Spinovye sostoyaniya ionov Co i perekhod metall–poluprovodnik v sloistykh kobal'titakh PrBaCo2O5+δ (δ = 0.52, 0.74)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spin states of Co atoms in PrBaCo2O5 + δ with regard to the paramagnetic contribution of Pr3+ ions have been determined from magnetic property studies for δ = 0.52 and 0.74. Results obtained without considering the paramagnetic contribution of Pr3+ ions are inconsistent with available experimental data. With a decrease in temperature, the metal–insulator transition in PrBaCo2O5.52 becomes sharper according to a sharp change in spin states (from HS/LS to LS/IS) of Co3+ ions. In this case, Co3+ ions occupying octahedra pass from the high-spin state (HS, S = 2) to the low-spin one (LS, S = 0) and those occupying pyramids pass from the LS-state to the intermediate spin state (IS, S = 1), as follows from the available structural data. In PrBaCo2O5.74, the metal–semiconductor transition occurs smoothly from HS/LS to the HS/IS state upon the smooth transition of the Co3+ ion state from (LS, S = 0) to the (IS, S = 1) state in pyramides without change in the spin state of ions Co3+ (HS, S = 2) and Co4+ (LS, S = 1/2) in octahedrons.

About the authors

N. I. Solin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: solin@imp.uran.ru
620108, Yekaterinburg, Russia

S. V. Naumov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: solin@imp.uran.ru
620108, Yekaterinburg, Russia

A. V. Korolev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: solin@imp.uran.ru
620108, Yekaterinburg, Russia

V. R. Galakhov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: solin@imp.uran.ru
620108, Yekaterinburg, Russia

References

  1. A. Maignan, C. Martin, D. Pelloquin et al., J. Sol. St. Chem. 142, 247 (1999).
  2. C. Martin, A. Maignan, D. Pelloquin et al., Appl. Phys. Lett. 71, 1421 (1997).
  3. A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B 71, 134414 (2005).
  4. C. Frontera, J. L. Garc'ıa-Munoz, A. Llobet et al., Phys. Rev. B 65, 180405(R) (2002).
  5. Y. Moritomo, T. Akimoto, M. Takeo et. al., Phys. Rev. B 61, 13325(R) (2000).
  6. Z. X. Zhou and P. Schlottmann, Phys. Rev. B 71, 174401 (2005).
  7. M. Baran, V. I. Gatalskaya, R. Szymczak et al., J. Phys.: Condensed Matter 15, 8853 (2003).
  8. Н. И. Солин, С. В. Наумов, Письма в ЖЭТФ 114, 179 (2021).
  9. Н. Ф. Мотт, Переходы металл-изолятор, Наука, Москва (1979).
  10. Н. Б. Иванова, С. Г. Овчинников, М. М. Коршунов и др., УФН 179, 837 (2009).
  11. S. Ganorkar, K. R. Priolkar, P. R. Sarode, and A. Banerjee, J. Appl. Phys. 110, 053923 (2011).
  12. E.-L. Rautama, V. Caignaert, Ph. Boullay et al., Chem. Matter 21, 102 (2009).
  13. H. D. Zhou and J. B. Goodenough, J. Sol. St. Chem. 177, 3339 (2004).
  14. A. Jarry, H. Luetkens, Y. G. Pashkevich et al., Physica B 404, 765 (2009).
  15. L. Landau, Phys. Zs. Sowjet. 4, 675 (1933).
  16. F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, Phys. Rev. B 66, 184421 (2002).
  17. C. Frontera, J. L. Garc'ıa-Munoz, and A. E. Carillo, Phys. Rev. B 70, 18428 (2004).
  18. Н. И. Солин и С. В. Наумов, Письма в ЖЭТФ 115, 531 (2022).
  19. P. Miao, X. Lin, S. Lee et al., Phys. Rev. B 95, 125123 (2017).
  20. C. Frontera, J. L. Garc'ıa-Munoz, A. E. Carillo et al., Phys. Rev. B 74, 054406 (2006).
  21. C. Frontera, J. L. Garc'ıa-Munoz, A. E. Carillo et al., JMMM 316, e731 (2007).
  22. C. Frontera, J. L. Garc'ıa-Munoz, O. Castanˇo et al., J. Phys.: Condens. Matter 20, 104228 (2008).
  23. Н. И. Солин, С. В. Наумов, С. В. Телегин, Письма в ЖЭТФ 107, 206 (2018).
  24. Н. И. Солин, С. В. Наумов, ЖЭТФ 157, 824 (2020).
  25. A. A. Taskin and Yoichi Ando, Phys.Rev. Lett. 95, 176603 (2005).
  26. P. Miao, X. Lin, A. Koda et al., Adv. Mater. 29, 1605991 (2017).
  27. E-L. Rautama and M. Karppinen, J. Sol. St. Chem. 183, 1102 (2010).
  28. Д. Гуденаф, Магнетизм и химческая связь, Металлургия, Москва (1966).
  29. S. Roy, M. Khan, Y. Q. Guo, J. Craig, and N. Ali, Phys. Rev.B 65, 064437 (2002).
  30. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
  31. F. Fauth, E. Suard, V. Caignaert, B. Domeng'es, Mirebeau, and L. Keller, Eur. Phys. J. B 21, 163 (2001).
  32. С. В. Вонсовский, Магнетизм, Наука, Москва (1971), гл. 9.
  33. Md. M. Seikh, V. Pralong, O. I. Lebedev, V. Caignaert, and B. Raveau, J. Appl. Phys. 114, 013902 (2013).
  34. V. Pralong, V. Caignaert, S. Hebert, A. Maignan, and B. Raveau, Solid State Ionics 177, 1879 (2006).
  35. D. D. Khalyavin, O. Prokhnenko, N. Stu¨ßer et al., Phys. Rev. B 77, 174417 (2008).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies