Electrostatic Interaction of Bilayer Macroparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of a dielectric film on the surface of conducting dust particles on their electrostatic interaction is investigated. Special attention is paid to the case when the radius of one of particles is much larger than the radius of the other particle and to a nonuniform distribution of the surface charge with variants of equilibrium free charge distribution on each of the macroparticles over the entire surface and over the left and/or right hemispheres. The technique for calculating of slowly converging series is worked out using the hypergeometric Gauss functions and by introducing new functions for which recurrent relations and numerical calculation technique were determined.

About the authors

A. V. Filippov

Troitsk Institute for Innovation and Fusion Research;
Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: viktor.reshetnyak84@gmail.com
108840, Troitsk, Moscow, Russia; 125412, Moscow, Russia

References

  1. В.Н. Цытович, УФН 167, 57 (1997).
  2. В. Е. Фортов, А. Г. Храпак, С. А. Храпак, В. И. Молотков, О. Ф. Петров, УФН 174, 495(2004).
  3. В.И. Молотков, О.Ф. Петров, М.Ю. Пустыльник, В.М. Торчинский, В.Е. Фортов, А. Г. Храпак, ТВТ 42, 821 (2004).
  4. S.V. Vladimirov, K. Ostrikov, and A.A. Samarian, Physics and Applications of Complex Plasmas, London, Imperial College Press (2005).
  5. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys.Rep. 421, 1 (2005).
  6. G.E. Morfill and A.V. Ivlev, Rev.Mod.Phys. 81, 1353 (2009).
  7. M. Bonitz, C. Henning, and D. Block, Rep.Prog. Phys. 73, 066501 (2010).
  8. Комплексная и пылевая плазма: из лаборатории в космос, под ред. В. Фортова, Г. Морфилла, Физматлит, Москва (2012).
  9. A. Ivlev, H. Lowen, G. Morfill, and C.P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Series in Soft Condensed Matter, Vol. 5, World Scientific, Singapore (2012).
  10. I. Mann, N. Meyer-Vernet, and A. Czechowski, Phys.Rep. 536, 1 (2014).
  11. P.K. Shukla and A.A. Mamun, Introduction to Dusty Plasma Physics, CRC Press, Bristol and Philadelphia (2015).
  12. А. В. Ивлев, С. А. Храпак, В. И. Молотков, А. Г. Храпак, Введение в физику пылевой и комплексной плазмы. Учебное пособие, Издательский дом ¾Интеллект¿, Долгопрудный (2017).
  13. А.М. Липаев, В.И. Молотков, Д.И.Жуховицкий, В.Н. Наумкин, А.Д. Усачев, А.В. Зобнин, О.Ф. Петров, В.Е. Фортов, ТВТ 58, 485 (2020)
  14. A.M. Lipaev, V. I. Molotkov, D. I. Zhukhovitskii, V.N. Naumkin, A.D. Usachev, A.V. Zobnin, O. F. Petrov, and V.E. Fortov, High Temperature 58, 449 (2020).
  15. F. Greiner, A. Melzer, B. Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Kruger, D. Block, A. Piel, and S. Wolf, Diagnostics and characterization of nanodust and nanodusty plasmas, Eur.Phys. J.D 72, 81 (2018); doi: 10.1140/epjd/e2017-80400-7.
  16. H. Yockell-Leli'evre, E. F. Borra, A.M. Ritcey, and L.V. da Silva, Appl.Opt. 42, 1882 (2003).
  17. S. Crossley, J. Faria, M. Shen, and D.E. Resasco, Science 327, 68 (2010).
  18. V.A. Turek, M.P. Cecchini, J. Paget, A.R. Kucernak, A.A. Kornyshev, and J.B. Edel, ACS Nano 6, 7789 (2012).
  19. J. Song, J. Zhou, and H. Duan, J.Amer.Chem. Soc. 134, 13458 (2012).
  20. K. Saha, S. S. Agasti, C. Kim, X. Li, and V.M. Rotello, Chem.Rev. 112, 2739 (2012).
  21. P.-P. Fang, S. Chen, H. Deng, M.D. Scanlon, F. Gumy, H. J. Lee, D. Momotenko, V. Amstutz, F. Cort'es-Salazar, C.M. Pereira, Z. Yang, and H.H. Girault, ACS Nano 7, 9241 (2013).
  22. J.B. Edel, A.A. Kornyshev, and M. Urbakh, ACS Nano 7, 9526 (2013).
  23. M.P. Cecchini, V.A. Turek, J. Paget, A.A. Kornyshev, and J.B. Edel, Nat.Mater. 12, 165 (2013).
  24. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, ACS Nano 7, 5320 (2013).
  25. J. Song, Z. Fang, C. Wang, J. Zhou, B. Duan, L. Pu, and H. Duan, Nanoscale 5, 5816 (2013).
  26. J. He, P. Zhang, T. Babu, Y. Liu, J. Gong, and Z. Nie, Chem.Commun. 49, 576 (2013).
  27. J. Paget, V. Walpole, M.B. Jorquera, J.B. Edel, M. Urbakh, A.A. Kornyshev, and A. Demetriadou, J.Phys.Chem.C 118, 23264 (2014).
  28. E. Smirnov, M.D. Scanlon, D. Momotenko, H. Vrubel, M.A. M'endez, P.-F. Brevet, and H.H. Girault, ACS Nano 8, 9471 (2014).
  29. A. Samanta, S. Takkar, R. Kulshreshtha, B. Nandan, and R.K. Srivastava, Biomed.Phys.Eng. Express 3, 035011 (2017).
  30. M.D. Scanlon, E. Smirnov, T. J. Stockmann, and P. Peljo, Chem.Rev. 118, 3722 (2018).
  31. F. Ciesa and A. Plech, J.Colloid Interface Sci. 346, 1 (2010).
  32. E. Smirnov, P. Peljo, M.D. Scanlon, F. Gumy, and H.H. Girault, Nanoscale 8, 7723 (2016).
  33. P.A. Kralchevsky, K.D. Danov, and P.V. Petkov, Phil.Trans.Roy. Soc.A 374, 20150130 (2016); http://doi.org/10.109/rsta.2015.0130.
  34. L. Isa, I. Buttinoni, M.A. Fernandez-Rodriguez, and S.A. Vasudevan, Europhys. Lett. 119, 26001 (2017).
  35. R. Bebon and A. Majee, J.Chem.Phys. 153, 044903 (2020); doi: 10.1063/5.0013298.
  36. B. J. Cox, N. Thamwattana, and J.M. Hill, J.Electrostat. 65, 680 (2007); https://doi.org/10.1016/j.elstat.2007.05.004.
  37. Y. Nakajima and T. Sato, J.Electrostat. 45, 213 (1999).
  38. E. Bichoutskaia, A. L. Boatwright, A. Khachatourian, and A. J. Stace, J.Chem.Phys. 133, 024105 (2010); doi: 10.1063/1.3457157.
  39. А.В. Филиппов, ЖЭТФ 161, 691 (2022); doi: 10.31857/S0044451022050078
  40. A.V. Filippov, JETP 134, 590 (2022); doi: 10.1134/S1063776122030141.
  41. В.Р. Муниров, А.В. Филиппов, ЖЭТФ 144, 931 (2013).
  42. A. Khachatourian, H.-K. Chan, A. J. Stace, and E. Bichoutskaia, J.Chem.Phys. 140, 074107 (2014); https://doi.org/10.1063/1.4862897.
  43. J.D. Love, Q. J. Mech.Appl.Math. 28, 449(1975).
  44. A.T. P'erez and R. Fern'andez-Mateo, J.Electrostat. 112, 103601 (2021); https://doi.org/10.1016/j.elstat.2021.103601.
  45. А.В. Филиппов, Письма в ЖЭТФ 115, 197 (2022); doi: 10.31857/S1234567822030107
  46. A.V. Filippov, JETP Lett. 115, 174 (2022); doi: 10.1134/S0021364022030067.
  47. T.B. Jones and T.B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge (2005).
  48. A. Castellanos, Adv.Phys. 54, 263 (2005).
  49. X. Meng, J. Zhu, and J. Zhang, J.Phys.D 42, 065201 (2009).
  50. B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L.P. DeMejo, Phys.Rev.B 53, 8065 (1996).
  51. B. Gady, R. Reifenberger, D. S. Rimai, and L.P. DeMejo, Langmuir 13, 2533 (1997).
  52. Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, and X. Jing, Appl. Surf. Sci. 433, 450 (2018).
  53. M.C. Stevenson, S.P. Beaudoin, and D. S. Corti, J.Phys.Chem.C 124, 3014 (2020); https://doi.org/10.1021/acs.jpcc.9b09669.
  54. M.C. Stevenson, S.P. Beaudoin, and D. S. Corti, J.Phys.Chem.C 125, 20003 (2021).
  55. H. Zhou, M. G¨otzinger, and W. Peukert, Powder Technol. 135-136, 82 (2003).
  56. Y. Gao, E. Tian, and J. Mo, ACS ES and T Eng. 1, 1449 (2021).
  57. C. Bechinger, R.Di Leonardo, H. L¨owen, C. Reichhardt, G. Volpe, and G. Volpe, Rev.Mod.Phys. 88, 045006 (2016); doi: 10.1103/RevModPhys.88.045006.
  58. J. Elgeti, R.G. Winkler, and G. Gompper, Rep.Prog.Phys. 78, 056601 (2015); doi: 10.1088/0034-4885/78/5/056601.
  59. S. Ramaswamy, J. Stat.Mech.: Theory Exp. 2017, 054002 (2017); doi: 10.1088/1742-5468/aa6bc5.
  60. A. Walther and A.H.E. M¨uller, Chem.Rev. 113, 5194 (2013).
  61. E.A. Lisin, O. S. Vaulina, I. I. Lisina, and O. F. Petrov, Phys.Chem.Chem.Phys. 23, 16248 (2021).
  62. I. Adamovich, S. Agarwal, E. Ahedo, L. L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P. J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donk'o, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H-H. Kim, G.M.W. Kroesen, M. J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G. S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. ˇSimek, N. Tarasenko, K. Terashima, E. Thomas Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I. J. van der Walt, M.C.M. van de Sanden, and T. von Woedtke, J.Phys.D: Appl.Phys. 55, 373001 (2022); doi: 10.1088/1361-6463/ac5e1c.
  63. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике, Наука, Москва (1970).
  64. В. Смайт, Электростатика и электродинамика, Изд-во иностр. лит., Москва (1954).
  65. Е.В. Гобсон, Теория сферических и эллипсоидальных функций, Изд-во иностр. лит., Москва (1952)
  66. E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Univ.Press, Cambridge (1931).
  67. T.M. MacRobert, Spherical Harmonics, Metiiuen and Co. Ltd., London (1947).
  68. Ю. Люк, Специальные математические функции и их аппроксимации, Мир, Москва (1980)
  69. Y. L. Luke, Mathematical Functions and their Approximations, Academic Press Inc., New York, San Francisco, London (1975).
  70. А.П. Прудников, Ю.А. Брычков, О.И. Маричев, Интегралы и ряды, т. 3, Специальные функции. Дополнительные главы, Физматлит, Москва (2003).
  71. А.П. Прудников, Ю.А. Брычков, О.И. Маричев, Интегралы и ряды, т. 1., Элементарные функции, Физматлит, Москва (2002), 632 с.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies