropy and easy-plane anisotropy on the magnetic properties of the multilayer structure Co/Cu/Co is investigated. The peculiarities of the influence of anisotropy effects are revealed both in the vicinity of critical temperature Tc and in the low-temperature range T < Tc. The magnetic properties of the multilayer structure are numerically simulated using the anisotropic Heisenberg model. In the vicinity of Tc, easy-plane anisotropy is shown to exert a predominant influence on the magnetic properties of the structure as compared to the influence of single-ion anisotropy. In the low-temperature range, the switching of the magnetic state of the ferromagnetic film in an external field leads to the appearance of specific features in hysteresis effects due to the competition of two types of magnetic anisotropy. The magnetic structure exhibits a size-induced transition from the behavior caused by easy-plane anisotropy to the behavior caused by single-ion anisotropy. The revealed size-induced transition is accompanied by a spin-flop effect.

About the authors

A. V. Min'kova

Dostoevsky Omsk State University

Email: minkovaav@omsu.ru
644077, Omsk, Russia

V. V. Prudnikov

Dostoevsky Omsk State University

Email: minkovaav@omsu.ru
644077, Omsk, Russia

P. V. Prudnikov

Dostoevsky Omsk State University; Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: minkovaav@omsu.ru
644077, Omsk, Russia; 644040, Omsk, Russia

References

  1. G. Mihajlovi'c, N. Smith, T. Santos, J. Li, B. D. Terris, and J. A. Katine, Appl. Phys. Lett. 117, 242404 (2020).
  2. R. B. Morgunov, G. L. L'vova, A. D. Talantsev, O. V. Koplak, T. Fache, and S. Mangin, J. Magn. Magn. Mater. 459, 33 (2018).
  3. C. C. Huang, X. Zhou, and D. A. Hall, Sci. Rep. 7, 45493 (2017).
  4. J. Sarkar, Sputtering Materials for VLSI and Thin Film Devices., Elsevier, Amsterdam (2014).
  5. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
  6. C. A. F. Vaz, J. A. C. Bland, and G. Lauho, Rep. Prog. Phys. 71, 056501 (2008).
  7. P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).
  8. A. O. Adeyeye, G. Shimon, Magnetism of Surfaces, Interfaces, and Nanoscale Materials. Handbook of Surface Science., Elsevier, Amsterdam (2015).
  9. B. Heinrich, T. Monchesky, and R. Urban, J. Magn. Magn. Mater. 236, 339 (2001).
  10. P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).
  11. P. V. Prudnikov, V. V. Prudnikov, A. Yu. Danilova, V. O. Borzilov, and G. G. Baksheev, EPJ Web Conf. 185, 11009 (2018).
  12. F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B. 49, 3962 (1994).
  13. R. A. Duine, K. J. Lee, S. Parkin, and M. D. Stiles, Nat. Phys. 14, 217 (2018).
  14. V. V. Prudnikov, P. V. Prudnikov, M. V. Mamonova, M. M. Firstova, and A. A. Samoshilova, J. Phys.Commun. 3, 015002 (2019).
  15. M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B. 64, 174402 (2001).
  16. T. Tanuma, S. Takahasi, M. Kume, and K. Kuroki, J. Magn. Soc. Jpn. 18, S1 (1994).
  17. Y. Chen, M. Kadic, and M. Wegener, Nat.Commun. 12, 3278 (2021).
  18. A. Fern'andez-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, and R. P. Cowburn, Nat.Commun. 8, 15756 (2017).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies