Zeemanovskoe rasshcheplenie eksitonov v kvantovykh yamakh GaAs/AlGaAs v geometrii Faradeya

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Zeeman splitting in the GaAs/AlGaAs heterostructure is investigated experimentally. Numerical analysis performed for the wavefunctions of exciton states, which takes into account the bands of heavy holes, light holes, and the band split by the spin–orbit interaction, is the quantitative agreement with experimental data both for an exciton with a heavy hole and for that with a light hole. It is shown that for explaining the experimental values of the Zeeman splitting in the quantum well under investigation, it is necessary to take into account both the Coulomb interaction and the contribution from the three bands in the valence band. The effect of screening of exciton states by a 2D gas of electrons with concentration n ≈ 109 cm–2 is described. Numerical calculations are performed for a large range of quantum well widths and aluminum concentrations in barriers; the chart of the dependence of the effective g factor on these parameters is plotted for magnetic field B = 5 T.

About the authors

F. S. Grigor'ev

St. Petersburg State University

Email: f.grigoriev@spbu.ru
198504, St. Petersburg, Russia

M. A. Chukeev

Resource Center “Nanophotonics,” St. Petersburg State University

Email: f.grigoriev@spbu.ru
198504, St. Petersburg, Russia

V. A. Lovtsyus

Spin Optics Laboratory, St. Petersburg State University

Email: f.grigoriev@spbu.ru
198504, St. Petersburg, Russia

Yu. P. Efimov

Resource Center “Nanophotonics,” St. Petersburg State University

Email: f.grigoriev@spbu.ru
198504, St. Petersburg, Russia

S. A. Eliseev

Spin Optics Laboratory, St. Petersburg State University

Author for correspondence.
Email: f.grigoriev@spbu.ru
198504, St. Petersburg, Russia

References

  1. G. E. W. Bauer and T. Ando, Phys. Rev. B 37, 3130(R) (1988).
  2. H. Wang, M. Jiang, R. Merlin, and D. G. Steel, Phys. Rev. Lett. 69, 804 (1992).
  3. N. J. Traynor, R. J. Warburton, M. J. Snelling, and R. T. Harley, Phys. Rev. B 55, 15701 (1997).
  4. В. Б. Тимофеев, М. Байер, А. Форхел, М. Потемски, Письма в ЖЭТФ 64, 52 (1996).
  5. L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
  6. W. Zawadzki, P. Pfe er, R. Bratschitsch et al., Phys. Rev. B 78, 245203 (2008).
  7. I. A. Yugova, A. Greilich, D. R. Yakovlev et al., Phys. Rev. B 75, 245302 (2007).
  8. W. Shichi, T. Ito, M. Ichida et al., Jpn. J. Appl. Phys. 48, 063002 (2009).
  9. А. А. Киселев, Л. В. Моисеев, ФТТ 38, 1574 (1996).
  10. J. J. Davies, D. Wolverson, V. P. Kochereshko et al., Phys. Rev. Lett. 97, 187403 (2006).
  11. L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 78, 085204 (2008).
  12. J. J. Davies, L. C. Smith, D. Wolverson et al., Phys. Rev. B 81, 085208 (2010).
  13. L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 83, 155206 (2011).
  14. P. S. Grigoryev, O. A. Yugov, S. A. Eliseev et al., Phys. Rev. B 93, 205425 (2016).
  15. М. В. Дурнев, ФТТ 56, 1364 (2014).
  16. M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. E 44, 797 (2012).
  17. Д. В. Кулаковский, С. И. Губарев, Ю. Е. Лозовик, Письма в ЖЭТФ 74, 123 (2001).
  18. R. C. Iotti and L. C. Andreani, Phys. Rev. B 56, 3922 (1997).
  19. A. D'Andrea, N. Tomassini, L. Ferrari et al., J. Appl. Phys. 83, 7920 (1998).
  20. E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures, Springer-Verlag, New York (2004).
  21. E. S. Khramtsov, P. A. Belov, P. S. Grigoryev et al., J. Appl. Phys. 119, 184301 (2016).
  22. P. S. Grigoryev, V. G. Davydov, S. A. Eliseev et al., Phys. Rev. B 96, 155404 (2017).
  23. P. A. Belov, Phys. E 112, 96 (2019).
  24. M. A. Chukeev, A. S. Kurdyubov, V. A. Lovtcius et al., arXiv:2304.04988 (2023).
  25. Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
  26. R. T. Phillips, G. C. Nixon, T. Fujita et al., Sol. St.Comm. 98, 287 (1996).
  27. G. V. Astakhov, V. P. Kochereshko, D. R. Yakovlev et al., Phys. Rev. B 65, 115310 (2002).
  28. K. Wagner, E. Wietek, J. D. Ziegler et al., Phys. Rev. Lett. 125, 267401 (2020).
  29. R. A. Sergeev and R. A. Suris, Phys. St. Sol. (b) 227, 387 (2001).
  30. I. Bar-Joseph, Semicond Sci. Technol. 20, R29 (2005).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies