Nelineynaya dinamika geyzenbergovskogo ferromagnetika na poluosi

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nonlinear dynamics of a semi-infinite isotropic ferromagnet with partial spin pinning at the sample edge, as well as in the limiting cases of full spin pinning and in its absence, is investigated based on the Landau–Lifshitz model using the inverse scattering transform. Two types of solitons are predicted. The first of them represents magnetization oscillations with discrete frequencies, which are localized near the sample surface. The second type contains moving particle-like objects with deformable cores, which are elastically reflected from the sample boundary, whereas at large distances from the boundary they are transformed into the typical solitons of an extended ferromagnet. Peculiarities in collisions of solitons with the sample boundary are analyzed for various degrees of spin pinning on the surface. A set of new conservation laws is obtained, which guarantee the fulfillment of the required boundary conditions for solitons and ensure the localization of solitons near the sample surface or their reflection from it.

About the authors

V. V Kiselev

Mikheev Institute of Physics, Ural Branch, Russian Academy of Sciences; Institute of Physics and Technology, Ural Federal University

Author for correspondence.
Email: kiseliev@imp.uran.ru
620002, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

References

  1. А. Б. Борисов, В. В. Киселев, Квазиодномерные магнитные солитоны, Физматлит, Москва (2014).
  2. Г. В. Дрейден, А. В. Порубов, А. М. Самсонов, И. В. Семенова, ЖТФ 71, 1 (2001).
  3. В. В. Киселев, А. А. Расковалов, ЖЭТФ 62, 693 (2022).
  4. I. T. Habibullin, in Nonlinear World: IV Int. Workshop on Nonlinear and Turbulent Processes in Physics, ed. by V. G. Baryachtar et. el., World Scienti c Singapore (1989), Vol. 1, p. 130.
  5. И. Т. Хабибуллин, ТМФ 86, 43 (1991).
  6. A. S. Fokas, Commun. Math. Phys. 230, 1 (2002).
  7. A. S. Fokas, Comm. Pure Appl. Math., V. LVIII., 639 (2005).
  8. П. Н. Бибиков, В. О. Тарасов, ТМФ 79, 334 (1989).
  9. V. O. Tarasov, Inverse Problems 7, 435 (1991).
  10. A. S. Fokas, Physica D 35, 167 (1989).
  11. Е. К. Склянин, Функциональный анализ и его приложения 21, 86 (1987).
  12. Н. Г. Гочев, ФНТ 10, 615 (1984).
  13. Л. Д. Фаддеев, Л. А. Тахтаджян, Гамильтонов подход в теории солитонов, Наука, Москва (1986).
  14. A. M. Косевич, Е. А. Иванов, А. С. Ковалев, Нелинейные волны намагниченности. Динамические и топологические солитоны, Наукова думка, Киев (1983).
  15. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).
  16. А. Б. Мигдал, Качественные методы в квантовой теории, Наука, Москва (1979).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies