Attosekundnaya interferometriya pri uchastii diskretnykh sostoyaniy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the paper we theoretically investigate the features of RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) spectroscopy under conditions when transitions through discrete spectrum states play a significant role. Two approaches are applied in the article: the numerical solution of rate equations with continuum discretization and the perturbation theory up to the third order in amplitude. Both approaches use transition matrix elements and photoionization amplitudes obtained by the high-precision R-matrix method. Within the framework of these approaches, photoelectron spectra, the amplitude and phase of RABBITT oscillations were obtained, and the effect of the seed optical field intensity and detuning from a resonance upon excitation of discrete states was studied.

About the authors

M. M Popova

Faculty of Physics, Moscow State University

Email: mm.popova@physics.msu.ru
119991, Moscow, Russia

S. N Yudin

Faculty of Physics, Moscow State University

Email: mm.popova@physics.msu.ru
119991, Moscow, Russia

E. V Gryzlova

Faculty of Physics, Moscow State University

Email: mm.popova@physics.msu.ru
119991, Moscow, Russia

M. D Kiselev

Faculty of Physics, Moscow State University; Pacific National University; School of Physics and Engineering, ITMO University

Email: mm.popova@physics.msu.ru
119991, Moscow, Russia; 680035, Khabarovsk, Russia; 197101, St. Petersburg, Russia

A. N Grum-Grzhimaylo

Faculty of Physics, Moscow State University; School of Physics and Engineering, ITMO University

Author for correspondence.
Email: mm.popova@physics.msu.ru
119991, Moscow, Russia; 197101, St. Petersburg, Russia

References

  1. M. Lewenstein, Ph. Balcou, M.Yu. Ivanov et al., Phys.Rev.A 49, 2117 (1994).
  2. А.Ф.Стержантов,М.Ю.Рябикин,В.В.Стрелков, В.Т. Платоненко, УФН 186, 449 (2016).
  3. F. Krausz and M. Ivanov, Rev.Mod.Phys. 81, 163 (2009).
  4. P.M. Paul, E. S. Toma, P. Breger et al., Science 292, 1689 (2001).
  5. R. Pazourek, S. Nagele, and J. Burgd¨orfer, Faraday Discuss 163, 353 (2013).
  6. J. Vos, L. Cattaneo, S. Patchkovskii et al., Science 360, 1326 (2018).
  7. M. Ossiander, J. Riemensberger, S. Neppl et al., Nature 361, 374 (2018).
  8. G. Sansone, E. Benedetti, F. Calegari et al., Science 314, 443 (2006).
  9. E. Goulielmakis, M. Schultze, M. Hofstetter et al., Science 320, 1614 (2008).
  10. R. L'opez-Martens, K. Varj'u, P. Johnsson et al., Phys.Rev. Lett. 94, 033001 (2005).
  11. V.V. Strelkov, E.M'evel, and E. Constant, New J.Phys. 10, 083040 (2008).
  12. E. Constant, V.D. Taranukhin, A. Stolow, and P.B. Corkum, Phys.Rev.A 56, 3870 (1997).
  13. M. Hentschel, R. Kienberger, Ch. Spielmann et al., Nature 414, 509 (2001).
  14. J. Itatani, F. Qu'er'e, G. L. Yudin et al., Phys.Rev. Lett. 88, 173903 (2002).
  15. M. Schultze, M. Fieß, N. Karpowicz et al., Science 328, 1658 (2010).
  16. Y. Mairesse, A. de Bohan, L. J. Frasinski et al., Science 302, 1540 (2003).
  17. K. Kl¨under, J.M. Dahlstr¨om, M. Gisselbrecht et al., Phys.Rev. Lett. 106, 143002 (2011).
  18. L. Cattaneo, J. Vos, M. Lucchini et al., Opt.Express 24, 29060 (2016).
  19. V. V'eniard, R. Ta¨ıeb, and A. Maquet, Phys. Rev.A 54, 721 (1996).
  20. Н. Б. Делоне, В. П. Крайнов, Нелинейная ионизация атомов лазерным излучением, Физматлит, Москва (2001).
  21. M. Isinger, D. Busto, S. Mikaelsson et al., Phil. Trans.Roy. Soc.A: Math. Phys.Eng. Sci. 377, 20170475 (2019).
  22. J. Benda, Z. Maˇs'ın, and J.D. Gorfinkiel, Phys. Rev.A 105, 053101 (2022).
  23. E. Lindroth and J.M. Dahlstr¨om, Phys.Rev.A 96, 013420 (2017).
  24. J. Vinbladh, J.M. Dahlstr¨om, and E. Lindroth, Phys.Rev.A 100, 043424 (2019).
  25. P.K. Maroju, C. Grazioli, M.D. Fraia et al., Nature 578, 386 (2020).
  26. A. Harth, N. Douguet, K. Bartschat et al., Phys.Rev.A 99, 023410 (2019).
  27. A. S. Kheifets and A.W. Bray, Phys.Rev.A 103, L011101 (2021).
  28. D. Bharti, D. Atri-Schuller, G. Menning et al., Phys.Rev.A 103, 022834 (2021).
  29. A. Kheifets, Atoms 9, 66 (2021).
  30. J.M. Dahlstr¨om, A. L'Huillier, and J. Mauritsson, J.Phys.B 44, 095602 (2011).
  31. B. I. Schneider, K.R. Hamilton, and K. Bartschat, Atoms 10, 26 (2022).
  32. O. Zatsarinny, Comput.Phys.Commun. 174, 273 (2006).
  33. T. Mercouris, Y. Komninos, S. Dionissopoulou, and C.A. Nicolaides, J.Phys.B 29, 13 (1996).
  34. S.A. Novikov and A.N. Hopersky, J.Phys.B 44, 235001 (2011).
  35. M. Swoboda, T. Fordell, K. Kl¨under et al., Phys.Rev. Lett. 104, 103003 (2010).
  36. D.M. Villeneuve, P. Hockett, M. J. J. Vrakking, and H. Niikura, Science 356, 1150 (2017).
  37. K.R. Hamilton, K. Bartschat, M. Moioli et al., in MPS-2022 International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces, Book of Abstracts, 13, Turku, Finland (2022).
  38. M. Kotur, D. Guenot, 'A. Jim'enez-Gal'an et al., Nature Comm. 7, 10566 (2016).
  39. V. Gruson, L. Barreau, 'A. Jim'enez-Galan et al., Science 354, 734 (2016).
  40. M.A. Fareed, V.V. Strelkov, M. Singh et al., Phys.Rev. Lett. 121, 023201 (2018).
  41. 'A. Jim'enez-Gal'an, L. Argenti, and F. Mart'ın, Phys.Rev. Lett. 113, 263001 (2014).
  42. B. Ghomashi, N. Douguet, and L. Argenti, Phys. Rev.A 99, 053407 (2019).
  43. Д.А. Варшалович, В.К. Херсонский, Е.В. Орленко, А.Н. Москалев, Квантовая теория углового момента и ее приложения, т. 1, Физматлит, Москва (2017).
  44. I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer, Berlin-Heidelberg (1992).
  45. С.Н.Юдин, С.М. Бурков, А.Н. Грум-Гржимайло, М.Д. Киселев, В.И. Севериненко, Свидетельство о государственной регистрации программы для ЭВМ, №2021681060 от 17.12.2021 г.
  46. M.M. Popova, E.V. Gryzlova, M.D. Kiselev, and A.N. Grum-Grzhimailo, Symmetry 13, 1015 (2021).
  47. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2022, October 3]. National Institute of Standards and Technology, Gaithersburg, USA (2020).
  48. C. F. Fischer, T. Brage, and P. Jonsson, Computational Atomic Structure: An MCHF Approach, IOP Publ., Bristol (1997).
  49. V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions: A Practical Theory Course, Kluwer Acad./Plenum Publ., New York (2000).
  50. W. Gordon, Ann.Physik 394, 1031 (1929).
  51. А.А. Крыловецкий, Н.Л. Манаков, С.И. Мармо, ЖЭТФ 119, 45 (2001)
  52. A.A. Krylovetsky, N. L. Manakov, and S. I. Marmo, JETP 92, 37 (2001).
  53. D. Busto, J. Vinbladh, S. Zhong et al., Phys. Rev. Lett. 123, 133201 (2019).
  54. N. Levinson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 25, 9 (1949).
  55. Л.Д. Ландау и Е.М. Лифщиц, Квантовая механика: нерелятивистская теория, Физматлит, Москва (2004).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies