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Abstract. We investigate field emission in resonant tunneling heterostructures with one quantum well and
two barriers, as well as the influence of the lifetime of resonant metastable levels formed in the well on it.
The problem of the tunneling time of a quantum particle (electron) through a structure with a barrier and
two barriers and a well is also considered. Stationary and nonstationary Schrodinger equations are used. The
lifetimes of metastable levels are determined and their effect on tunnel current is investigated.

DOI: 10.31857/500444510250101e9

1. INTRODUCTION

Resonant tunneling structures (RTS), which are
nanoscale heterostructures with field emission, are
widely used in electronics as sources of very high
current densities (up to 104 A/m?) [1-3]. They
also form the basis for designing resonant tunneling
diodes (RTD), transistors, quantum cascade lasers
(QCL) of the “Stark ladder” type, THz transistors
and switches [4—11], as well as other devices. For all
these applications, switching times, response times,
and overall transient times are crucial [11,12].

RTS is characterized by having one, two, or
several quantum wells separated by barriers, where
quasi-stationary resonance levels can arise [13]. We
will refer to the electron-emitting left electrode as
the cathode (denoted by the subscript ¢) and the
right electrode as the anode (subscript a). For the
intermediate electrode (grid), the subscript g will be
used. In the case of equal electrochemical potentials
of the electrodes . = p,, the quantum potential V(x)
between the two electrodes (in a diode structure)
resembles an inverted parabola on a pedestal and can
be strictly described by an infinite series of images
that account for the electron work functions [1].
Approximating this series with an inverted parabola is
rather crude [1,14]. A more accurate approximation
is a fourth-order inverted parabola [1,2]. In this work,

we will use an even more precise approximation for
the potential in the diode 0 < x <d under anode
voltage U,

(1—o/d)(1+8/d)" y

V(x)= Ep + W,
)= £ (1-8/d)e

od eU x

(x+8(1—-x/d))(d—x+x3/d)| d

(D

In this formula, o = 3§(2In(2)+ 1) represents the
cathode work function, assumed equal for both the
cathode and anode W, = W, , and is related to the
parameter (gap size) o by the equation:

W, =e?/(16mey3).

For simplicity, we will further assume equal
Fermi energies Ep. = Ep, for the electrodes.
Under potential V(x)V(x)V(x), the boundary
conditions are ¥ (0)= Ep, at the cathode and
V(d)=Ep, —eU, =pn,, at the anode, meaning
the quantum potential V coincides with the
electrochemical potentials. In cases with different
work functions (and materials of the cathode and
anode), an additional term (Ep, — Ep, )x/d should
be added to (1). The accuracy of equation (1) is no
worse than 1%. Diode structures do not allow for
extremely high current densities. Current increase
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occurs through resonant tunneling (RT), where one
or more quantum wells are surrounded by barriers
[1—3]. Reflections from the barriers interfere, and the
total reflection coefficient cancels out. For simplicity,
we further consider a single-well structure with three
electrodes: cathode (source), grid (gate), and anode
(drain). Equation (1) applies both to a vacuum gap
(e = 1), and a dielectric gap between electrodes. In
the absence of an anode voltage U, = 0, the potential
in the center of the gap is:

W, (1—a/d)(1+8/d)
(1-8/d) e '

For a work function of 3.6 eV, the corresponding
value is & = 0.1. Thus, for typical work functions of
materials (2—5 eV) and typical electrode and gap sizes,
RTS structures on the order of nanometers satisfy the
inequalities 8/d <<1, a /d <<1. In the absence of
anode voltage, the inequality V (d/2) ~ Ep, + W, /e
holds. A dielectric with dielectric permittivity . reduces
the barrier height by a factor of €.

V(d/Z) =Ep. +

Suitable and convenient dielectrics for RTS
include CVD (Chemical Vapor Deposition) diamond
(e = 5.6, bandgap 2.5 eV) [15] and beryllium oxide
(BeO, £ =16.7, bandgap 10.6 e¢V). These diclectrics
significantly reduce the barrier height and have the
highest thermal conductivity, which is essential
for high current densities [2,3]. Although CVD
diamond with 88% sp* hybridization has a density of
88.2% of crystalline diamond, its dielectric constant
can be taken as 5.6 due to the presence of a small
graphite phase. Electrodes can be made of metals
or doped semiconductors. Beryllium has the highest
Fermi energy (14.6 V), relatively low work function
(3.92 eV), and the highest thermal conductivity
among metals. To construct a complex profile V
(Fig. 1), equation (1) is applied twice — once for the
cathode-grid gap (replacing U, — U, ) and once for
the grid-anode gap, assuming Ep. — Ep. —eU,.
On the grid, the quantum potential is constant and
determined by its electrostatic potential U,.

In RTDs and QCLs, highly conductive layers
are usually considered electrically free, meaning
the potential along them is not fixed and decreases
[4—12]. Figure 1 shows typical profiles of V(x) for
diode and triode structures under different anode
(U,) and grid (U,) voltages for copper electrodes.
To form a quantum well, a grid voltage U ¢ = Erc/e
was applied. The energy E is measured from the

V
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Fig. 1. Potential Barrier Profile V' (eV) as a Function of Distance
X (nm) in a vacuum diode (curves 0, 3, 5, 7) and a vacuum triode
(curves 1, 2, 4, 6). The curve numbers for the diode correspond
to the anode voltage U, in volts. For the triode curves 2
and 4, the grid voltage U,= Epis specified, and their numbers
correspond to the anode voltage. For curve 1, U= 0, U, = W,/e,
while for curve 6, U, =4V and U, = 3 V. The work functions are
EFc =7¢eVand W, =4.36 eV (copper electrodes).

conduction band bottom of the cathode, which
coincides with the bottom of the well.

If an energy level E, exists in the formed
quantum well, it is quasi-stationary, as there is
always an identical level at both the cathode and
anode, allowing the electron to tunnel between them.
Tunneling can occur both leftward to the cathode and
rightward to the anode. Subsequently, the electron
transitions from this level to the Fermi level of the
corresponding electrode, from which it can enter
the power supply circuit, as only electrons near the
Fermi level participate in the diffusion current.

The issue of quasi-stationary level lifetime
(decay time) in a spherically symmetric quantum
well has been addressed in several works, such as
[16—18]. However, the lifetime of quasi-stationary
levels in a one-dimensional Cartesian RTS has not
been strictly studied. This time is closely related to
the tunneling time of a single particle through the
structure (its dwell time). There is extensive literature
on the introduction of various time definitions (see,
for example, the reference list in [19]). The topic

JETP, Vol. 167, No. 1, 2025
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of tunneling times remains under discussion, with
several paradoxes. Tunneling times are closely linked

to the switching times of tunnel devices [11]. RTS

devices such as RTDs, QCLs, and other structures
are typically modeled using rectangular potentials
modified by the term —eU ,x/d [11]. This approach
is a rough approximation because high voltages lead
to a barrier shape close to a triangle on a pedestal [1].
Schrodinger equation (SE) calculations show that
such a barrier is orders of magnitude more transparent
than a rectangular barrier of the same height and base
width. A semiclassical approximation is often used
[16], which can be integrated exactly for a triangular
barrier [20]. However, this method is accurate only
up to a pre-exponential factor and is quite imprecise

in the narrow upper part of the barrier, as it neglects

the reflected electron wave [20]. For narrow barriers,
the reflected wave contributes significantly. In
the analysis of RTS with two or more rectangular
barriers, resonance levels are usually defined as the

penetration of a particle through identical barriers

to the left or right with the same energy as in the

well [13]. However, real RTS structures differ.
Upon reaching the cathode or anode with a given
energy, the particle transitions to the Fermi level
of the electrode, emitting or absorbing an energy
quantum, and exits the structure with this energy, as
any current in conductors is generated by electrons
near the Fermi level. Under stationary tunneling
(constant anode voltage), the number of electrons
tunneling from the cathode is exponentially greater
than the number tunneling from the anode, resulting
in a constant emission current closing through the
power supply. The emergence of resonance levels
E, leads to resonant tunneling (RT), accompanied
by an increase in current, as the barrier becomes fully
transparent for electrons with energy £ = E,. Quasi-
stationary levels arise with increasing well width.
These energy levels are complex: E, = E, —iE.

The parameter £, determines the level lifetime
1, = 2h / E,|. The smaller the lifetime, the broader
the energy level, the wider the energy range satisfying
the condition £ ~ E;, and the greater the number
of electrons undergoing resonant tunneling. Thus,
determining the lifetimes (complex energies £,)

of quasi-stationary levels and their dependence on
quantum potential configurations is crucial, which
is the primary aim of this study. For field emission,
the number of electrons incident per second on the
barrier within a velocity interval v, +dv, and energy
range is: dv(v, ) =n" (k)v dv_,

JETP, Vol. 167, No. 1, 2025

where
_ mehyT
2R3

E. —E(k
xln[l+exp(Fck—T()sz.
B

Equation (2) is derived by averaging over all
transverse velocities of the Fermi gas electrons in the
metal cathode and is presented for finite temperatures.
For cold emission (T = 0), the spectrum is limited by
the Fermi energy:

n* (k) =m(Er - E(k))/ (22 Jv..

n* (k)

(2)

Although the actual tunneling process involves
a multi-speed electron flux determining the total
tunnel current density:
He

[D*(EU)(n - E)E, (3
0

—-em,

JT(U,)=

() 2n%h?
this problem can be treated as single-particle
tunneling with a specified energy E.

The electron charge is taken as g, = —e, so the
positive electron flux from the cathode results in
a positive anode current =/ (U,) through a unit
cross-section. The upper limit in equation (3) is on
the order of several electronvolts, which is consistent
with non-relativistic quantum mechanics. For
thermionic-field emission (at T~2000K), equation
(2) should be used, with the upper limit in equation
(3) extended by a few eV due to the logarithmic decay.

For T = 0, the total current density J =J" —J~
is determined by tunneling in both directions with

2
transmission coefficients D*(E) =1 - ‘Ri , derived

from reflection coefficients R*. To determine R, the
Schrodinger equation is solved. The expression for J~ is
obtained by substituting p, — p,, D* — D~.

For a symmetric potential (U, = 0), the tunneling
coefficient T(E)T(E)T(E) is always D* = D~. Fora
weakly asymmetric potentials.

2. LIFETIME OF THE LEVEL BASED
ON THE STATIONARY SCHRODINGER
EQUATION SOLUTION

The stationary Schrodinger equation (SSE):

[_(hax i +V(x)}//(x) 0

2m,
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is most conveniently solved for V(x) using the wave
impedance transformation method. For a constant
potential V,, in the region x, <x <x,,;, the wave
impedance is introduced as:

Z, (E) = —i\y(x) / \y'(x) =1/k,,
where:

y(x) = Aexp(ik,x)

is the wave function (WF) of an electron moving in
the direction of x electron,

k, =\2me(E-V,)/h.

Let zo(x,,;) be the impedance on the right side.

It transforms into the input impedance on the left
side according to the formula:

<0~ izntg(kn (xn+1 —Xp ))

Zn — izOtg(kn (xn+l —Xp ))
Setting zo =Z;(x,), we apply this formula

iteratively for each segment until we obtain the input

impedance at the cathode Z,, (0) and the reflection
coefficient from the cathode side:

R* =(1-koZ;(0))/ (1+koZ,. (0)).

Zi (xn)zzn (4)

Here,
kg =k, = 2m,E / h.
For the initial iteration at the anode, we assume:
ko, =\2m,(E - Ep, +eU,)/h,
z9 = 1/k,.

It is worth noting that in typical tunneling through a
barrier, k, = k istaken, i.e., the motion is considered
only up to the turning point. Such transparency is
D* = D~. However, after passing this point, the
electron moves quasi-classically, gaining energy eU .
This results in lowering the Fermi level at the anode by
eU,, necessitating the use of the adjusted value k,,.

This concept can be illustrated using an infinitely
narrow step-like barrier: V=0atx<0and V = -eU,
at x > 0. For such a barrier, the quasi-classical
approximation gives full transparency, D =1, R = 0.
However, under the strict solution, the reflection
from the step is:

R =(k0 _ka)/(kO +ka)

and D <1. Applying formula (4) is equivalent to
matching the wave function and its derivative. Clearly,
the energy levels E, = E, —iE, can be defined as
the complex roots of the equation:

R*(E,)=0.

The transparency from the anode to the cathode
D~ is determined by reverse transformation, where at
the anode we take:

k, = \2m,E / h,

20 =1/ kg
and
R™ =(1-koZ;y(d))/ (1+koZ;4(d)).

The difference between D" and D~ increases with
increasing U,. When eU, > Ef., tunneling from
the anode becomes impossible. After tunneling, the
electron always transitions to the Fermi level of the
corresponding electrode, either releasing or absorbing

depending on the sign of the

energy e‘E - EF(a,c)
energy difference. This process is diffusive, occurring
over a distance on the order of the electron mean free
path, and does not affect the wave tunneling process
itself. If tunneling occurs from a level below the
Fermi energy, heating of the corresponding electrode
occurs (Nottingham effect): the departing electron
is replaced by an electron from the Fermi level. For
U, = 0, we obtain a symmetric structure in the form
of a quantum well between two barriers (see Fig. 1,
curves 0 and 1). In this case, the condition:

R*(E,)=R (E,)=0

yields energy levels from which the particle can tunnel
equally to the left or right. Otherwise, the condition
R*(E,) =0 gives the levels from which the particle
can escape to the anode, while R (E,)=0
corresponds to levels leading to cathode transitions.
Calculations show that the levels approximately
coincide within their width. For example, if
eU, > Ep,, all energy levels at the anode become
negative, making transitions to positive energy levels
on the cathode impossible. It is evident that for
E <0, when ‘R‘ (E )‘ =1, i.e. meaning no solutions
exist for the equation R™(E) = 0. In this case, the
cathode impedance 1/k, becomes imaginary, and
the cathode acts as an infinitely long, fully reflective

JETP, Vol. 167, No. 1, 2025
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Fig. 2. Schematic potential distribution V'in a single-well RTS at
U, = Ep/e. Dashed lines indicate the energy levels at the cathode,
anode, and two metastable levels.

step for the anode. Positive energies at the anode
can only exist at non-zero temperatures, i.e., under
thermionic emission conditions. Solutions to the
equation R"(E) =0 always exist for levels on the
cathode side. Thus, for an asymmetric potential, two
types of energy levels exist. Resonant tunneling is
primarily considered for asymmetric potentials, as
this condition ensures a continuous current.

Another possible approach to solving the stationary
Schrddinger equation involves using transfer matrices
[1-3] T(E). The structure matrix is defined by
piecewise-constant potential V approximations and
multiplying the segment matrices. The characteristic
equation for determining tunneling levels at the
anode takes the form [1, 3]:

_ Ty (E) - ik, (E) Ty (E)
T, (E) - ik, (E)T;5 (E)

ik, (E) &)

Another method involves using the sweep method.
In addition to finding R*(E) and D*(E) this
approach allows for determining the wave function
amplitudes Ajy(+ik,(x —x,)) and the charge
distribution in the barrier and well region under
known incident particle fluxes from the cathode
n"(k)v,dv_ and the anode n~ (k)v_dv..

This, in turn, enables the estimation of changes in
the quantum potential V due to space charge effects
under high currents [2]. Such estimation requires
iterative solutions of the Poisson equation (PE) and
the Schrodinger equation. However, these numerical

JETP, Vol. 167, No. 1, 2025

methods are less convenient for our analysis of
resonant level influence on electron emission.

We derive the exact solution of the Schrodinger
equation (SE) for the model potential V(x),
described by two rectangular barriers of height V,
at the cathode and ¥ at the anode (see Fig. 2). To
better match the real potential, the barrier widths
t. and T, are taken approximately half the size of
the bases of the actual near-triangular barriers on a
rectangular pedestal (Fig. 1, curves 2, 4, 6), while
the well width ¢, is correspondingly increased. It is
possible to achieve an exact correspondence between
the width of a triangular barrier and the width of a
rectangular barrier with equal heights by equating
their transparencies D, (E)=D,,(E). This
correspondence depends on the energy. Averaging
over the energy range, we obtain a coefficient of
approximately 7,,. = 0.5¢,,. In the quantum well, the
SE solution takes the form:

y(x) = A, exp(iky (x —1,)) + A, exp(—iky (x —1.)).

In the barrier region near the cathode, the wave
function (WF) is:

y(x)=4; exp(—lgAx) +A; exp(lgAx),

Similarly, in the barrier region near the anode, the
wave function is:

y(x)= A;exp(—lga (x —t. -1, )) +
+A;exp(l€a (x—t. -1, ))

Here, we introduced the following notations:

k., = \2m,(V, - E),
k, = \2m,(V, - E),
kO = ,¢2meE.

The wave function at the cathode represents an
outgoing wave:

y(x) = A, exp(—ikyx).
Similarly, at the anode:
y(x)=A,exp(iky(x - d)).

Here, A, = ko, d =t, +1, +1t, is the size of the
structure. The task is to match the wave functions and
their derivatives at the boundaries. There are eight
unknowns, four boundaries, and thus eight conditions.
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Calculating the eighth-order determinant without 5 2 -
numerical methods is challenging, so we iteratively _(81 / 2){A +24 (twk ) +(A+ 1)(1 +1yk )}}
eliminate unknowns. The results of this elimination

are provided in the Appendix. By defining the function For the left side of equation (A2), we get

S(F) according to formula (A2) from the Appendix, the 1+ ik, //}a e 1+ iJA
] 3 . . ~ |+ 1~ 5>
characteristic equation takes the form: 1 - iky /k, ( A+ ])2
2 . . .
(7 (E)-1) from which the correction §, can be found, expanding

EZVa(f(E)—l)z—(f(E)H)z. 6)  further:

16exp(—21€tc )

This equation allows for the iterative search for 1 (1 1/ A) (1 +1, ,g)
complex roots E,. Assuming the function f is large 3
in magnitude (corresponding to wide barriers), we 45 exp(—Qkfc)
obtain E ~ -V f(E)/4. As the well expands from a +(1 N I/A)(l oy ];) x
very narrow width, the energy level first appears near N
V, [21]. For such a level, the decay rate k, = 0 is: 4 1+ ,\/X2 ~ (1 . 1/A)(1 . tWIE) .

tg(koty ) ~ ko /kq- (A+1)
We can neglect the second-order term. To find

Assume there is such a level: the exact roots of equation (6), let us consider a well

El -y (1 -3, )’ surrounded by infinitely wide barriers, i.e., potential
¢ steps of height V. and V. In such a well, stationary
where 8, is small. Also, let: energy levels E, <V, are possible. The problem of
an asymmetric well has been solved and studied in
§<<A=V./V, -1 [21]. With the notation
Calculating the function f, we obtain: ko, = 2m.E, /h
ke ~ k(1+38/(24)), it has the solution
exp(ZkCtC) ~ exp(ZktC )(1 +8/(24)), kot = n— arcsin koah |
\2m,V,
Where
k= \2m,V,A/h. _arcsin| <o | s(E,) (7)
J2m,V,
As well as: which gives real energy levels. Rewrite equation (7)
ko = k(1-58/2)/VA, as
ko / ke = (1-8(1+1/8) / 2+ 87/ (44)) VA, t&(Kouty ) = Konln»
Let us set k, =0, and rewrite the introduced Where
condition as - f‘qn +k, .
(tWIE/\/Z)=\/Z. kcka_kgn

Choosing the well width from the condition of the
existence of one level:

N exp(ZIEtC) . Csy =1:/2—arcsin(Va/Vc)
48 -8, (A+ )(1+1,k) v N

Then we have

{8 (A + D(1+1.,k) - we get

JETP, Vol. 167, No. 1, 2025
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_ (g (E)/m )

no 2m

e

From this equation, we find the real values of £/ by
the bisection method in the interval [(O, Vy). For the
existence of multiple levels, the well must be several
times wider than #,. Then we find E,, n =1,2,...,N.
The values of E,, are used as initial approximations

E,(,O) = E, for the iterations according to equation

(6). As a result, we obtain all the levels from which
a particle can escape to both the anode and the
cathode. To increase the current, the widest possible
well should be used, for which the electrode material
should have the maximum electron mean free path
(MFP). The MFP can be significantly increased by
using cryogenic temperatures. Let us consider the
derivation of equation (7), where the wave functions
(WF) on the cathode and anode sides are taken as

y(x)=A4, exp(lga (1- iSC)x),
\V(x) = Aa eXp(_lga (1 N iéa)(x —1y ))’

i.e., the barriers are partially transparent. Here
ke = \2m, (V. = E)/n,
ko =\2m, (Vo - E,) /1,
and small corrections are taken as
8. =Ep/(2V, - 2E;,),
0 = Ey (2, - 2E,).

In reality, they are associated with the finite width
of the barriers and the finite lifetime of the levels. In
the well 0 <x <¢,, we take

y(x) = Asin(kg, (1+8,)x +35),
where
En = (1 + 6n )2 (kOnh)2 /(2me )’

and the small correction &, needs to be found. As
a result, we obtain the characteristic equation for it:

tg(kOn (1 + 8n )tw) = kOn (1 + 8n)><
ko (1-i8,)+k, (1-1i8,)
koo (1= i8,)(1- 8, )~ k3, (148, )

Introducing the notations

X

JETP, Vol. 167, No. 1, 2025

8;1}1 =8L1/8}’l’ 62‘}’! =6c/8n‘

Primed quantities are not small. Considering (8),
to obtain the correction, expansion up to the second
order in 82 should be used. We obtain 8, = 4,,/B,,
where

ke

' ' 2
(8, + 8., ) + 2k,
lgclga - kgn

+2lca

For the calculation of the correction, one can
assume E', = E,, and then

Ey/E, =-3(8,),
while the real part also changes:
E, = E,(1+Re(3,)).

In Fig. 2, two levels are shown. From the cathode,
tunneling to both levels with exit to the anode is
possible. In this case, the cathode heats up because
its level is above the Fermi level (Nottingham effect).
When transitioning from the first level to the anode,
the anode cools, while transitioning from the second
level heats it up. Tunneling from the anode to the
second level at 7=0 is impossible. The lifetime of
the level exponentially decreases with the narrowing
of the barriers. The barriers narrow as the field U,
increases (Schottky effect), i.e., with an increase in
well depth. At U, > U, + Eg, / I, stationary levels
are possible in the well. Narrowing of the barriers
also occurs with increasing voltage U and decreasing
sizes t, and ¢,. There is a critical voltage at which
the barrier relative to the Fermi level disappears,
becoming nearly triangular. Indeed, using equation
(1), where we denote

y (-o/d)(1+ 5/d)

W=
(1-5/d) &
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assuming d = 1, and neglecting small terms, this
condition can be written as:

V(xo)

= Ep + W/ (1-8d/(xo(d - x0))) - eUyx,/d.

=EFC=

From this, we find the point x;, where this occurs.
It is very close to the cathode, so we simplify the
cubic equation by replacing d — x, with d:

Xy = eng(z)/(Wc’d)+8.

Solving this quadratic equation iteratively, first
assuming

XO =393
and then refining:
o =08+8%U,/(W).

The refinement is very small, so we obtain the
critical voltage:

U, = W'(d/s - 1)/(2e) ~ W'd/(2e8).

For a work function of about 4 ¢V at d=2 nm, this
corresponds to a critical electric field strength at the
cathode of 2.35-10" V/m. Thus, in RT structures
with well widths of a few 7, and narrow barrier
widths 7, and 7,, a significant increase in emission
current is possible simply by increasing the size 7,
However, tunneling is ballistic transport without
energy loss, so the width 7, must be significantly
less than the electron mean free path (MFP) in the
corresponding material. The characteristic size 7, at
room temperature is a few nanometers. To reduce the
lifetime of levels and increase current, the barriers
should be made narrow. Their narrowing is also
achieved by increasing electrode voltages. It is not
difficult to obtain exact solutions to equation (6), but
these equations are model-based. For real potentials
(Fig. 1), one should solve the exact equations

10+00 - 2

10“2: 3

10-04 :

10-06 :/

10-08 :

10-10 :\1)/

1012 4

1071 -

10716 -

107® T T T T ]

0.5 0.6 0.7 0.8 0.9 1.0

E/Ep

Fig. 3. Tunneling coefficient D = D" in a double-well RT
structure as a function of the ratior = | =1, = 13 depending on

E/EF att=t,= 1 nm (curves 1, 3)andt—2nm t,= 1.5 nm,

d=9nm (curve 4). Work function W, = W, =4. 6 eV, Fermi

energyEF Ep SeV, U,= 11V, U, = 13\5(1 4; U, =20V (2);
=25V (3

(5) or R*(E)=0. The table above presents the
results of iterative calculations of complex energies.
Calculations based on equation (5) and the
conditions R* (E) = 0 agree well.

A very simple method for determining complex
levels is calculating the transparency of the
structures. Figure 3 shows an example of calculating
D™ for several double-well RT structures with 2 to
4 metastable levels. Such structures are obtained
with a double grid [1—3] and are more convenient
for achieving resonance tunneling because two
approximately equal barriers can be formed under a
significant electrostatic potential U,,.

Table. Metastable levels (eV) in the range (0, Er.) for the potential in Fig. 1 at different anode voltages U, (V):

U, 1.0 2.0 3.0 4.0
E| - iE} 0.14467—i3.1-10~* | 0.1445—i2.9-10~* | 0.1399—i2.7-10~% | 0.1405—i2.7-10~*
Ey —iEY 1.815-i2.5-1073 | 1.807—i2.6-10~3 | 1.798—i2.8-1073 | 1.789—i2.9-10~3
Ej —iEY 4.4938—i8.9-1073 | 4.369—i9.5-1073 | 4.328—i9.9-1073 | 4.279—i1.2-102
Ey —iE} 6.872—i7.2:102 | 6.982—i8.3-10~2

JETP, Vol. 167, No. 1,

2025
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Notably, the peaks for Dt and D~ differ slightly,
particularly at low energies. At E > Ep., D* ~1
always holds. This case corresponds to thermionic
emission if the electrode temperatures 7% > 0. It
should be noted that for different barriers, peaks may
not reach unity (incomplete resonance tunneling),
associated with partial suppression of reflected
electron waves. The values E, are determined by
the peak maxima, which can be done accurately.
The lifetimes E; are determined by the resonance
widths. Typically, the levels are located near the
upper regions of the well.

Let us consider how the position and width of the
level affect the current contribution. Suppose there is
one level E| —iE|. Approximating it as an equilateral
triangle with unit height, the contribution from the
level is

Y = —em, (Ep, - E{)Ef/ (4°h°).

For levels near the Fermi level of the cathode, it

It is known to be relativistically non-covariant.
Here, the operator for a free particle’s Hamiltonian
is denoted as

2
oy aa L (h0y)
S(t,X) = lﬁ@, + W

This implies that the Green’s propagator function
(GPF), which describes the propagation of a particle
from point x' at time ¢ to point x at time t, has the
following form [22, 23]:

Ko(t—1'x—x")=

— ) e
sen(t t)\/Zm'h|t—t’|X

. "2
e i(x—x")"m,
P 2nft -t | (®)

This expression suggests infinitely fast propagation of
the perturbation. Indeed, GPF (8) defines the particle’s
presence at point x at time t based on its amplitude

is small. Therefore, it is important to obtain low- v (x’') at point x' at the initial moment 7"

lying levels with a short lifetime (large width). For a
single triangular potential barrier at a critical field, the
semiclassical approximation gives its transparency D as

D =~ exp(—4d./2meW3/2/3h€Ua )s

see [20]. Here, the barrier height Wis measured from
the kinetic energy of the incoming electron, i.e., in
ourcase, W=V —F.

For deep levels, the transparency of a single barrier
is exponentially small compared to D = 1 in resonance
tunneling. The formula works well for deep levels, but
for E =V, its limitation becomes apparent: D = 1 at
W = 0, while solving the Schrodinger equation gives
D < 1. This limitation restricts the applicability of the
Fowler—Nordheim formula to single barriers.

Nevertheless, the result can be used to estimate
the lifetimes of deep levels by calculating D, , at

W =V,,-E, and determining §, = D, and §, = D,.

3. LIFETIME OF THE LEVEL
IN THE NONSTATIONARY APPROACH

The nonstationary Schrodinger equation (SE) is
written as

~

S(t,x)y(t,x) =V (t,x)y(t,x),

JETP, Vol. 167, No. 1, 2025

vy (1,x) = .[KO (x = x"t =1 ) o (¢',x")dx".

If at the initial moment #,, a probability density
o (o, x,) = 8(x —x¢),

emerges at point x, meaning the particle is localized
there, then for any later time ¢ > #,,, the wavefunction
exists throughout the entire infinite space:

\lfo (x,t) = KO (x —xO,t _to),

Thus, the propagation speed of the probability
density is infinite, though the density itself rapidly
decreases at distant points. Here, the subscript “0”
denotes a free particle (V=0).

Such a particle is generally described as a wave
packet (WP) with a certain spectrum of wave
numbers k and energies F. It is worth noting that the
incoming particle flow described by distribution (2)
also represents a WP.

The GPF (8) satisfies the initial condition

Ko(t-tx-x"), ,=8(x-x')

tot'

and the differential equation
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S’KO (t -t x —x’) = ih8(t —t')S(x —x'),

(see [22]). Solving the nonstationary SE requires
setting appropriate initial conditions. A convenient
approach is to use the stationary case at the initial
moment ¢ =t,, i.e., the wavefunction y,(x) and
the potential V) (x).

At t>t,, when the potential V(x,t)starts
changing, the wavefunction satisfies the nonstationary
SE. The wavefunction for #, > 0 is governed by the
Lippmann—Schwinger-type integral equation:

y(x,1) =y (x)- ihleKO (r—1,x —x")x

0—o
x[V (1'.x") =V, (x’)}w(t',x')dx'dt'. 9)

Indeed, at " 0,, we have y(x,r)=yq(x)..
Taking the tirge t > 0 derivative of (9) and applying
the operator §, we obtain the SE:

S’\y(x,t) = V(t,x)\y(t',x’).
Assume the potential
AV (t,x) =V (t,x)-Vy(x)

is localized within a certain region. In this case, for
small times, equation (9) can be solved rather simply.
An example for a double-barrier resonant tunneling
diode (RTD) is provided in [12]. This equation
is particularly convenient for analyzing transient
processes and tunneling times. Two cases can be
considered: (a) AV (0,x)=0 (smooth potential
change) and (b) AV (0,x)=0. We focus on the
second case here. Assume a well with one metastable
level between two barriers exists at # < 0. This level
cannot be populated, as it would decay over infinite
time. For simplicity, consider identical barriers of
height V. The metastable level between identical
barriers V'is defined by the condition

th ki, )(kt,, ) =
. E (v -£)
=q=¥_V U
E V)2
see [13], where
b=y ey = e 7B (hV “5)

This equation determines the level’s lifetime,
ty = t, = 1, is the barrier width. A convenient
numerical solution can be sought in the form

E; = Vo’ (a(E)))/th? (kiy ),
Vo = h%/2mt2,

expressing the arctangent via logarithmic functions.
The quantities

a=a'+ia"=E(V-E)/(E -V/2)
and
k' = ki + k]
are complex. For wide barriers, we obtain
ki = \2m.(V — E{)/n,
ki = E{\m,/(2V = 2E])/h,
th? (l%ltb ) ~1- 4exp(—2l€{tb )exp(—2il€1”tb )

It is easiest to estimate the level by assuming it
arises at the barrier boundary. In this case, o', and
o" = 3 E]/2V

To simplify further calculations, introduce the
dimensionless parameter

5 = dexp(—2kity )exp(-2ikit, ),

and obtain the energy as

Ey = (V +Vy)/2+\VE/4+3VyV /2 + 8AE,,
where

B (V02 /4 +3VV, /4)

AE, =
JVE4+3VV )2

If the well deepens by an amount AV, the energy
at the bottom becomes negative. Assume only one
stable level exists. If the center of the well is at x=0,
the wavefunction inside the well takes the form of
either an even or odd function:

Vo
+7.

For an even wavefunction:
o (x) = 4, cos(kyx).
For an odd wavefunction:

JETP, Vol. 167, No. 1, 2025
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yo (x) = A sin(kx),

herewith
Vot /2) % 0. i (1,./2) %0,
ki = \2m E, /h.
Let's mark

ko = \2m, (AV - E})/h,

ky = \2m,(V + AV - E))/h,
29 = —i/ko, 2y = —i/ky, 7y = 1/k;.

Then, in the case of an odd wave function, we
have the characteristic equation:

tg(kit, /2) =iZ; /py,
And for the even function:
tg(kit, /2) = -ip1/Z;.
The value
;- /51(/50 - lslth(lglt))
pr — poth (ky7)

1

is imaginary, so the equations are real and determine
the real energies. We take the normalization of the wave
function (WF) from the condition of finding the particle
in the well region |x| " #, /2. This is an approximate
condition, as there is some probability leakage through
the barriers. However, with sufficiently wide barriers, it
is negligible. A strict normalization can be performed,
but it results in cumbersome amplitude values. In our
case, the amplitudes are:

4, =t (L sin(t, k) /(h k)]

|AS|2 - |:tw (1 - Sin(twkl)/(twkl)):lil'

It is clear that the even level should appear first, as its
wave function approximately corresponds to the half-
wave of de Broglie. Thus, for 7 < 0, such a populated
level exists. At the moment = 0, the potential AV > 0
is suddenly switched on, and the bottom of the well rises
to zero energy. In such a well, the particle cannot exist
indefinitely, and the state begins to decay, described by
the integral equation (IE):

y(x,t) =y (x) - i AV x

JETP, Vol. 167, No. 1, 2025

0.0

1.0 3.0 4.0

/T

Fig. 4. Transition probability P(f) according to formula (12)
for the decay of a single level. The dashed curve represents
exponential decay Py(7) = exp(—1/1;).

tty/2
><J. J. Ko(t—t',x —x")y(t',x")dx'dr’.
01, /2

(10)

This problem can be solved numerically or by
perturbation theory. In the latter case, the first
approximation is:

70 (x,0) =y (x) - i AV x

t 1ty /2
><J. J. Ko(t—1',x = x")yq (x")dxdr'.
0-1,, /2

The probability of finding the particle in the well

region now becomes:
ty /2

I |\|J (t,x)|2 dx.
-+, /2

It decreases over time. Solving IE (10), we
compute (11). Obviously, with the chosen
normalization P(O) =1. Approximating (11) with
the function P (¢) = exp(—/r;), we determine the
level lifetime. The corresponding result is shown in
Fig. 4, corresponding to the value E|'/ E; = 0.021,

P(t)= (11)
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Fig. 5. Normalized particle number density p in the well as a
function of energy F for three resonance levels (eV): 0.140552,
1.78936 €V, 4.27933 eV (see Table, U, =4 V)
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1, = 59.5 fs. It should be noted that the decay of such
a state generally does not follow an exponential law
[24—35], which holds only for infinitely long-lived
levels [36]. There exist continuous-spectrum states
in the well that distort the exponential law. The
continuous spectrum and interference lead to faster
initial decay, followed by a slowdown [17, 24]. An
even more complex case corresponds to multiple
levels. The non-stationary approach is significantly
more complicated than determining complex roots.
Interestingly, for tunneling problems, calculating the
probability density:

p(E) = [lvo (x.E)[ dx

both in the well region and in the barrier region shows
maxima at energies corresponding to the resonance
levels E’ (see Fig. 5). The result is normalized to the
particle number density in both flows:

n(E)y=n"(E)+n (E)=
= 2Em}/*(Ep. - E)/n*R°.

This is because all incident flows from the left
and right with resonance energies E, pass into the
well, while for other energies they are significantly

DAVIDOVICH, NEFEDOV

reflected. Both the tunnel current density J and the
probability current density j are continuous along the
entire structure, including the electrodes, reflecting
the conservation law of particles (probability) in non-
relativistic quantum mechanics.

4. APPLICATION OF NON-STATIONARY
SCHRODINGER EQUATION
FOR DETERMINING TUNNELING TIME

Since the introduction of the concept of
tunneling time in 1930, there has been no established
understanding in the literature (see [ 19] and references
therein). Paradoxes such as the Hartman effect,

“superluminal” tunneling, negative tunneling time, and
others are still discussed. IE (10) is quite convenient for
resolving such issues and studying transient processes
[12]. The level lifetime (residence time in the structure)
is often associated with tunneling time. Here, instead of
IE (9), we consider another approach based on series
expansion for solving the non-stationary Schrodinger
equation. Suppose that at 7 < 0, in the region 0 < x < d,
we have a structure with three electrodes: U, = 0, and
U, =-W,/e. Also, let the value ddd be sufficiently
large. In this case, the potential is close to a rectangular
shape with width d and height W, relative to the Fermi
level (see Figure 1, curve 0). Relative to zero, its height
is V=W, + Eg,. If the grid voltage were zero, the
potential (relative to £.) would appear as two peaks of
height W, separated by a gap with zero height. Curve
1in Fig. 1 demonstrates the potential at a negative grid
voltage U, = -W,, when the entire curve is elevated
by W.,. Such a potential blocks the current. Suppose
that at time 7 = 0, the potentials switch such that
U,>0and U, = Ep, /e, i.e., the problem becomes
equivalent to resonant tunneling (RT). Accordingly, we
need to consider the transient processes of tunneling
establishment when ¢ > 0 during the switch from curve 1
to curves like 2, 4. For a diode structure, this switch
corresponds to curve 0 transitioning to curves 3, 5, 7,
but without RT. The macroscopic change in current
during such a process is quite easy to measure, unlike
the tunneling time of an individual particle. It should
be noted that for 7 < 0, the current was absent due to
the symmetry of the structure. Also, at these times, the
particle density in the structure was negligible, as the
tunneling probability through a wide barrier was nearly
zero. Near the edges, the density decays exponentially.
By choosing a large ddd, one can assume that particles
were absent in the barrier region. Switching the
potentials leads to the appearance of current. It cannot

JETP, Vol. 167, No. 1, 2025
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appear instantaneously, as particles need to traverse
the region d, thus creating a finite transient time. We
will solve the non-stationary Schrodinger equation by
expanding into series in the region 0 < x < d:

Y(r,x)=
ian( )cos(x,x +ZBn sin(y,x) |, (12)
n=0 n=1
V(tx)= ivn (t)cos(x,x), (13)
n=0

where y, = nn/d. This method is applicable for
multiple electrodes, but further numerical results
are presented for the diode. It is not possible to
use only cosines or sines in the expansion (12), as
this would always result in zero probability current
density. For simplicity, we will apply the method to
the diode structure. The amplitude A is introduced

for normalization, meaning that when it is specified,
we can assume o = 1. To perform the calculations,
we truncate the series (12) and (13) by an index N.

Substituting (12) and (13) into the Schrodinger
equation and using the orthogonality of trigonometric
functions, we obtain the coupled differential equations:

N
o, (t) =i ZAf,inwmocm 1)+
m=0

+12Anm @y By @SN (%) —

_ ZV(xcc +

ZVB” (t)sin(x,,x) |, (14)
_ZZAnm @y Oy
+12A” @By (£)sin (3, X) -
—% ZVO‘SC(t)oc ) +
ZVB” (£)sin (3, x) |- (15)

JETP, Vol. 167, No. 1, 2025

Here, o, = sznz/(2med2) are the frequencies,
and the matrix elements, detailed in the Appendix.
These equations are quite complex if the potential
depends arbitrarily on time. In the case of an
abrupt potential switch, it stops depending on time,
simplifying the equations. Rewriting the matrix
elements, the first equation can be simplified to:

o, (t) —im,o, (t) =

m=1
N ~
oy A (), (1)
m=0,m=n

Solving this equation using the Bernoulli method
or the method of variation of arbitrary constants gives:

o, (1) = o, (0)exp(io,t) +

+exp(imnt)Ifn (t")exp(—iw,t")dr'.

0

(16)

Similarly, we obtain:

By (1) = By (0)exp(io,t) +
t
+exp(iwnt)jgn (t")exp(—iw,t")dr".
0
Here, the following functions are introduced:

£0 ()= B 0041 2 A5, () (1)

__VBss

+ Z Afzsm (I)Bm (t)
m=1l,m~n

The solution in time is sought using the
discretization method: ¢,, = mAt, m =1,2,..., with
integrals calculated using the midpoint method. If
the initial values o, (0), B,(0), are known, the
equations allow us to find o, (mAt), B, (mAt), using
either explicit or implicit schemes.

The modified matrix elements here take a simple
and clear form, for example:
Ay (8) = A =Vt (1)
If such a barrier instantaneously changes its shape
at = 0to V(x), these elements stop depending on time:

Jace _ cc ace
Anm - (DmAnm _Vnm /h
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Their exact values can be found if the shape V(x)
is simple. For large U, it resembles a triangle placed
on a rectangular base (see Fig. 1, curves 3, 5, 7). At
eU, = Ep, the height of the base can be taken as
W, and the height of the triangle as Er. Due to the
Schottky effect, the barrier is actually somewhat
lower. Calculating the integrals, we obtain:

Ve = (Voam +Vim )/ (14 80,

Bss — (4, s
Vnm Vusm ~Vin-n /(1 + 5;10)!
asc _ .8 K
Vnm “Vaem T Vaims
Bss — ¢ c
Vnm Vin-n ~Vm+n-

Here, the values of the following integrals are
introduced:

For the initial symmetric wide barrier (curve 0),
the height Vi, = W+ Ef, and the coeficients o,,(#) = 0
and B,,(f) = 0 at # < 0, as the probability density inside
is practically absent. This approximation improves
with increasing d, implying a,,(7) = 0, B,(¢) = 0, i.e.
within W(x,7) = 0, < 0. We take the initial barrier as
rectangular. Then the integrals are easily computed,
for example:

v, (0) = Vysine (nm) = V3 .

When this barrier under applied voltage
U, = Er /e takes the form:

V(x)~W + Ep(1-x/d)
(see Fig. 1, curve 7), we obtain:
vy, =(W + Ep )3, + Epconc(nm),
vy, = Weonce (nn) + Epsinc (nr).
In our case:
vy, = Weonce (nm).

We assume that at the moment of voltage
application, some coefficients a,(0) and B(0)

instantly change from zero. This happens due to the
appearance of probability current density. We find
them from the continuity condition of this current
density.

To the left of the barrier, the spectral wave
function has the form:

w(x,k) = a" (k)| exp(ikr) + R* (k )exp(ikx) |,

and to the right:

= &~ (k) exp(=ik (x - ) - exp(ik (x ~ ) |
Here:
y(d,k) =0, y'(d.k)=-2ika (k),
At high voltage:
v (d.k) (0.5 << 1.

Upon voltage application, the electrochemical
potential on the cathode jumps, hence:

J2meeU, /b <k <2m,(Ep, +eU,)/h,
0 <k <.\2m,Eg, /h.

Now the coefficients «,,, 3, in the wave function
(13) at # > 0 become non-zero. They are dimensionless,
so the amplitude A must be determined from the
normalization to particle flux. The flux to the right,
at large U,, can be taken as zero:

J(d) =0.

The flux to the left for the wave function:
v (x,k) = a* (k)| exp(ikx) + R* (k)exp(ikx) |

is given by:

m_(")\(l R )

The total flux is obtained by integration:

Jj(0)= mie f a+(k)‘2(1 —‘R*(k)‘zjkdk =

Ep
-

j(0,k) =

m
- 2n2;13 '([

R* (E)‘QJ(EF ~ E)dE.

JETP, Vol. 167, No. 1, 2025
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Calculating the flux inFo. the barrier from the left Bi(0) = icy (0), g (0)=1.
at x = 0, we find the condition:
_ h , . Then:
j(0)= —zm—eRe‘P (0,0)¥ (0,0) = o 4nh|A|2
J =
2 0 o) . med
R|i 0 0) |
[lnz_lxn B )} {mz_“oam ( )J and the wave function takes the form:
For the flux on the right (from the anode), we ‘P(t x) - j(O)med y
find: ’ 4rh

—Re{iZ(—l)n YnB (O)Jx x[ian( cos(y,x Zﬁ’n sin (3, x J (17)
¢ n=1 n=0

ek o, (0)] = 0. From this, we find ‘P(t,d). and V' (.t,d).
Another method for solving equations (14) and

] ) (15) involves Fourier transforms:
It is also necessary to equate the wave functions (WF)

and their derivatives at the boundaries of the region: Qy (’ ) _ 1L I Ay (‘”) ex ( .
p(io)do,
. Bu(r)) 272 (By(o)
\P(O’O) =4 Z()a" (0)’ which requires calculating integrals. This can be done
';_ using the residue method, but this approach requires
W (0 0) -4 ZX B (0) separate consideration. To solve the problem, we
s nPn s

need to determine the initial wave function ¥ (0,x)
and its derivative, which will be done below. It is

¥(0,d)=4 Z (-1)" o, (0) = 0, convenient to introduce the frequency o = E/h.
n=0 The incident wave packet (WP) from the left can be
0 written as:
w(0.d) = A (-1)" 1,8, (0) = 0. E/n
n=l1 ‘P(t,O) = J‘ Al (O,m)exp(—imt)dco,
The last equality is set to zero because we assume 0
a high voltage and measure the energy from the o
conduction band edge of the cathode. We obtain six vt (0’@) = Zln J‘ ‘P(O,m)exp( i(ot) do.

additional equations to determine the infinite number
of initial conditions a,(0), a,(0) B,(0). However,

using the full set of sines in (12) is redundant because Here:
the cosine system is sufficient for approximating the o= k2h /2m,, k= 2m,w/h.
wave function. We introduced sines to obtain nonzero
fluxes and nonzero WF derivatives at the boundaries. Neglecting back tunneling, we have on the left:
It is quite reasonable to assume: o, (0) = 0, n > 2, E/h
B,(0) =0, n > 3. Thus, we have six unknowns, as well ¥ (1,0) = I at ((,))(1 +R* (m)) exp(—iot)do,
as six conditions. It is sufficient to consider nonzero 0
coeflicients 0y(0), a;(0), B;(0), B5(0). Then: and on the right:
o (0) = ay(0), 0) = p,(0)/2, Ep/h
1(0)= 0 (0). £2(0)= A1(0)/ Y(r,d)= J. a" (0)T" (o)exp(-iot)do.
and all six equations are satisfied, with: 0
4r h| 4 |2 . The incident WP from the left is denoted as:
Jj(0)=- Re(if; (0)otg (0))- E/n
med v ()= [ a (o)exp(-i
p(-iot)do.
It is convenient to choose: 0

JETP, Vol. 167, No. 1, 2025
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Here:
v (O,oo) =q" (co), v (d,oo) =a* (oo)TJr (o))

Defining ¥(x,) as the solution to the
nonstationary Schrodinger equation at time t, we
construct the function:

¥ (x,1) =¥ (x,1) - ¥(x,0).
It is zero outside the interval (0,f), meaning it has
a limited support, and:

t
1
P (x,0)= 2_£ 1")exp(iot')dt',

t
1 ’ * ! ’
¥ (x.0) = 5 [ ¥(x1")exp(ior)dr.
We can construct the time-dependent reflection and
transmission coefficients R (), T"(¥). Specifically, we
take:

R* (1) =W (0,0)/¥" (1)1,
T (1) =¥ (d.t) /¥ ().

Considering back tunneling, we define the
incident WP from the right:
E/h
Ia‘(m)exp(—imt)d(o.
0

Yo (1) =

Thus, we obtain:
W (1,0) =W (1) (1+ R (1)) + T (1)¥7 (1),
W (6d) =W ()T (1) + ¥ (1)(1+ R (1)),

To find all coefficients, we also need to determine
W¥'(¢,x),¥'" and ¥'". Derivatives can be found by
differentiating the series. The current density at the
anode is defined through the probability current
density:

J(tm) =

For this, when normalizing the wave function to
the probability density, we use [20]:

J(t,.x)=

[ (t,,,x)0, P (¢

—j(t,,.,d).

ih
2m

m?x) -
X )0 ().

e

Y (r

For an arbitrary moment in time, we obtain:

i (0)

j(t,x) = 7] X

0

xRe(—i z [oc;kn (£)cos (mx) + By (t)sin(xmx)} x

m=0

Zn[a )sin (1, ) + B, (1) <05 (1,x) ]
j(td)= j(40) x

an

xRe| =i Y (=1)" o, (1)- D (-1
m=0 n=1
From this equation, it follows that:

J(0,d)=0, j(Atd)~

i.e., instantaneous tunneling and negative tunneling
time are not possible. Using the spectra ¥ (d,0) and
¥'(d,), the result can be represented as:

jtd)y=—"

(2n)’ m

X

e

0

xRe [[(<i)¥" (d,0)¥'(d,0)exp(i (00

—00

)t)dm’doo.
For the steady-state process, the spectral wave
function at the anode is:
y(x,k)=a" (k)T* (k)exp(ik, (x —d))
The probability flux density for this wave function is:

dj(d.k) = v, (k) a*(k)T*(k)‘zdk,

where the speed at the anode is:

vo (k)= W2 (k)+2eU,/m,.

It should be noted that this speed is greater
than v(k) due to the acceleration of electrons
passing through the barrier by the anode. Over the
free path length, they scatter and transition to the
Fermi level of the anode, with v,(k) decreasing to
v(k), causing the anode to heat up. The method
of series used here is also convenient for solving
the Schrodinger equation (SE) together with the
Poisson equation (PE).
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5. RESULTS AND DISCUSSION

Figs. 6 and 7 present the results of the transient
process calculations, showing the establishment of
the anode current in a diode with a Fermi energy of
7 eV and the probability density distribution |‘P (x,t)|2
when stepwise voltages of 3, 5, and 7 V appear at
the anode. Fig. 7 shows the probability density
distribution for curve 1 of Fig. 6 at different moments
in time. The oscillations in probability density result
from the finite sums used in the calculations. As
the number of terms in the sums increases, both
the oscillation amplitude and period decrease. The
SE was integrated using the series method with 40
terms and an explicit calculation of the coefficients
in equation (12). Expanding in other bases in (12)
allows eliminating the oscillations. For example,
finite elements can be used. However, the proposed
series method is convenient when solving the SE and
PE simultaneously, as applied in [2].

Calculations were performed using 200 time points.
Curves 2 and 3 in Fig. 6 were constructed using 50
time points. For copper (Fermi energy 7 eV), we
have an electron concentration of 8.5-102®m=3 and
a Fermi velocity vy = 1.57- 10® m/s, meaning that a
particle with this speed travels a distance d = 10 nm in
atime t = 6.35 fs. We assumed that at the moment the
voltage is applied, the probability density inside the
barrier was zero. More precisely, it is symmetrically
distributed relative to the center, approximately
following a hyperbolic cosine distribution, increasing
towards the edges, but extremely small at the edges
themselves due to the near-complete reflection
by the wide, nearly rectangular barrier. In this
case, there is no inward probability flux into the
barrier. The results shown in Fig. 6 indicate that the
average transport speed of the probability density is
somewhat greater than v, leading to the conclusion
that the movement of the probability density is a
collective effect caused by the interference of partial
waves of the wave packet. An electron inside the
barrier, or generally within a potential field, behaves
as a quasiparticle defined by its interaction with many
other particles. This averaged interaction determines
the potential. A clear example is the potential of the
image method. Such a quasiparticle is not required
to behave like a free electron. Additionally, after
passing the turning point for a single barrier, the
electron moves quasi-classically and is accelerated
by the anode. The additional velocity gained at
U, =5 Vis 1.33 x 106 m/s, approximately equal to
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Fig. 6. Transient processes (—/ in A/cm?, time in fs) during
switching from the nearly rectangular barrier I to barriers 2, 3,
and 4 in Fig. 1 (corresponding to curves 1, 2, and 3).

v Accordingly, the transit time is halved. A similar
problem for resonant tunneling (RT) leads to a
significantly longer transient process time. This can
be explained by the need to form reflections from the
barriers for RT to occur.

Formally, the lifetimes of the levels can be
considered as an additional contribution to the
transient process time. In Fig. 6, it is evident that
the probability density is very small at short times.
This function is asymmetric and, on average, higher
near the start of the barrier but stabilizes at longer
times. Similar calculations of transient processes
for switching from a wide barrier to a structure with
narrow, unequal barriers and a quantum well show
slower current growth. This is explained by the
reflections from the barriers required to form resonant
levels in the well. To achieve complete RT, the
barrier heights must be sufficiently close. Numerical
calculations of the transparency coefficients show not
only full resonances but also peaks with incomplete
RT, where the maxima D < 1. Regarding lifetimes
1, = 2h/E,, they are significantly shorter than
the corresponding times determined at short times
from transient processes as a result of wave packet
evolution. This is because the wave packet contains
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Fig. 7. Particle number density (m3) as a function of the
coordinate x (nm) in a vacuum diode structure at different
moments in time (fs): 0.1 (1), 0.3 (2), 0.5 (3), 1.0 (4).

a broad energy spectrum. At longer times, the non-
exponential nature of the level decay becomes evident
(see, for example, [30—34]), with contributions from
algebraic terms. Determining level lifetimes this way
is feasible only for very narrow wave packets, which
is challenging to achieve experimentally for non-
relativistic quantum particles, and even more difficult
to observe their passage through a barrier. This raises
problems with reflecting a spectrally narrow (i.e.,
spatially very broad) wave packet from the barrier
[18], especially when the barrier itself changes over
time. However, the macroscopic current density can
be measured with high accuracy.

The quantity with the dimension of velocity:
v (e,t) = ji(x,t) /| (xo0)f

can be interpreted as the speed of the probability
density movement at point x at time t. This
corresponds to the concept introduced by N.A. Umov,
but it cannot be interpreted as the speed of an
individual particle. For a single-speed particle flow,
it coincides with the particle velocity in the flow. The
increase in current is accompanied by an increase in
the probability density of particle presence inside the
barrier. The average instantaneous speed of the wave
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packet (WP) passing through point x over time 1 can
be defined as:

t

v(erm) =1

T
t

J(x.t")

dt'. 18
¥ (") .

=T
If the WP is finite in time, its average speed can
also be determined.

Short lifetimes of quasi-stationary levels are
essential for achieving high current densities in field
emission. It is desirable to have as many such levels
as possible, and sufficiently deep ones. Increasing
the number of levels is achieved by increasing the
width of the quantum well, while reducing lifetimes
is achieved by using narrow-width barriers. Current
growth is also facilitated by leveling the barrier
heights, which can be controlled by the gate voltage
and the change in the gate work function.
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APPENDIX

For the well, from the conditions at the cathode-
side barrier, we have:

. A exp(—lgctc)+Ac’ exp(lgctc) N

A, >
kA exp(lgctc ) —k A} exp(—lgctc)
’ 2ik ’
A] exp(—lgctc ) +A; exp(lgctc)
A, = 3 -
kA exp(lgctc ) —k A} exp(—lgctc)
- 2ik ‘

In the case of wide barriers, neglecting
exponentially small terms (reflections from the left
edge of the barrier with amplitude A."), we find from
the matching conditions at the cathode-side barrier:
. A, exp(lgctc )(1 - ilga/ko)

w

A

b

2
N A exp(lgctc )(1 + ilga/ko)
- 2
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On the other hand, the matching conditions at the Dividing the first by the second, we obtain the

anode-side barrier give: approximate characteristic equation:
p exp(—ikqt,, )[A; +Ag vi(A] —A;)/Ea/koJ (1 ik g ko )(1 = iky /Ko ) (2ky,).  (AD
— , _ - = exp(-2i .
v 2 (14 ik g Jh)(1+ ik /o ) v
kot [A++A‘—'A+—A‘ k,/k J
4= = exp (it )| Aa a l( a a ) a/ko To obtain the exact equation, all amplitudes must
» .
2 be retained. In this case, equating the coefficients gives:
At the cathode boundary, we have the relations: A% My My (AL
— a
A (1 ikg /K, ) [A;] {le My |\ 4,
L -
A (1= iky /R, ) [A;J{Mnl " {A:J
—1 - -1 -1 -
Ag =Cf0c Aa M21 M22_ AC

) The matrix elements M are given by:
At the anode boundary, we have accordingly:

_ A exp(Eaza)(l _ika/lgg) My = exp(kAtc )M“ = exp(kAtc)x

AF 5 : Xcos(kotw )(I+k, /. H/;a Jko—ko /k 4 )sin (kt,, )’
P A, exp(—lgata )(1 - ika/lga)
e 2 ' M, = exp(lEAtC )]\7[12 = exp(lEAtC)x
For wide barriers, the amplitudes A, and A} are cos(kot,, )(1_]€a Jk 4 )_( k, /kqo+ko /K 4 )sin( kt,,)
small. Assuming them to be zero, we obtain: 3 )
Ay = M, = exp(—lgAtc)le = exp(—lgAtc)x
Aq exp(kata )(l_lko /kq Z(lﬂk“ /ko )exp(—lk()tw ), ><COS(kol‘w )[l—lga Jk 4 J*’(/Ea Jko+ko /k, )Sin(kofw )
7 . -~ .7 2 ’
Ay = ool )i liO/kC)(l = /kO)’ Moy = exp(—kyt, )M, = exp(~kyt, ) x
A, = Xcos(kotw ) (kg fee H kg fg—ko /k, )sin (Kot )
A exp(kgt, )(1iko kg )1k, /g )exp ik, ) 2 '
4 ’ Now
- A exp(ket, ) A, (1= ikg /k, )(1+ ik /ko ) AL = AL+ iky /R, =
w = 4 .
) =2(My A + M4,
Equating the coefficients A4,,, we get two ~
equations: A, = A, (1 - iko/kc) -
A, exp(/gata )(l—iko /lga)(1+ilga ko )exp(—ikotw ) = - Q(MZIA;' n M22A;).
= A, exp(l%ctc )(1 — ikq ke )(1 — ik, /kq ), Substituting 4 in these expressions, we obtain:
Aqexp(kty )(1- ik kg )(1— iky ko )exp(ikot,, ) = A, (Wiko /e, =M 1A exp (Kot ) (1ik kg
= A exp(ket, )(1—iko /k, )(1+ ik, /Ko )- +M 1A, exp( kot )(1 - iko /Ky ),
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A(Wik fle oM 31 A exp(kot, ) (1-ikg /g I

+M A, exp(—k i, )(1—iko /k, ).

Dividing the first equation by the second, we

obtain the characteristic equation:
1+ iky /k
e = (5) =

1 iky /k,
_ My, exp(kt, + ko, )+ Myyexp(kot. — ki, )
M yyexp(kyty —keto )+ Moy exp(—kot, — ket )

For wide barriers, small terms can be neglected,

resulting in the simplified form:
f(E)=~ exp(2l€ctc)><

1+ kg ke + (kg /g = ko /K ) (Kot )
e kolke + (kg kg + ko /e ) (kotyy )

The matrix elements appearing in equations (14)

and (15) are expressed as:

sinc ((xn —Am )d) +sinc ((Xn + Am )d) _

cc _
Anm 1+ sinc(2y,d)
— Sum
1+ 6110 ’
4o — conc((xn — A )d)—conc((xn + Uom )d) _
o 1+ sinc(2y,d)
_ (_1)n+m _(_l)n—m
1+38,, ’ (A3)
s conc((xn A )a’)+conc((xn + U )d) _
o 1+ sinc(2y,d)

IR ) o)

1438, ’
45 = sinc ((xn A )d) —sinc ((xn + U )d) _s
o 1 —sinc(2y,d) e

These expressions involve the following integrals:

d
2
Ve (1) = mIV (1,x)cos(x,x )cos(x,,x )dx,
n 0
5 d
Bss — :
Vs () o) 'EV(t,x)cos(xnx)sm(xmx)dx,

(A2)

d
Vs () = 2IV (7,x)sin(y,x )sin(yx,,x )dx,
0

d
Vose (1) = ZIV (7,x)sin(y,x )cos(yx,,x )dx.
0

In equation (A3), the functions sinc (x) = sin(x)/x

and conc(x) = (1-cos(x))/x are included. These
functions at zero should be defined as sinc (0) =1,

conc(0) =0 ensuring proper boundary conditions.
Moreover, the condition sinc(2nn) = §,, applies at
the barrier edge.

._

® 3

12.
13.
14.
15.

16.
17.

18.
19.
20.
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Abstract. The perturbation theory in interaction of isolated attosecond XUV pulse with an atomic system
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1. INTRODUCTION

Significant progress has been made in the
theoretical description of nonlinear effects arising
from the interaction of intense infrared (IR)
laser fields with atomic systems. The quantum
mechanical description of processes induced
by an intense IR field involves two approaches:
numerical methods, such as solving the time-
dependent Schrodinger equation (TDSE) and its
simplified variations for multi-electron systems
(density functional theory, time-dependent
Hartree-Fock method) [1—9], and analytical
approaches. Numerical calculations typically
serve as “benchmarks” for verifying the accuracy
of analytical approaches and demonstrate their
efficiency in determining the nonlinear response of
an atomic system to an intense external alternating
electric field. However, the results of numerical
integration can only be obtained for fixed laser
parameters and lack significant predictive power.
Specifically, in most cases, it is necessary to
perform numerous time-consuming computations
to achieve the desired physical interpretation of the

24

observed effect. In contrast, analytical theories are
better suited for uncovering general fundamental
patterns in the nonlinear interaction of an atomic
system with an intense laser field.

Analytical approaches to describing nonlinear

effects in the interaction of IR fields with atomic or
molecular systems are typically based on the single-
electron approximation. Within this approximation
(subject to certain obvious limitations), it becomes
possible to derive expressions for the amplitudes
and cross sections of fundamental laser-induced
and laser-assisted atomic processes with accuracy
not inferior to numerical results of TDSE solution
[10—16].
A key advantage of analytical approaches over
numerical methods is the ability to establish a
universal parameterization dependence of the
probabilities of the strong-field processes on the
fundamental characteristics of the target (i.e. the
electron-core interaction potential U(r)) and the
laser-pulse parameters (see, e.g., [17]).

These parameterizations can be further generalized
to multi-electron systems, enabling the study of
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the effects of internal electronic dynamics in laser-
induced photoprocesses [18].

Among the analytical approaches, the most
popular is the S-matrix formalism, where the exact
wave function of the active electron in the self-
consistent potential U(r) is expanded into a formal
series in U(r) [19, 20] (see also [21, 22]). This
expansion leads to a Born series for the transition
amplitude, where the terms (partial transition
amplitudes) can be expressed as a convolution of the
free-electron Green’s function in the laser field with
the atomic potential. For example, for the above-
threshold ionization (ATI) process, the account
of U(r) in the lowest order leads to the Keldysh
result [23].

Due to the large value of the classical action of
the electron in a strong low-frequency field, the
partial amplitudes can be analyzed using the saddle-
point method [24], which gives rise to the quantum
orbit approach [25, 26]. This approach provides
an intuitive physical interpretation of strong-field
phenomena in terms of classical trajectories, thereby
justifying the rescattering model for fundamental
atomic photoprocesses in an intense laser field [19,
20, 27, 28].

Although the Born expansion of transition
amplitudes has proven fruitful and significantly
contributes to the description of strong-field
phenomena, it cannot fully account for the
atomic potential, whose influence can be crucial
[9, 18, 29—32]. One approach that allows for a
more accurate treatment of the atomic system
dynamics in an intense low-frequency field is the
adiabatic approximation. The general idea of this
approximation is based on the smallness of the
carrier frequency o of the laser pulse compared
to the ionization threshold 7, of the atomic target
ho < I,. The lowest-order of the adiabatic
approximation (zero-order approximation) is
defined by the quasistationary state of the system
in a static (DC) field with an intensity equal to
the instantaneous value of the low-frequency laser
field [33—37]. In [11—17], a correction to the zero-
order adiabatic approximation was derived for the
wave function, accounting for the rescattering of
the electron by the atomic potential. The study [38]
refined the adiabatic approach for determining the
atomic state in the lowest adiabatic approximation,
by utilizing the analytical part of the wave function of
the quasistationary atomic state in the instantaneous
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laser field. Within the adiabatic approach, both low-
energy and high-energy (rescattering plateaus) parts
of the photoelectron spectra and high-harmonic
generation (HHG) spectra have been calculated.

The presence of a closed analytical expression for
the wave function of the atomic state in an intense
IR field allows for the development of an adiabatic
perturbation theory in additional interaction with
a high-frequency (e.g., extreme ultraviolet — XUYV)
attosecond pulse [17, 39]. The influence of an
ultrashort XUV pulse on the radiation generation
process results in the appearance of a significant
number of new generation channels and substantial
modification of the IR field HHG spectra. For
example, the enhancement of harmonic yield due
to the resonant population of excited target states
by the XUV pulse was studied in [40—43]. XUV-
induced enhancement of high harmonic yield was
investigated both for attosecond pulse train [44—
47] and for an isolated attosecond XUV pulse [48,
49]. These studies demonstrated that a XUV pulse
(or its sequence) can affect the ionization stage in
the three-step Corkum model [50], i.e., change the
ionization times and thereby affect the harmonic
yield. In [51, 52], it was shown that adding a weak
XUV field leads to the appearance of an additional
plateau in the HHG spectra. The physics of the
additional XUV-induced plateau was explained
in [53], where it was shown that the additional
plateau results from XUV-photon absorption at
the recombination stage. It should also be noted
that, at sufficiently high carrier frequencies of the
XUYV pulse, electrons from the inner atomic shell
can also participate in the HHG process, leading
to an increase in the cutoff energy of the plateau
[54—56]. Moreover, such XUV pulses, combined
with an intense IR field, enable the study of Auger
processes [57, 58] and electronic transitions from
inner shells to the valence shell [59]. The re-
emission channel (or elastic scattering) of a XUV
photon by the atomic system, leading to significant
enhancement of the generated radiation yield, was
studied in [60]. Second-order processes of XUV
interaction in an IR-dressed atomic medium were
also investigated: generation of a XUV pulse at the
doubled carrier frequency [39] and the XUV pulse
rectification effect [61].

In this paper, we generalize the perturbative
approach proposed in [17, 39] to construct
perturbation theory corrections for the interaction
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with a short XUV pulse of arbitrary order, based on
adiabatic wave functions of the atomic state in an
intense IR field. Within the developed perturbation
theory, XUV-induced radiation generation channels
are investigated by analyzing classical electron
trajectories in the field of synchronized intense IR
and attosecond XUV pulses, and the possibility of
interference between different channels due to their
spectral overlap is explored. The article uses atomic
units unless otherwise specified.

2. ADIABATIC APPROACH
TO THE DESCRIPTION OF AN ATOM
IN A LOW-FREQUENCY LASER FIELD

2.1. Adiabatic expression for the wave function

Let us consider the interaction of an atomic system
with an intense infrared (IR) laser pulse characterized
by the peak electric field strength F;z and the carrier
frequency w;z . We will assume that the laser pulse
parameters satisfy the adiabatic conditions [23]:

or < Eyl|, vx <1, (1)

where yg = xoyz / Fip is the Keldysh parameter,

k=42|E,|, E, is related to the binding energy
of the unperturbed atomic level. The conditions
(1) can also be rewritten in terms of the average
oscillation energy of a free electron in the laser field

u, = Fjp / (4ojg):

or <l E |, (2)

Q)57 < Llp.

To describe the nonlinear interaction of an atomic
system with a laser field that satisfies the conditions
(2), it is most convenient to use the adiabatic
approach [12, 13, 37]. Within this approach, the
wave function of an atomic electron interacting with
a low-frequency laser field can be represented as a
sum of “slow” (‘P(O)(r t)) and “fast” (‘P(’)(r )
time-dependent parts [11, 12, 17]:

¥R (r,0) = YR + PR, (3)

The slow part ‘I‘(I%) (r,t) represents the adiabatic

approximation in the lowest order (“zero-order”

approximation) and is defined by the quasistationary
state in a DC electric field with a strength equal to the
instantaneous value of the IR field at time t [37, 12].
In many practical calculations, the function ‘I’(I%) (r,0)

can be accurately approximated by the initial-state
wave function in the absence of the IR field:

e e @

The term ‘P([Q(r,t) in Eq. (3) describes the
rescattering effects of the valence electron on the
atomic core and represents a superposition of

scattering states \u(“ of the electron in the atomic

@ (r).

potential with 1aser-1nduced momenta K, [17]:

lEot

P (r,t) = oY (r,1), (5a)

o (r,1) = Za (t)l//(+)(r). (5b)
Each term in the sum (5b) is associated with one of
the possible closed classical trajectories, which start
at the tunneling time # and end at the return time #
of the electron back to the atomic core. The laser-
induced momenta are defined by the expression:

K, = K@t1), (6)

K(t.t') = A jp(6) — fAIR(T)dT
where A jp(¢) is the vector potential associated with

the electric field strength Fz(r) of the laser pulse by
the relation:

Fip(t) = —0A g (t) / Ot.

The tunneling times #,(t) as functions of the return
times 7 satisfy the transcendental equation (see details
in [14]):

K/ -K! =0, (7)
where
K, =K'(t,t]),
: oK'
K = 8;, ®)

N

K'(t,1") = A (t') — fA]R(r)dt

Equation (7) has a simple physical meaning: the
atomic electron tunnels at the moments in time that
provide the minimum Kkinetic energy of the released
electron in the laser field. The time-dependent
coefficients a,(¢) in the superposition (5b) represent
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the product of the ionization (tunneling) factor
a™™ ¢!y and the propagation factor " (z,t!):

a,(t) = d™))d?" (t.1)). )

The ionization factor is characterized by the
tunneling exponent in the instantaneous “static”
electric field with the strength:

F =[Fjp@})— K} -Fr)]"?,

see [62]. For example, in the case of a linearly
polarized laser field, the following relation holds:

a(run)(t;) o eiFat /(3|F1R (t;)D, (10)

where F, =’ defines the magnitude of the

characteristic intra-atomic field. To satisfy the
quasiclassical condition, an additional inequality
must hold: F <« F, , which ensures the smallness
of the ionization factor and the insignificance of the
initial-state decay effects.

The propagation factor a?”(z,¢!) is determined
by the classical action S(,7;) of the free electron in
the laser field over the time interval from ¢, to f:

iE,(t—t')—iS(t,t!)
0 s s
aP( ) =

P (11a)

t
S(tt5) = %I[Am(f) -
t/

N

t
- i tf A (d P d. (11b)
N
It is important to note that the rescattered part
®(1;2(r,t) of the atomic electron wave function in the
IR field, relative to the unperturbed function ¢y (r),
has a smallness ~ S

Fin —F _ /BF,,)
_ .32
B]R_YI(/ %e at’ TIR
at

< 1.
Essentially, the result (3) represents an expansion of
the atomic electron state in terms of S, up to the
first order. In the following, we will maintain this
accuracy, as the inclusion of higher-order terms in
the expansion of Sz (i.e., a more precise account of
rescattering effects) does not lead to any significant
manifestations in the amplitudes and cross sections
of processes in a strong IR laser field.
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2.2 Amplitude of radiation generation

The amplitude of photon generation by an atom
in an intense laser field is determined by the dipole
matrix element [63, 64]:

D(Q) = f (PR @D p (0™ dr,  (12)

where Q is the frequency of the generated photon,
W, (r,t) is the dual wave function to the state
WY r(r,t), defined from the state Wz (r,f) by
complex conjugation, time reversal + — — , and
the replacement of all 7-odd parameters A for —A
[65, 66]. In a low-frequency laser field, the dipole
matrix element (12) for Q > |E| can be approximately
expressed through ¥ (r,r) and ‘P([Q(r,t) [17, 63]:

D@ = [(oe "V [r| R0 ar.  (13)

The harmonic yield, summed over polarizations
and integrated over directions, is determined by the
square of the modulus of D(Q):

4 2
y_ 9 ID(Q)|

4n%c3

’

where c is the speed of light.

In the adiabatic approximation, the time integral
in (13) is evaluated using the saddle-point method,
and D(Q) can be represented as a sum of partial
amplitudes D(Q) [14, 17]:

D(Q)=3 D ,;(%), (14a)
j

D/(Q)=d{" a;d(K )¢, (14b)

where g™

e a ; are the tunneling and propagation
factors, respectively, and d(K ;) is the dipole matrix
element for the transition from the continuum state

with momentum K ; to the bound state ¢ (r):
d(K)) = oo [ vy ()

The factors a®™™ | a; are defined by the relations:

J

(tun) _ _(tun) 4/
aj =da (tj)’

- l 27
o 2

aj =
\/Kj 'FIR(tj)'i_ﬁ
J J

a?"(t 1))
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The summation in (14a) is performed over all
closed classical electron trajectories, defined by the
start time ¢ j’ and end time 7; of the electron’s motion.
The times tJ’~ and 7; are the roots of the system of
transcendental equations [14, 17]:

K/ -K; =0, Kj=2Q+ Ey, (15)
where the induced momenta K =K'(.7)),
K; =K(;,t) are defined in Egs. (8) and (6),
respectively.

3. TIME-DEPENDENT PERTURBATION
THEORY FOR AN ATOMIC SYSTEM
IN AN INTENSE IR FIELD

Let us consider an atomic system interacting with
an intense IR field and a perturbative XUV pulse. The
account of the XUV interaction with the IR-dressed
atomic system can be treated within the perturbation
theory based on the adiabatic wave functions of the
atomic electron in the IR field [17]. We will consider
the interaction with the XUV pulse in the dipole
approximation, so that the potential Vy, (r,t) of
the interaction between the atomic electron and the
XUYV pulse has the form:

Vygy (50 =V (x,0e "0 4V (r,ne™ev!, (16)

F
X2UV (exyy T xyy @),

V., (rt) =

V_(rt) =V, (1),

where Fy) is the peak field strength, @y, is the
carrier frequency, ey is the polarization vector,
and fyyy () is the XUV pulse envelope.

Note that for oy >| E; |, the small perturbation
parameter for the XUV interaction is defined as [67]

2
xF E,)" F
BXUV — 2XUV =4 |20| ;UV < 1. (17)
Oxyy Oxyy “a

Therefore, even in the case of XUV radiation strength
comparable to F,,, the interaction Vy,), can be
treated perturbatively [68].

The state ¥(r,) of the atomic electron in the field
of synchronized IR and XUV pulses can be written as:

Y(r,t) =¥ p(r,0)+

+ [[Gw b0 Wy (40 1 (e dr, (18)

where G(r,z;r',t’) is the time-dependent (retarded)
Green’s function of the atomic electron in the two-
component field. For the function G(r,%;r',¢'), the
Dyson equation holds:

G ') = G (et )+ [[Grprasr” ")

XV yuy @ t"G@" 1" e’ )dr"dt”, (19)

where G (r,t;r',t") is the time-dependent (retarded)
Green’s function of the atomic electron in the
IR field. Using the relations (18) and (19), we can
represent the wave function ¥(r,#) as a perturbation
series in Vyyy :

Y(r,t) = ¥(r,0) + i‘l’n (r,1),

n=l1

(20)

where W¥,(r,r) = W ,z(r,t) is the atomic state in
the absence of the XUV pulse (see Eq. (3)), and
W, (r,1) ~ B%yy are the n-order corrections, satisfying
the following recursive relation:

W, () = ffg,R (r,t:r' 1) x

XV yyy @YW, (¢' ¢ )dr'dt’. (21)

The accuracy of the adiabatic approximation
allows for the approximate evaluation of the time
integrals in (21). The main contribution to the value
of the corresponding integrals are given primarily by
the weakly overlapping neighborhoods of the points
t' =t and ¢’ =1/(t), where 7,(¢) are the saddle points
of the phase of the rapidly oscillating factor of the
integrand in (21). This phase is primarily determined
by the classical action of the electron in the IR field
and the carrier frequency of the XUV pulse. The
asymptotic expression for the Green’s function
Gg (r,t;r',¢") in the vicinity of these singular points
was obtained in [17]:

Gig (r,t;r',t") ~

G, (r.tr' 1), t~t,
~ : (22)

G 1o (0,50, WO O T, 1 =1,
Where G, (r,t;r',t’) is the time-dependent atomic
Green’s function of the electron, G ,,,;(0,0,7') is the
Volkov Green’s function of the electron in the IR
field for r =r' =0, and the momenta K = K(,t')
and K'=XK'(r,t') are defined by Eq. (6) and (8),

respectively.
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The explicit expression for the nth-order
correction ¥, (r,f) can be obtained by sequentially
calculating the lower-order corrections, using the
relations (22) and (21) and approximately evaluating
the time integrals. The nth-order correction can be
decomposed into a slow part ‘ng) and a fast part ¥':

¥, (r,t") =¥ () + v (). (23)
To determine the slow part ‘Pff) , We represent it

as a superposition:
YO (r,r) ~ Ze Vo (r,1), (24)

A%
where E, = E, +voyyy are time-dependent
coefficients, and the slow (in time) functions
(”)(r t) require further definition. The slow time
dependence of the functions (p(”)(r,t) , as well as
the envelope fyyy (), will be understood under the

following conditions:

()
a(p < (’OXUV ([)S,n) , (253)

ot

9 !
‘% < oxgy fxor @ (@25b)

It should be emphasized that in order to isolate
the slowly varying part of the wave function, one
should neglect the contribution from the saddle
point neighborhoods 7/(s) in the time integral in
(21) and consider only the vicinity of the endpoint
t' ~t. Substituting (24) into (21) and using the
asymptotic form of the Green’s function for ¢’ — ¢
(see Eq. (22)), we obtain:

Ze_jEVT(P\(,nH)(rJ) = fme(r,t;r/,t/) X

v

—iE , !
<V yyy () e Y oW ar'dr’. (26)
V,
Next, approximating the slow functions (p(")(r’ ,t)
on the right-hand side of Eq. (26) by their values at
t' =t and using the relation between the stationary

and time-dependent atomic Green’s functions:

G prr) = [H06 ,wpr i, (27)

we obtain:

S gl V(e =

v
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—iEy GE » | go(”)>

= El

\%
—iE t

+§we e Gp, V

Note that if the energy of the Green’s function
coincides with the energy of the ground state, then,
according to perturbation theory, the Green’s
function is replaced by the reduced Green’s function
G /Eo [69, 70]:

o). (28)

E—E, (29)

Ggo = lim |G g(r,r’) —

EHEO

Given the weak dependence of the functions (p(”)
and V', on time [see (25)], we equate the coefﬁcwnts
of the “fast-oscillating” exponentials with identical
exponents in (32) and obtain the equation for the

functions " *1:
GE 4+ (P(n,) >+GE V_| (P5’21>a

Vilo")+Gp v lef), v=o.

| v =0,
(p\(}n+)_

(30)
The itera‘uve method for solving Eq. (30) assumes
the following expression for the zero iteration:

O\ (1) = 9y ()3, . (31

Thus, using the relations (24) and (30), one can
find the nth-order correction for the slow part of the
wave function, which formally coincides with the
expression for the nth-order perturbation theory in
a monochromatic field [70] (for a monochromatic
field: fyyy (t) =1, i.e., V. do not depend on time).
We write the wave function ¥ in the nth order of
perturbation theory using the integral operator 13,, :

w0 = P (Eg.t) | 0p), (32)
which represents the convolution of the atomic
Green’s function with all possible #-combinations of
the operators V', and/or V_. We present the explicit
form of the operators P, for the first three orders of
perturbation theory (n<3):

—iEyt 5

Po(Eyt)=e 0],
P(Eyt)=c MG Vi + e g £ Vo
Py (Egt)=¢ "2G £,ViGpV, +

v MG EV GV, +



accuracy of the method. Therefore, in any order of
perturbation theory for the XUV interaction, the
expression for ‘I’(n’)(r,t) contains only one Volkov
Green’s function. From relation (21), it follows that
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—iEqt
"Gy V.G V. +
Gy v v,
o _ iEy
Py(Epty=e SGpV. Gy V.GV,

e MG, VGV, GV, +
GV, GEV GV, +
+e G V.GL V. Gy Vo +
e g £ VGV GpV,+

te g 5V GEVGy Vo +

—iE 1

+e "Gy V.Gp V.Gp Vo +

—iE
3GE VGE VGE V

where 7 is the identity operator. It is evident that the
slow part of the wave function is the sum of partial
terms ‘Pff)(r,t):

¥ (r,) = Z‘I’(S)(r 1= ZP (Eg,1),(r). (33)

n=0

The similarity between the perturbation series in
the XUV interaction of the atomic wave function in
an intense IR field and the well-known perturbation
result for the quasistationary atomic state in a
monochromatic laser field, obtained within the
quasistationary quasienergy state (QQES) method
[70], is noteworthy. The series (33) formally
coincides with the QQES result after replacing the
exact quasienergy ¢ by the ground state energy E|,
and the field strength Fyy,, by the instantaneous
amplitude of the pulse field Fyyp (1) = Fyyyfyuy ().
Thus, if the functional dependence of the QQES wave
function ‘I’()?g,fs)(r,t;g,F yuy) on the quasienergy
and field strength is known, the same dependence
defines the wave function ¥ (r,7):

YO (r,r) = ¥ (x,t Ey, Fyyy 1)) (34)

In contrast to the slow part, the time dependence
of the fast part lIJS,’)(r,t) is determined by the rapidly
oscillating exponential factor~ e, defined by
the classical action S of the electron in the IR field
along the closed trajectories (see Egs. (5b), (9), and
(11a)). It should be noted that, within the adiabatic
approximation, the appearance of any products of
two or more Volkov Green’s functions exceeds the

‘I‘ﬁ,’)(r,t) is defined as the convolution result of either
the slow part ¥, (r,) with the Green’s function G 1 ,
approximated by the Volkov Green’s function (see
Eq. (22), or the fast part ¥, (r,r) with the Green’s
function G ;5 , approximated by the atomic Green’s
function (see Eq. (22)):

W () =

=[G 410,100 | Vg @) | ¥ )i (0t '+
+ f f G o (050 "Wy (0 YO (0t N 'dt’,  (35)

where the first integral implies an approximate
evaluation using the saddle-point method, while
the second integral should be evaluated considering
only the contribution from the vicinity of ' ~ 1.
Accordingly, ‘{‘(’) 1 can be written as the sum of two
terms:

(r)  — g(r.l) (r,2)
anr-i-l \Pnr-&-l + \Pnr-&-l ’ (36)
where the expressions for pjs ‘P(’Jrll) , ‘Pﬁl’fl) are

discussed below.

We will use the approximate expression (27) for
the Green’s function ‘Pﬁf) in the first integral of (39)
and then perform the saddle-point integration over

. As a result, we obtain an expression for ‘P(’ 1)

¢ = Z Z;\u(g)(r)Gv(t,t ) %

X[l 1V, <t>|<p<">> + ) Ie@ o),

(37)

where K’ = K'(1,/'), K = K(z,7'), the summation is
carried out over all allowed values of v with the same
parity as n +1 in the interval | v|<n + 1, and the
saddle points 7 = 7(¢), defined by the equation:

K2 =2E,. (38)
In (37), the following notation is used, defined as:
e—iS(t,f’)—iEV?’
G,t1')=————575 X
Y 2t —1')>/?

~1/2

x\K'-Fp@)=2E, / (t —1) (39)

The accuracy of the approximate expression for
the Green’s function in (22) implies that only those
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saddle points v should be considered in the sum (37)
that ensure the solution of Eq. (38) in real numbers.

From expression (37), it follows that the correction
‘I’El’ Jrll) to the fast part of the wave function describes
a rescattering state, formed within the three-step

scenario:

First stage: as a result of the absorption or
emission of # XUV photons, the atomic system forms
states ¢\

Second stage: a stimulated single-photon
transition (with absorption or emission of a photon)
from one of the states (/") to a continuum state with
asymptotic momentum K’ occurs at the moment 7.

Third stage: while in the continuum, the electron
interacts with the intense IR field and forms, at
the moment ¢, the state \yg)(r) , acquiring energy
while moving along a closed classical trajectory.
The propagation of the electron wave packet in the
continuum is described by the multiplier G, (z,7").

As follows from Egs. (5b) and (37), the fast part
of the wave function is determined by the rapidly
oscillating factor e “*)  which defines the IR-
controlled propagation of the electron in the
continuum, and the continuum state function \u(“
The same components determine the correction
‘PE,”Z), so, without loss of generality, we represent
lrd) ag:

v = Za‘”’a) i) (40)

where a () x e” iStis) is a certain integral

operator, and the summation is performed over
all real ionization moments 7., induced by the IR
or XUV field. In the zero approximation for the
XUV interaction: t =1t, (see relation (7)), and
a(o) = qy (t)[ (see relatlon (9)). It is worth noting
that the operator a; ")(t) can be defined by two terms
(denoted below by the indices a and b), describing
two different scenarios of the electron interaction
with the IR and XUYV pulses:

a) The atomic electron tunnels into the IR-
modified continuum and, while propagating along
closed classical trajectories in the IR field, absorbs v
and emits n—v of XUV photons (parity of n and v is
the same).

b) The atomic electron transitions into the IR-

modified continuum with energy E, by absorbing
v/ of XUV photons, where, during propagation

JETP, Vol. 167, No. 1, 2025

along the closed classical trajectories in the IR field,
it absorbs and emits additional XUV photons.

According to the described mechanisms, we
represent the function ¥{"*? as a sum:

\PE{,2) — l},;r,2a) + ‘PS{’Zb). (41)

The mathematical expression for the operator
Zzgn)(t), corresponding to the realization of Scenario
(a), can be easily obtained from (35) (see the second
integral term on the right-hand side), assuming that
the “zero iteration” ‘Pg’) = ‘I’([}) for the fast part of
the wave function is defined in (5). By sequentially
calculating the time integrals in (35) and considering
the contribution from the vicinity of the point ¢’ = ¢,
we obtain the general expression for ¥\ (r,1):

P2 () = S g (0P, | == vi (@), (42)

where the summation includes all solutions of Eq. (7).
It is worth noting that, similar to the previously
considered case of the functions ¥®(r,r), the
summation of the perturbation series in n, taking
into account the explicit form of (46), leads to a
result formally coinciding with the expression for the
quasienergy scattering state ‘P%r)(r,t;s,fXUV(t)) of
the atomic electron in a monochromatic XUV field
[70] with the quasienergy ¢ = Ks2 / 2, the asymptotic
momentum K =K, , and the XUV field strength,
equal to the instantaneous value Fypp (f):

AK

(+)(r)

K2
I AVIE (43)

— \P(+)
27

.t lPi(—:)(rat)’

and therefore,

P2 (1) =S P02(,0) = Y gy (t)\{fgs)(r,t). (44)
n N

The correction W+?® to the fast part of the
wave function, responsible for the realization of
Scenario (b), arises in the second and higher orders
of perturbation theory. As the “zero iteration” for
obtaining this correction, we use the term ‘P(’ b
(‘P(’) = ‘P(’ D), corresponding to the absorption of a
XUV photon (see the first term in the square brackets
in (37)):



32 BREEV et al.

v 0 =3 w06 G S TV ), (45)
-

where 7 is determined from Eq. (38) with v =1.
Substituting (45) into the second term in (35) and
evaluating the time integral in the vicinity of ¢/ ~ ¢,
we obtain the desired second-order correction:

5 | K
W) = 3P S v
-

G (W 1V | gp)- (46)
It is easy to give a transparent physical meaning to
relation (46): the electron, being in the bound state,
absorbs a XUV photon and passes to a continuum
state with asymptotic momentum K' (that
corresponds to the matrix element (\ug,) RAGIENY)

in (46)). The electron propagates in the IR-dressed
continuum along a closed trajectory (see the
multiplier G,(,7) ). As a result, it forms a continuum
state at time ¢ through a single-photon channel of
interaction with XUV radiation (i.e., by absorbing or
emitting a XUV photon).

In the third order of perturbation theory, the
calculations are carried out similarly, and the
corresponding correction takes the form:

¥ = Y P,
'(v=1)
<G (!

K2
—t

(+)
()

[V, @) o)+

K2
—.1
2,

<G (I |V G g V@) o),

v ()

(47)

where the times ¢’ for the first (second) sum are
found from Eq. (38) for v =1 (v = 2) respectively.
The interpretation of the first sum in (47) is
analogous to that provided for relation (46), except
that at the final stage, the continuum state is formed
through the two-photon interaction with the XUV
radiation. The partial terms in the second sum
reflect the following physical mechanism: the bound
electron, having absorbed two photons, passes into
a continuum state, where it propagates along a
closed trajectory driven by the IR field and forms a
continuum state through a single-photon channel of
interaction with XUV radiation. It should be noted
that, although the determination of higher-order
corrections presents no significant difficulties, they

are not considered in this work due to the complexity
of the final expressions.

4. GENERATION OF RADIATION BY AN
ATOM IN SYNCHRONIZED IR AND XUV
PULSES

4.1. Generation channels

We will use the obtained expressions for the
wave function to determine the radiation generation
amplitude by an atom in the field of synchronized,
linearly polarized IR and XUV pulses:

F@)=F @) +Fyypy @ —n), (48)

where t is the time delay between the pulses, defined
as the time interval between the peaks of their
envelopes. The amplitude of radiation generation is
given by Eq. (12) with the substitution:

\P[R (r9t) - \P(r’t)s \NP]R (I',t) - ‘i’(r,t),

where ¥(r,r)is dual wave function, gefined from
Y(r,t) by the same procedure as W ,(r,r) (see
discussion below Eq. (12)).

As shown in the previous section, the wave
function ¥(r,r) is represented as the sum of “slow’
(¥®(r,r)) and “fast” (¥ (r,r)) components.
Accordingly, the radiation generation amplitude can
be written as:

9

D(Q) = DYQ) + DO(Q) +

+ DN(Q) + DI(Q), (49a)
D@ = [(FO@n x| ¥ r,0)edr, (49)
DY@ = [(¥O || ¥ w0 dr, (49¢)
D@ = [(¥0wn) | [ ¥ w0 ar, (49
D@ = [(#00) |1 | ¥ 0)edr, (49)

where each term is discussed in detail below.

The “slow” term D®(Q) describes harmonic
generation of the XUV field by the atomic system.
Considering that ‘P(s)(r,t) is defined by the
perturbation series (see Egs. (33) and (34)), it is
evident that D®(Q) can be expressed in terms of
nonlinear susceptibilities y,, at the frequencies of the
generated harmonics:
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DOQ) ="y, @y FRyrfn(Q),  (50)

0
£AQ) = zi [ Ftuy e, (51)
—0o0
It is worth noting that, due to dipole selection
rules for centrally symmetric systems, the nonlinear
susceptibilities y,(wyy) ) for even number # vanish.
However, if we more accurately account for the
IR-field effects in the zero-order approximation
‘P(I%)(r,t) , it can be shown that the susceptibilities
xn(®xyy) should be replaced by generalized
nonlinear susceptibilities of the atomic system in a
static electric field with a strength corresponding to
the IR pulse at the delay time t:

tn@xur) = 1L @xyy s Fpe = Fig(0). (52)

In this case, the prohibition on the generation of
even harmonics is lifted, and the spectrum of the
generated radiation exhibits peaks corresponding to
the frequencies Ny , where N is an integer (see,
for example, [39]). Let us consider the “fast” term
D(Q) in Eq. (49). Taking into account that the fast
part of the wave function in the synchronized IR and
XUV pulses is the sum of two terms (see Eq. (36)),
we write D(Q) as:

DN(Q) = DED(Q) + DD(Q), (53)

where D"-)(Q)(i = 1,2) are determined by the
corresponding corrections for the fast part of the
wave function. Using Egs. (32) and (37), we obtain
D"D(Q) in the form:

DrD(Q) = f DD (1)el 4y, (54a)

DD (p) = iZMV(;-)GV@(s) It | w%r))’ (54b)

v=Il f'

| POy = STIP,(Eg, 1ol (54c)
A%

where G, =G, (1,1')is defined in (39), ¢ are roots of

Eq. (38), and M () is the sum of matrix elements

describing the v-photon XUV-induced excitation of

the atomic system from the initial state ¢, to the

continuum state \p%f) , considering the re-emission

channels. The explicit form of M (') can be
determined within the perturbation theory using the
recurrence relation (30):

M@ =W 1V, | 9o)
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(CORR % % %
g V.G IIEOV—G Ey+oyyy Vileg)+-
N — (D)1 %
M2(t)_<\VKv |V+GEO+(°XUVV+ |(P()>+”'
M) = <\V;~(+.) | 17+GE0+2°’XUVI7+GE0+°’XUVV+ | o)+

where V . = V_(r,f) (note that for the case of a linearly
polarized XUV pulse, V. L= V_). The third factor in

(54b) (the matrix element (¥ | r | \yg))) determines

the amplitude of XUV-assisted recombination into
the atomic state at the moment ¢ (see expression (34)).

The function D"V() rapidly changes with
variations in the time 7 due to the presence of the
rapidly oscillating factor e ") in G n. Given
that the time interval between ionization and
recombination (i.e., the time of electron propagation
in the continuum driven by the IR field) is on the order
of the IR field period (|7 — ' |~ Ty ), ionization and
recombination cannot occur throughout the duration
Tyyy of the attosecond XUV pulse (7Tyypy < Tig ).
This circumstance allows us to omit all terms in the
sum over v in (54c) except for v =0, and to write
the recombination amplitude (¥® |r | \y;{)) in the
lowest-order approximation in Fyy, (i.e., assuming
Fyyy =0 for the state ¥©)):

(B |1yl m e gy [x [ylD). (59)
Estimation of the integral (54a) by the stationary
phase method leads to the result:

D(r,l)(Q) _ ZD(r,l)(f)eiQ?,

t

(56)

where the summation is performed over all times that
satisfy the equation:

K? o
7=Q+EO, K =K(@,1). (57)
When solving this equation, one should take into
account the implicit dependence of ' =¢'(¢)
according to Eq. (38). Based on the obtained
analytical relations, it is easy to give a physical
interpretation of the radiation generation mechanism
described by D" (Q): the atomic electron absorbs v
XUYV photons and passes into the continuum, where
it propagates along a closed trajectory driven by of
the intense IR field. At the moment of return to the
atomic core, the energy gained by the electron is
emitted as a photon with the frequency Q through
recombination into the ground state. This generation
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mechanism is called the “XUV-initiated HHG
channel” [44, 46, 71-73].

We represent the dipole moment D"2)(Q),
determined by the wave function ¥*? | as the sum:

Dr(Q) = D2(Q) + D)), (58)
where the partial dipole moments D22 (Q) and
D26)(Q) correspond to the corrections ¥+?» and
w29 of the fast part of the wave function (see the
discussion of Eq. (41)). Taking into account (42), we
write D20(Q)) as:

DE(Q) = [Dr2)@)e, (59a)

D) =S a e) (P |1 | \Piés’x

N

(59b)

where ‘Pg) is defined by relation (43). Considering

the deﬁnitison of the dual function ¥ | constructed
from P (see relation (34)), we express the matrix
element in (59b) as:

(O [ W0) = YAy (e "V, (60)
n

where AV « F},, is the amplitude of
photorecombination with the absorption (n > 0)
or emission (n < 0) of n XUV photons. Since the
function a,(r) is rapidly oscillating, the integral in
(59a) can be evaluated using the stationary phase
method. As a result, for the partial amplitude
D20 (), we obtain:

D))= Zas (t,)A flreC) x

n,s

I(Q—no )
xfyuy (s — 1)e XUV s | (61)
where the recombination times #, are found from the
stationary phase equation:

K2(t,,1'(t,))

) (62)

and the corresponding ionization times #'(¢,) satisfy
Eq. (7) when substituting ¢ =z, . In the following, we
will number possible solution pairs of the system of
equations (7) and (62) with a single index s: (#,]).
The analytical relation (61) allows us to give a
simple quasiclassical interpretation of the radiation
generation mechanism described by the term D22
(Q): at the moment ¢, , the bound electron tunnels
and propagates along a closed trajectory until

BREEV et al.

the moment of recombination #,. Recombination
occurs with the emission of a photon with frequency
Q, simultaneously with the absorption of n XUV
photons. Moreover, the envelope of the XUV
pulse acts as a “temporal separator”, cutting off
recombination moments for which the difference
|, — | exceeds the duration of the XUV pulse. This
radiation generation mechanism defines the XUV-
assisted HHG channel [52, 53].

Now let us show that the remaining terms
D20 (), D(Q) and DN(Q) are negligibly
small. The calculation of the partial dipole
moment D2Y(Q), using relations (46), (47), and
(33), shows that it is determined by terms that
were discarded during the analysis of D"D(Q).
In particular, the dipole matrix element of the
transition between ‘I’(2”2b) and ¥ has a second
order in Fyy, and defines a linear (o< Fyyy )
correction to the dipole moment in the one-photon
XUV-initiated generation channel, through the
XUV-interaction at the recombination step (i.e., it
includes, along with the the XU V-initiated channel,
also the one-photon XUV-assisted recombination
channel). Similarly, it can be shown that ‘P(3”2b)
gives a correction o« F#;, to the one-photon
XUV-initiated channel due to the two-photon
interaction in the XUV-assisted channel, as well
as a correction « Fyyy to the two-photon XUV-
initiated channel via the one-photon XU V-assisted
mechanism. These corrections should be discarded
due to the significant difference in the time scales
between the dynamics of the atomic electron’s
interaction with the IR and attosecond XUV pulses:
the characteristic time scale between sequential
processes of ionization and recombination is
comparable to the IR-field period. Therefore, the
ionization and recombination stages cannot occur
within the duration of a single attosecond XUV
pulse.

To estimate the contribution of the dipole
moment D(Q), defined by expression (49d), note
that it describes the time-inverted process relative
to the previously considered generation channels
for the term D" (Q). This directly follows from the
definition of the dual wave function. For example, the
generation of radiation in the XUV-assisted channel
for D)(Q) occurs under the following scenario: the
bound electron emits radiation at the frequency Q,
with the simultaneous absorption of # XUV photons.
As the result, the electron goes into a virtual state
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with a larger negative energy and returns to the
initial state, interacting with the intense IR field.
Since all radiation formation stages occur at negative
energy, within the quasiclassical approximation,
this mechanism is strongly suppressed, and its
contribution is negligibly small (see, for example, the
discussion in [63]). Using similar reasoning for the
XU V-initiated generation channel, we conclude that
it can also be neglected.

Finally, the term ’ﬁ(’)(Q) must also be discarded in
our consideration, as it is determined by the product
of two fast parts of the wave function, and its inclusion
exceeds the accuracy established in this analysis. Thus,
we have shown that radiation generation by an atomic
system, interacting with intense IR radiation and an
attosecond XUV pulse, whose duration is much shorter
than the IR field period, can occur within the framework
ofthree channels: 1) XUV harmonic generation, defined
by the corresponding atomic nonlinear susceptibilities;
2) the XU V-initiated generation channel; 3) the XU V-
assisted generation channel.

4.2 Contribution of different radiation
generation channels

Let us consider the general properties of the
radiation generation channels, such as the position
and width of the spectral region [€2,;,;Qmax] fOr
a given channel. These properties depend on the
characteristics of the atomic target (the energy of
the initial bound state) and the parameters of the
laser field interacting with the atomic system. The
contribution of different generation channels and
their spectral overlap is of particular interest.

The frequency interval [Q.;;Qmax] Can be
determined from the requirement for the existence
of real solutions to the saddle-point equations for
the classical ionization and recombination times. To
find them, we parametrize the electric field of the IR
pulse through the vector potential A ;5 (¢) :

OA (¢t
Fie) = 2220, (63a)
F .
Ap(t)=—e, wﬂfm (t)sin(wzt),  (63b)
IR

cos? ,;.T—t |t |< %
fir® = IR . (63c)

0 1> =

JETP, Vol. 167, No. 1, 2025

35

where 7, = 5T isthe pulse duration, T, = 2n/0z.
In all numerical calculations, we assume the initial
bound state energy E, = —13.6 €V, corresponding to
the ground state of the hydrogen atom.

4.2.1 XUV-assisted channel

For the XUV-assisted generation channel, the
ionization times s and recombination times s, satisfy
the system of equations (7) and (62):

K/ -K! =0, KX(tlt,)=2Q+ Ey —noyyy). (64)

As seen from Eq. (64), the solution of this system
for an arbitrary »n can be obtained from the solution
for n = 0 by a corresponding frequency shift of the
generated radiation: Q — Q+ noyy),. Therefore,
below we analyze the case n = 0, which corresponds
to harmonic generation in the absence of the XUV
field. The system (64) has real solutions for Q > |E|
and Q< maxK?/2+ | Ey | agu,+| Ey|, where
u, =F & /(4wdg), oy is a numerical factor depending
on the pulse envelope shape. For example, for a
long monochromatic pulse (f;z(f) =1), we obtain
oy ~3.17.

Fig. 1 shows the dependence of the frequency Q of
the generated radiation on the recombination times t.
The color represents the absolute value of the tunneling
factor a}’””) , which enters the expression (14b) for the
partial HHG amplitude for the IR field. It is seen from
the figure that for fixed parameters of the laser pulse,
the number of solutions of system (64) increases with
decreasing Q, which leads to the formation of a complex
interference structure in the plateau region [17]. In the
vicinity of the global maximum for Q (i.e., the cutoff of
the IR-induced HHG plateau), only two solutions exist,
determining the well-known interference oscillations of
the HHG vyield near the cutoff region [74, 75].

4.2.2 XUV-initiated channel

For the XU V-initiated channel (consisting of an
v-photon transition of the electron from the ground
state to the continuum, its laser-driven propagation,
and subsequent recombination), the ionization and
recombination times are determined by the following

system of equations:
K 12
D) = EO + VO‘)XUV’ (653)
2
KT =E,+ Q, (65b)
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Fig. 1. Dependence of the recombination time on the frequency
of the generated radiation for an IR pulse with a carrier
frequency » = 1 éV and a peak intensity 2 - 10'4 W/cm?. The color
represents the value of the tunneling factor (10), calculated for
the ionization and recombination times satisfying the system of
equations (64) u, = 26.89 eV. |Ej| = 13.65 V.

where K’ = K'(,7), K = K(@,7).
Equation (65a) has real solutions under the
following necessary condition:

K/2
2

V(J)XUygmaX |E0 | + =| EO | +0L0up. (66)

To determine the boundaries of the spectral region
[QninsC2max] Of classically allowed frequencies
of the generated radiation, note that the system
of equations (65) is invariant with respect to the
replacement (K’, E,) — (K,Q), where Q=0+ E,.
The maximum values K’?/2 and K?/2 are identical

due to the obvious symmetry in the dependence of
K(,t") and K'(t,t') on the times ¢, ¢’ (see Egs. (6)
and (8)). Therefore, in the plane of the variables
Q and E,, the desired region of real solutions
(or classically allowed energies Qand E, is symmetric
with respect to the line Q = E,, . Moreover, since the
momenta K and K’ are proportional to Fjg /oy,
the region of real solutions in the coordinates (~2,
E, scales by the magnitude u,. From the above, it
follows that the boundary of classically allowed
energies can be expressed using a symmetric function
g(x,y) = g(y,x) of the two arguments x = ﬁ/up and
y = E, /u, in the form of the following equation:

3.5

3.0 1

2.0 1 =)

Q/“p

1.0 4

0.0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

B, [uy

Fig. 2. Region of existence for solutions of the saddle-point
equations (65). The dark gray area represents the parameter
region obtained from the numerical solution, while the red
dashed line shows the linear law (67).

g,ﬂ :0.
u, u

p P

Fig. 2 shows the region of classically allowed energies
Qand E,, obtained from the numerical analysis of the
system of equations (65). The desired region is well
approximated by two straight lines [76]:

- £ i
R T
QE || “ (67)

gup’up “E o) -
_V+BO__aO’ Q<Ev
u u
p P
where

Bo = Fir(tq) / Fig(ty),

to and #, are ionization and recombination times,
corresponding to the global maximum of K? /2 (for
the monochromatic field B, = 0.324).

The dependence of the solutions of the system
of equations (65) on the frequency of the generated
radiation Q is shown in Fig. 3. Each pair of solutions
(f,f) is represented by a point, the color of which
corresponds to a specific value of wyyy . As can
be seen from the presented figure, as well as from
the above estimate (66), the number of real roots
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Fig. 3. Solutions of the system of equations (65) for the classical
ionization times 7, and recombination times 7, in the case
of single-photon ionization (v = 1) and various values of the
XUYV photon energy: (a) oy = 40 eV, (b) oyyy = 60 eV, (c)
oyyy = 100 eV. The shaded purple area represents the duration
of the XUV pulse. The initial-state energy, carrier frequency of
the IR pulse, XUV pulse duration, and the time delay between
the pulses are the same as in Fig. 1, while the peak intensity of
the IR pulse is 7 = 3-10'* W/cm?2. The signs (+) indicate the
direction of the instantaneous momentum K of the electron at
the moment of ionization relative to the polarization vector e,

of the IR field: (+) for the case (K-e,) > 0 and (—) for the case

(K-e,) < 0. The black line represents the profile of the IR field
intensity in arbitrary units.

of the system (65) decreases with the increase of
oyyy » While the region of possible values for the
ionization and recombination times shrinks (see
the regions bounded by closed curves in Fig. 3).
We remind that in the theory being developed, the
interaction of the XUV pulse with the atomic system
is determined by the specific moments of ionization
and recombination (see Section 3), which define the
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closed trajectory of the free electron in the IR field.
Therefore, at certain time delays, the considered
generation channel can be suppressed due to the lack
of overlap between the solution region of the system
(65) and the time interval of interaction with the
XUV pulse. For example, in Fig. 3c, it is shown that
for an XUV pulse with a time delay t = —0.57, the
region of acceptable values for ¢/ does not intersect
with the time interval of the XUV pulse duration.

Dependence of the generated radiation frequency on
the recombination times for all the discussed generation
channels is shown in Fig. 3. The regions corresponding
to elastic scattering of the XUV photon by the atomic
system (Rayleigh scattering) and the second harmonic
generation are indicated by the horizontal dashed lines
in the figure (solid bold horizontal lines correspond to
Q= oyyy and Q = 2oy ). At IR-pulse intensities
of I 22- 10" W/cm?, we observe a spectral overlap
between the harmonic generation channel in the
IR field (black bold lines in Fig. 3) and the elastic
scattering channel of the XUV photon, leading to
the specific oscillations in the harmonic generation
spectrum [60]. As the IR pulse intensity increases,
overlap with the XUV harmonic generation channels
occurs (see Fig. 3(c), where overlap with the second
XUV harmonic generation channel is observed at
I =4-10"* W/cm?). We note, that for the occurrence
of interference between different radiation generation
channels, necessary conditions are spectral overlap of
the channels and comparable generation probabilities
within the desired channels. The XUV-initiated
channels (green and orange lines) overlap spectrally
only with the harmonic generation channel in the single
IR pulse. Moreover, as seen in Fig. 3, as the number
of photons in the XUV-initiated channel increases,
the spectral overlap region shrinks, which is obviously
related to the reduced energy gain by the electron during
its propagation in the IR-field after absorbing v XUV
photons (see Fig. 2). Thus, the observation of XUV-
initiated generation channels with v > 1 is difficult due
to suppression by the more intense HHG channel in
the absence of the XUV pulse and is possible only with
a significant increase in the XUV-field intensity. For
v =1, the XU V-initiated channel can be distinguished
under the orthogonal geometry of the IR and XUV
pulses [77]. In contrast, the XUV-assisted channels
(thin gray lines in Fig. 3) contribute to the generation
of higher-frequency radiation, forming sequential
plateau-like structures in the HHG spectra [53].
Typically, the XUV-assisted channels interfere with the
harmonic generation channels of the XUV radiation
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Fig. 4. Spectrograms of generation channels for different peak intensities of the IR pulse: (a) /= 2- 10" W/cm?, (b) 3- 104 W/cm? and
(c) 4- 10" W/cm?2. Black lines show the HHG channel in the absence of the XUV field. Gray lines represent the XUV-assisted channel
with the absorption of one and two XUV photons. Green lines (orange lines) represent the XU V-initiated channel with the absorption
of one (two) XUV photons. The solid horizontal lines indicate the values of Q = Nwyyy (N = 1,2), while the dashed horizontal lines
show the boundaries of the spectral regions for the first and second XUV harmonics. The XUV photon energy is oy, = 80 €V, and
the initial-state energy, carrier frequency of the IR field, and XUV pulse envelope parameters are the same as in Fig. 1.

[39]. Note that it is possible to select conditions for
spectral overlap between the harmonic generation
channel in the single IR pulse and the XU V-assisted
and XUV-initiated channels [see Fig. 4(c)].

5. CONCLUSION

In this work, an adiabatic approach has been
developed for analyzing the interaction effects
of an IR-dressed atomic system with a short
(attosecond) XUV pulse. The nonlinear effects
due to XUV interaction result in the emergence
of additional XUV-induced radiation generation
channels. Depending on the nature of the XUV
pulse’s influence on the atom, these channels can be
classified into three types. The first one is the XUV-
induced modification of nonlinear susceptibilities
of the atomic system. For initially non-polarized
targets, the odd-order susceptibilities (e.g., atomic

polarizability, describing Rayleigh scattering of the
XUYV photon [60], or the third-order susceptibility,
responsible for third XUV harmonic generation) do
not vanish in the absence of the IR field. Thus, at
moderate field intensities, they can be approximated
by the susceptibilities of the free atom. In contrast,
even-order susceptibilities (e.g., those describing
the XUV rectification effect [61] or the second XUV
harmonic generation [39]) vanish when the IR field
is switched off, as they are caused by the IR-induced
symmetry breaking of the atomic state. The first type
of channels has been thoroughly studied in the works
cited above.

The main focus of this study is on the second
and third types of channels — the XUV-induced
ionization channels, involving the absorption of
XUV photons during the first stage of the three-
step rescattering mechanism, and the XU V-assisted
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recombination channels, where XUV photons are
absorbed at the moment the electron returns to
the atomic core. Analysis of the contributions of
partial amplitudes associated with various closed
classical trajectories of the electron in the IR field,
in accordance with the described XU V-initiated
and XUV-assisted channels, revealed that for
moderate IR pulse intensities, the spectral region
of XU V-initiated channels overlaps only with the
harmonic spectrum of the IR field in the absence of
the XUV pulse, while the probability of interference
with XUV harmonic generation channels is
negligibly small. In contrast, XUV photon
absorption during recombination (XUV-assisted
channel) significantly expands the spectrum of the
generated radiation, enabling the interference of
different generation channels.

It is worth noting that for short XUV pulses, the
energy range of the generation channels strongly
depends on the time delay between the XUV and
IR pulses. For example, in the case of high XUV
photon energies, there are delay intervals where the
XU V-initiated generation channel is suppressed. It is
important to emphasize that interference phenomena,
caused by the spectral overlap of different
XUV-induced generation channels with the IR-field
HHG channel, are key to a deeper understanding
of atomic photoprocesses occurring in the field of
synchronized XUV and IR pulses. These phenomena
can also form the basis for optical methods to
extract the temporal profile of the IR pulse from the
measured generation spectra [39, 77, 78].
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1. INTRODUCTION

Currently, General Relativity (GR) accurately
explains nearly the entire body of astronomical data.
However, from the very first cosmological solutions
[1], Einstein’s equations must necessarily include the
energy-momentum tensor on the right-hand side. One
approach is that the entire array of modern astrophysical
data is well described by GR equations, and theories of
gravity extending GR in various ways [2, 3, 4, 5, 6] are
developed specifically to explain the physical nature of
the right-hand side and its source.

One promising direction for extending GR has
been scalar-tensor theories of gravity, where, as
the name suggests, physical fields are included
alongside geometric terms and curvature invariants.
To address the issue of higher-order differential
equations, theories have been constructed where
higher degrees mutually cancel out, with the
most general example of this approach being
the Horndeski model [7, 8]. Despite significant
constraints on the Horndeski model from
gravitational-wave astronomy data [9, 10], interest
in it (and theories derived from it that pass the

GW170817 test) remains strong. This model has
also been used to create nonsingular cosmology
models, where the initial singularity is replaced by a
“bounce” of the scale factor [11, 12]. This approach
appears promising, and within the Horndeski
framework, models known as the “Fab Four”
were proposed, where the corrections themselves,
without additional tuning parameters like the
cosmological constant (A), ensure the accelerated
expansion of the Universe [13, 14]. Nonsingular
cosmological solutions within the Fab Four model,
as an example of a scalar-tensor theory with a
simpler structure than the general Horndeski
theory, have also been discussed earlier [15].

The idea of adding quantum-field corrections
to gravity models [16] allows, for example, the
limitation of nonlocality size in gravity theories
at the quantum limit [17]. This approach was
also applied to the Fab Four model [18], and the
additional inclusion of quantum-field corrections
ensures that the speed of gravitational wave
propagation now matches the experimental results
of gravitational-wave astronomy. All of this
highlights the potential of scalar-tensor models.

42



CORRECTIONS FROM NON-LOCAL GRAVITY

Therefore, we consider a nonminimal effective
model of scalar-tensor gravity with third- and
fourth-order field terms, formed by summing one-
loop interactions [19] in the form:

s=[V-¢

R+ «*BG 0,000 —

2
—2+0L¢2
K

1 1 1
~58" 0,00, — A" — 1ige |dx, (1)

where k2 = 32nG, G is the Newtonian constant, ¢ is
the new scalar field, R is the scalar curvature, o and
B are dimensionless constants, A is the cubic scalar
coupling with mass dimension, g is the dimensionless
fourth-order scalar coupling, and G v is the Einstein

1 o »
tensor |G, = R, —ngR . Despite its “extended

nature, this model remains significantly simpler
than the standard version of the Horndeski or
DHOST theory, increasing interest in its potential
to explain dark energy and early Universe processes.
To further analyze the applicability of this model
to early Universe evolution, it is necessary to study
its predictions for bounce and genesis realization
[20]. This paper is dedicated to the first step in this
direction — investigating the conditions for bounce
existence. It is important to note that the absence
of an initial singularity in the cosmological model
significantly increases its appeal. For example,
consider the search for parameter spaces where
a “bounce” occurs [21] in second-order curvature
correction gravity — the Gauss-Bonnet model [22,
23], one of the candidates for the semiclassical limit
of string gravity [24]. Moreover, the bounce already
appears with the simple addition of a scalar field, as
in the Brans-Dicke model [25]. Thus, the presence of
a nonsingular asymptotic solution in the considered
theory serves as an additional argument for its
relevance. As the first step in examining the strengths
and weaknesses of the theory (1), we investigate this
issue. Since additional constraints on the theory’s
parameters were previously proposed to pass
astronomical tests (discussed at the end of Section 3)
[19], it is of interest to compare these constraints
with those imposed by the bounce requirement.

This paper is structured as follows. Section 2
derives the field equations for the theory proposed
in [19]; Section 3 explores the parameter space
constraints imposed by the bounce requirement; and
Section 4 discusses the results and conclusions.
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2. FIELD EQUATIONS

The Klein-Gordon equations are obtained by
varying the action (1) with respect to the scalar field.
Following [26], we have:

oo 1 3
—o M7 —38¢7 L+

+209R — 2°BG MYV, V § = 0. ()

Varying with respect to the metric tensor and
introducing the effective gravitational constant
G . (¢), which depends only on the scalar field, gives:

2

2 1
K2

676 o7 ) ®

As a result, Einstein’s equation takes the form:

_ 1 2 1
g“\, = WG HV«(VW—gW D)(l¢ — EVH¢VV¢ —

1 (1 1 1
~ 58y [5<V¢>2 + 07+ I!gqs“] -
—«? ﬁ(—vxvuwkvm +V, V00 -

1
_Rauvﬁva¢vﬁ¢ - E[Vuw vkvkqﬁ +

FV06 5 V4]~ 3V, 9R T+

+V, SR,V G|+ g |[RPV 9V -
O 4 (Vo[ = 2T 4)
2 2" b 27w

where T, is the effective energy-momentum tensor:

—2 3(J-¢gL,)

T, = ,

SN A

Here L, is the matter Lagrangian.

(&)

3. COSMOLOGICAL SOLUTION
WITH A “BOUNCE”

Following [22, 23], we consider an isotropic
(Friedmann-like) cosmological solution of the form:

ds? = dt? — a*(t)(dx? +dy? +dz?), (6)

where both the scale factor a, and the scalar field ¢
depend only on the time coordinate ¢.
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To study the behavior at the bounce point, we
examine the system (2)—(4). At the bounce point, the
scale factor must be positive and finite, i.e., a =const> 0.
To ensure the scale factor reaches a minimum at the
bounce point and to avoid a cosmological singularity
a = 0 atany other point, it is necessary that a = 0 and
a > 0 . With this, Einstein’s equations at the bounce
point can be rewritten as:

3= Lo Ly
9= - est, )

il 2 5 R
2a[K2+a¢ 204 + 74

S M et =0 (®)
The Klein-Gordon-Fock equation (2) takes the
form:

- a o 1 2 1 3
If we consider the case where the energy-
momentum tensor is represented by the scalar field,
its absence would imply the absence of a nontrivial
cosmological solution: ¢ =0 =-a=0. Since this
would lead to the singularity we aim to avoid, we
introduce the additional conditions:
¢=0, ¢=const >0 and ¢ > 0.
From equation (8) and (9), we obtain an equation
for the scalar field:
A
¢ =—4=.
g

From equations (8) and (9), we derive an
expression for the second derivative of the scalar field:

1 A2
— +8=
(].5_ A aK g
360 1 g’
0 T oc22,2
120 96120’

The final system of inequalities (after substituting
into (9) with equations (7) and (8)) is:

¢=—4§>o, (10)
2
A el LAY
1 g
1+120‘ 96120202
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a>0, (12)
2
ag ou1<2+8x2 ar’?
i= : E |+ > 0. (13)
1728a% L . ¢ 180g
1200 96x20 %02

From inequality (10), we obtain that A and g
must have opposite signs. It is also necessary for the
stability of the model that g > 0. Otherwise, the
scalar potential would be unbounded from below,
rendering the model unstable. From inequality (11),
it follows that A < 0, then o > 0.The final inequality
(13) is automatically satisfied under conditions (10)—
(12). We can also consider the case a < 0. From (13),
we obtain:

1 A2
—atdy 2
oK g N 17280 >0
1 + L + L 18g2
1200 96x2q %02

This implies that the expression inside the
parentheses is positive. Thus, condition (11) also
holds if L > 0 and g < 0. However, this condition
contradicts the necessary stability condition of the
model. Therefore, these conditions are not suitable
for the given problem.

4. CONCLUSION AND FINDINGS

In the non-minimal effective model of scalar-
tensor gravity with third- and fourth-order field terms
formed by summing one-loop interactions [19], the
realization of a “bounce” solution is possible. The
necessary conditions for the realization of the bounce
solution are as follows: parameters A <0, g > 0 and
o > 0. A similar model was previously studied in
[27], where o = 0, the scalar field ¢ was absent, but
the cosmological constant A was present, ensuring
the same effect. The bounce solution is realized
under the conditions A =0 (although the case
when A = g = 0 is not possible in our model), p =0
(similarly, in our case, the volume density is zero),
a, > 0 (in our case, the scale factor ¢ > 0) and <0
(which does not contradict our conditions). Thus,
our results partially coincide with those previously
obtained for a simpler version of the discussed model,
except for the zero value of the cosmological constant
and the parameter o (which was initially zero in the
simpler version of the theory).
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Thus, in the discussed scalar-tensor gravity
model, instead of an initial singularity, a bounce is
possible even in the simplest configuration, provided
the initial constraints are met. This means that the
model, with a simpler structure than most scalar-
tensor models based on Horndeski’s theory, not only
solves the initial singularity problem but also brings
us closer to the development of quantum gravity
while offering the potential for the realization of both
bounce and genesis scenarios.
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doing so we exploited the spinor description of sources such as perfect fluid and dark energies. Some qualitative

numerical solutions are given.
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1. INTRODUCTION

Thanks to its ability to simulate different kinds of
matter such as perfect fluid, dark energy etc. spinor
field is being used by many authors not only to
describe the late time acceleration of the expansion,
but also to study the evolution of the Universe at
different stages [1, 2, 3, 4, 5, 6, 7, 8].

It was found that the spinor field is very sensitive
to spacetime geometry. Depending on the concrete
type of metric the spinor field may possess different
type of nontrivial non-diagonal components of the
energy-momentum tensor. As a result the spinor
field imposes various kinds of restrictions on both
the spacetime geometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see
whether its specific behavior can shed any new light
in the study of objects like black hole and wormhole.
Such studies were carried out within the scope of
spherically symmetric [10, 11] and cylindrically
symmetric spacetime [12, 13].

Since the present-day universe is surprisingly
isotropic and the presence of nontrivial non-
diagonal components of the spinor field leads
to the severe restrictions on the spinor field, we

46

have studied role of a spinor field in Friedmann—
Lemaitre—Robertson—Walker (FLRW) model as
well. But in those cases the space-time was given
in Cartesian coordinates. In order to see influence
of the coordinate transformations on spinor field
some works were done by us earlier [14, 15]. In this
paper we will further develop those studies and see
how the spinor field behaves if the isotropic and
homogeneous cosmological FLRW model given by
spherical coordinates.

2. BASIC EQUATION

The action we choose in the form
S = f NEd

where « = 8nG is Einstein’s gravitational constant,
R is the scalar curvature and Ly, is the spinor field
Lagrangian given by [16]

dQ,

R
3+ Ly (1)

l' _ _ —
Ly = 3lwr"Vyy =V gytyl = miypy —1F(K). (2)

To maintain the Lorentz invariance of the spinor
field equations the nonlinear term F(K) in (2) is
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constructed as some arbitrary functions of invariants
generated from the real bilinear forms. On account of
Fierz equality in (2) we set K = K(1,J) = b1 + b,J,

where b, and b, takes the value 0 or 1 which leads to
the following expressions for K = {I,J,.I + J,I — J}.

Here /=5 and J = P? are the invariants of
bilinear spinor forms with S = yy and P = i\WS\y

being the scalar and pseudo-scalar, respectively. In
(2) A is the self-coupling constant. Note that A can
be both positive and negative, while A = 0 leads to
linear case. Here m is the spinor mass.

The covariant derivatives of spinor field takes the
form [16]

3)

is the spinor affine connections, defined

Vu\lf = 8p\v - QHW’ VH\TI = au\T’ + \TJQH;

where Qu
as [16]
1

_ b),p

Q= 7800 (0Vely) = T J1o7". (4)
In (4) Fﬁa is the Christoffel symbol and the Dirac

matrices in curve space—time y are connected to the

flat space—time Dirac matrices y in the following

way

(b5

g =ep Yy YV (5)

where e&) and e[g ) are the tetrad vectors such that

(6)

= e&)ya’

g (X) = el (x)ed (XN,

and fulfil following relations

o = ()

Here n,, = diag(1,—1,—1,—1) is the Minkowski
spacetime. The y matrices obey the following anti-
commutation rules

e(a)e 8[3 , e(a)e

Tu¥v TV = 28 YRV HYYH = 28" (8)

Varying the Lagrangian (2) with respect to y and
v, respectively, we obtain the following spinor field
equations

iV, —my — Dy — Gy y =0, 9)

iV, Gy +my + Dy +iGyy =0,  (10)
where D = 20FgbS, G = 20Fyb,P.

The energy momentum tensor of the spinor field
is defined in the following way [16]
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TP =

28" (WY, Vo + 9y, Vo u — Vi v = Vogy,y) —

8L, (11)

which in view of (3) we rewrite as

P —
T,

i v _ _ _
= 287 W0 + 91,0,y = 0,97,y — 0,9y, y) —

_%gPV‘T’(YpQV + QVYH

Note that the non-diagonal components of
the EMT arises thanks to the second term in (12).
Moreover, let us emphasize that in view of the spinor
field equations (9)—(10) the spinor field Lagrangian
(2) can be expressed as

+7,Q, + Qv )v— 3, L. (12)

L=L(2KFx —F), Fy =dF /dK. (13)

We exploit this form of Lagrangian in solving
Einstein equations, as they should be consistent
with the Dirac one, as (13) is valid only when spinor
fields obey Dirac equations (9)—(10). Let us also
note that in case F =+/K the Lagrangian vanishes
which is very much expected as in this case spinor
field becomes linear. We are interested in nonlinear
spinor field as only it can generate different kinds of

source fields.

The isotropic and homogeneous cosmological
model proposed by Friedmann, Lemaitre, Robertson
and Walker independently is the most popular and
thought to be realistic one among the cosmologists.
Let us consider the FLRW model in spherical
coordinates in its stanard form [17]:
ds? >+ r7d9 + r’sin?9d¢’ |,

(t) (14)

with k taking the values +1, 0 and —1 which
corresponds to a close, flat and open universe,
respectively. Though the value of k defines the type
of geometry of space-time, in reality it is defined
by the contents that filled universe. As we see later,
independ to the value of k the universe filled with
dark energy is always open, whereas for perfect fluid
the value of k really matters. In this case depending
on the value of £ we obtain close, flat or open
universe.
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In view of (6) the tetrad we will choose in the form
a

N

egz) = ar, e§3) = arsin 9.

(=1, o=

Then from (5) we find the following y matrices

arsin9’

Further from y, = gwy" one finds the vy, as well.

The Christoffel symbols, Ricci tensor and scalar
curvature and the Einstein tensor corresponding to the
metric (14) are well known and can be found in [17].

Then from (4) we find the following expressions
for spinor affine connection

0Q,=0, (15)
Q = —— 77", (16)
W1 — kr?
Q, = %myzyo +% 1— kr? 3%, (17)
93% ar sin 873 704—; 1—kr? sin 973 71—1—
+%cosS?372. (18)

Let us consider the case when the spinor field
depends on ¢ only, then in view of (15)—(18) the
spinor field equations can be written as

. +§g +\j1—kl‘2 —0—1 +COtS_0_2 n
v 2a\|/ ar YYV dar YY Vv
. -0 —5-0, _
+i(m + D)y y+Gyy y =0, (19)
;+§é_7\)1—kr2 __0_17C0t9__0_27
v 24 ar vyy 2ar vYy
. ——0 —5-0 _
—i(m +D)yy +Gyy’y =0, (20)

Introducing ¢ = a*/?y we rewrite the equation
(19)—(20)

\/l—krz__ cotd_o_
+ 7% + ——27%%

ar v 2ar +

+i(m +D)70 + G779 =0, (21)
= Nl-= kr2 __0—-1 cotd__g_»
(P—T(PY Y —W(PY Y-
. ——0 —_5_0 _
—i(m + D)oy +Goy’y =0, (22)

The equation (21) can be presented in the matrix
form

o= Ao, (23)
or
('pl —lDl 0 —G Bl (pl
i 0 -iD, B, -G
| R (e A X
P3 G B, D 0 [l
By Bl G 0 iD )\
where
/ 2
D, =(m+D), B =- 1= kr” | ;ootS
ar 2ar
B :_\/1—er _l,cotS
1 ar 2ar

It can be shown that
2
detd = (D} +G? —BIBI) .

We can choose the nonlinearity in such a way that
the corresponding determinant is nontrivial. In that
case the solution (23) can be formally written as [18]

h

o(t) = Texp | — f A, (vdz, (25)
t

where T = o(t;) is the solution at ¢ =1¢,. Given the
fact that the universe is expanding and the spinor field
invariants are the inverse functions of scale factor, in
case of a nonzero spinor mass one can assume

0 7imt1
b

o(t) = col[ghe " g " o™,

imt
Pse ge

(g€ )a

whereas for a massless spinor field
_ 0.0 0 0
(P(tl) - COI((pl ’(Pz’(P3,(P4)

with ¢) being constants.

The non-trivial components of the energy
momentum tensor of the spinor field in this case read

T) = mS + \F, (26)
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T' =T} =T] = L(2KFx — F), (27)
acos9 o
T=——A" (28)
41— kr?
cotd 3
T = ———A4°, (29)
41 — kr?
70 = —%\/ P (30)
Ty = %\/1 — kr?sin94? — %cosSAl. (31)

From (28)—(31) we conclude that the energy-
momentum tensor of the spinor field contains
nontrivial non-diagonal components. The non-
diagonal components

* do not depend on the spinor field nonlinearity;
* occur due to the spinor affine connections;

* appear depending on space-time geometry as well
as the system of coordinates;

* impose restrictions on spinor field and/or space-
time geometry;

* do not depend on the value of k& which defines
the type of curvature.

It should be emphasized that for a FLRW model
given in Cartesian coordinate the EMT have only
diagonal components with all the non-diagonal one
being identically zero [19]. So in this case the non-
diagonal components arise as a result of coordinate
transformation. Note also that all cosmological
spacetime defined by diagonal matrices of Bianchi
type VI, VI,, V, IIl, I, LRS —BI and FLRW,
possess same diagonal components of EMT, but has
nontrivial non-diagonal elements that differ from
each other in different cases [9]. Moreover, non-
diagonal metrics such as Bianchi type 71, VIII and
IX also have nontrivial non-diagonal components
of EMT. Consequently, we see that the appearance
of non-diagonal components of the energy-
momentum tensor occurs either due to coordinate
transformations or due to the geometry of space-time.

As one sees, the components of the EMT of the
spinor field contains some spinor field invariants.
To define those invariants let us write the system of
equations for the invariants of the spinor field. It can
be obtained from the spinor field equation (19)—(20):

(32)
(33)

Sy +2GAJ =0,
Py —2(m +D)A{ =0,
AY +2G Sy +2(m +D)Py +
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[, 2
) 1—kr A(l) —|—COtSA3 -0, (34)
ar ar
‘1 \ll—kl‘2 0
AO + ZTAO = 0, (35)
. t9
Al + °°r A =0, (36)

that gives the following relation between the
invariants:

P =83 +(a8) ~(4b) ~(42) =CpC = const. (37)

In (32)—(37) the quantities with a subscript "0"
are related to the normal ones as follows: X, = Xa’.
From (37) we can conclude that since C is an
arbitrary constant, the each term of (37) should be
constant as well.

In order to solve the Einstein equations we have
to know how the components of the EMT are related
to the metric functions. In order to know that let us
find the invariant K in general. We consider the 4
cases separately.

In case of K =1, G =0. In this case from (32)
we find

(O
I
-

=K = (38)

[9%)
:.|Q
=N NN}

If K =J, then in case of a massless spinor field
from (33) we find

a

=K =

Q|Q
[SA A ST

p=-2,
a3

(39)

Let us consider the case when K =1 + J . In this
case b; = b, =1. Then on account of expression for
D and G from (32) and (33) for the massless spinor
field we find

Sy + 4ra’Fy PA® =0, (40)
Py —4ra’FiSA° = 0, (41)
which yields
C 2
K=I+J=8+pP* ==L (42)
a

Finally in case when K =1 —J ,i.e. by = —b, =1
from (32) and (33) for the massless spinor field we find

Sy + 4ra’Fy PA® =0, (43)
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Py + 4ra’FrS4° =0, (44)

which yields

C?2
K=1-J=5§-p*==1 (45)

a

Thus we see that the invariant K is a function of
metric function a, namely, K = const.a”® and it is
what we need to solve the Einstein equation. In what

follows we solve the Einstein equation.

Let us recall that the Einstein tensor GJ
corresponding to the metric (14) possesses only
nontrivial diagonal components. Hence the general
Einstein system of equations

G: = —8nG TJ, (46)
leads to the following non-diagonal expressions
0=T“V, o= . 47)

In view of (28)—(31) from (47) one dully finds that
A =0, A°=0, A" =@/2N1—kr?942. (48)

Note that since the FLRW model given by the
Cartesian coordinate the non-diagonal components
of EMT are identically zero, hence relation such as
(48) does not exist.

Inviewof 4° =0, A% =0 from the system (32)—
(36) we find

S, =Cg, Py=Cp, Ab=Cl, A} =0}, (49)

with Cg, Cp, C) and C? being some arbitrary
constants. Thus we see that K = const.a_°. Note that
the equation (34) in this case in redundant and (48)
gives relations between the constants C ) and C3.

We are now ready to consider the diagonal
components of the Einstein system of equations
which for the metric (14) takes the form

. )
2§+ "—2+% =8nGT}, (50)
a a
a ok 0
3|5 + 5| = 8nGTy. (51)
a a

On account of (51) we rewrite (50) in the form

a 4nG 4nG
ZZ—T; T; (8—1—31)), (52)

1t o)

SAHA

where ¢ and p are the the energy density and and
pressure, respectively:

e=T) =mS + \F, (53)

p=-T =1(2KFgx — F). (54)

On account of (26) and (27) from (52) we find

4G
-4

mS — 20LF + 6AKFy )a. (55)

Note that the equations (52) or (55) do not
contain k that defines the type of space-time
curvature. In order to take this very important
quantity into account we have to exploit (51) as the
initial condition for a . The equation (51) we rewrite
in the form

a=+\(8n/3)Gea® — k =

= +/(8%3)G (mS +AF)a® —k,  (56)

Now we can solve (55) with the initial condition
given by (56). It comes out that these equations are
consistent when one takes the negative sign in (56).
Alternatively, one can solve (56), but for the system
to be consistent he has to check whether the result
satisfies (55).

As we have already established, S, K , hence
F(K) are the functions of a. Consequently, given
the spinor field nonlinearity the foregoing equation
can be solved either analytically or numerically.

The equation (55) can be solved analytically. The
first integral of (55) takes the form

a= /ff(a)da+Cc,

where we define

8nG
fla)= =3
and C, is a constant which should be defined from
(56). The solution to the equation (57) can be given
in quadrature

(57)

(mS —20F + 6LKFy )a

[ ___da (58)
| f f(a)da +C,

1. In what follows we solve the system (50)—(51)
numerically. In doing so we rewrite it in the following
way:

= Ha, (59)
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1k

o 2
H=-3H* -5~ —4nG1(2KFg — F), (60)
a
2 8nG k
H? == (mS—l—kF)—a—z, (61)

where H isthe Hubble constant.

As one sees, in the foregoing system the first two
are differential equations, whereas the third one is a
constraint, which we use as the initial condition for
H:

H = +[82G (mS+LF)3—k[d*.  (62)

Since the expression under the square-root must
be non-negative, it imposes some restrictions on the
choice of initial value of a as well. Note that initial
value of H depends on spinor mass m , coupling
parameter A and the value of k.

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (59) and
(60), numerically. The third equation of the system
(61) we exploit as initial condition for H(t) in the
form (62). We do it for both massive and massless
spinor field. Beside this, we consider close, flat and
open universe choosing different values for k. As it
was mentioned earlier, the coupling constant A can
be positive or negative. Let us recall that

K = %, K, = const. (63)
The foregoing relation holds for K = {/,J,I = J}
for a massless spinor field, whereas for K = I = 52
it is true for both massive and massless spinor field.
Hence we assume that K =7 =S%. We consider
different kind of spinor field nonlinearities F(K)
(equivalently, F(S)), that describes various types of

sources from perfect fluid to dark energy.

3.1 Barotropic equation of state

Let us consider the case when the Universe is
filled with perfect fluid or dark energy given by
quintessence, A -term or phantom matter. It can
be implemented by the barotropic equation of state
(EoS), which gives a linear dependence between the
pressure and energy density and was exploited by
many authors [20, 21, 22, 23]. The corresponding
EoS takes the form
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Fig. 1. Evolution of the FLRW Universe (scale factor a()) in
presence of a radiation given by a massless spinor field. The blue
solid, red dash-dot and black long dash lines stand for close, flat
and open (k = +1, 0, —1) universe, respectively

Fig. 2. Evolution of the corresponding Hubble parameter H(z)
and corrsponds to differnt values of £ as in Fig. 1

p = Wk, (64)

where the EoS parameter Wis a constant. Depending
on the value of W, the Eq. (64) can give rise to both
perfect fluid, such as dust, radiation etc. and dark
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Fig. 3. Evolution of the FRW Universe (scale factor a(7)) in
presence of a radiation given by a massive spinor field. The
blue solid, red dash-dot and black long dash lines stand for
k=+1,0, —1, respectively

12

Fig. 4. Evolution of the corresponding Hubble parameter H(?)

energy such as quintessence, cosmological term,
phantom matter etc. For W <[0,1], it describes
a perfect fluid. The value W = —1 represents a
typical cosmological constant ( A -term) [24, 25, 26],
whereas W e [—1,—1/ 3] gives rise to a quintessence,
while for W < —1 it ascribes a phantom matter.

2500+

2000+

15001
a

1000+

5004

Fig. 5. Evolution of the FRW Universe (scale factor a(7)) in
presence of a modified Chaplygin gas given by a massless spinor
field. As one sees, independent to the value of k£ in this case the
universe expand rapidly

It was shown in [9, 27] that inserting (26)—(27)
into (64) the matter or energy corresponding to Eq.
(64) can be simulated by the nonlinear term given by

F(S) =28 —mS, = const., (65)
in the spinor field Lagrangian (2).

Let us now solve (59)—(61) numerically for the
nonlinear term given by (65). We consider both
massive and massless spinor field. The values of W
are takentobe 1 /2, —1/2 and —1 describing the
radiation, quintessence and cosmological constant,
respectively. For simplicity we set S, =1, G =1,
A = 0.5 here and in the cases to follow. We also set
m = 0 for a massless and m =1 for a massive spinor
field.

In Fig. 1 we have illustrated the evolution of the
Universe filled with radiation, given by a massless
spinor field, while Fig. 2 shows the evolution of
the Hubble parameter corresponding to the case in
question. Figs. 3 and 4 describes the evolution of the
Universe filled with radiation and the corresponding
Hubble parameter in case of a massive spinor field. In
the figures blue solid line stands for a closed universe
given by k =1, red dash-dot line stands for a flat
universe with £ = 0 and black long dash line stands
for an open universe with k = —1.
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2.5

Fig. 6. Evolution of the corresponding Hubble parameter H()

We have also considered the case with the
spinor field nonlinearity describing a quintessence
(W = —1/2) and cosmological constant (W = —1).
Both massive and massless spinor fields are taken into
account. Since in both cases the energy density is less
than the critical density, independent to the value of
k we have only open type of universe. The behavior
of the evolution is qualitatively same as that of in
case of a modified Chapligin gas. The corresponding
figures will be similar to those in Figs. 5 and 6, only
the rate of expansion being much slower.

3.2 Chaplygin gas

In order to combine two different physical
concepts such as dark matter and dark energy, and
thus reduce the two physical parameters in one, a
rather exotic equation of state was proposed in [28]
which was further generalized in the works [29, 30].
Generalized Chaplygin gas model is given by the EoS

Pen = _A/Sgh , (66)

where A is a positive constant and 0 < a <1.

It was shown that such kind of dark energy can
be modeled by the massless spinor field with the
nonlinearity [9] inserting (26)—(27) into (66)

1/(1+0)

F(S) = (A + xs‘*“) (67)
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We have solved (59)—(61) numerically for the
nonlinear term given by (67). We consider only
massless spinor field setting m = 0. The parameters
Sy,G and A were taken as in previous case. We have
alsoset A =1/2 and o =1/3.

As in case of quintessence and cosmological
constant, the evolution of the universe filled with
Chaplygin gas and corresponding behavior of the
Hubble parameter are qualitatively same as in case
of a modified Chaplygin gas which are illustrated in
Figs. 5 and 6. The expansion rate in this case is higher
than the previous case but slower than in the case to
follow.

3.3 Modified Chaplygin gas

Though the dark energy and the dark matter act in
a completely different way, many researchers suppose
that they are different manifestations of a single entity.
Following such an idea a modified Chaplygin gas was
introduced in [31] and was further developed in [32].
Corresponding EoS takes the form

p=We—Ale*, (68)

with W being a constant, 4 >0 and 0 < a <1.

/\

1.0+

Fig. 7. Evolution of the FRW Universe (scale factor a(7) in
presence of a modified quintessence given by a massless spinor
field. In case of k = +1 there occurs a periodic solution, whereas
for k = 0 or kK = —1, we have Big Crunch like solutions
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Fig. 9. Evolution of the FRW Universe (scale factor ¢(7)) in
presence of a modified quintessence given by a massive spinor
field. Unlike massless spinor field, in this case there is no periodic
solutions for the given value of problem parameters

Inserting (26)—(27) into (68) the modified
Chaplygin gas can be generated by a massless spinor
field with the nonlinearity given by [9]

A 1/(1+a)
F(S) = + XS(HO‘)(HW)

1+w (69)
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Fig. 10. Evolution of the corresponding Hubble parameter H(r)

In fact, mathematically it is a combination of
quintessence and Chaplygin gas. We have solved
(59)—(61) numerically for the nonlinear term given
by (69). Since we consider only massless spinor field,
we set m = 0. For simplicity we set §,,G ,A,4, and o
as in previous cases. Beside that we set W = —1/ 2.

In Figs. 5 and 6 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the Universe is filled with nonlinear spinor field
simulating a modified Chaplygin gas.

3.4 Modified quintessence

A modified Quintessence was proposed in order
to avoid eternal acceleration of the universe. In some
cases it gives cyclic universe that pops up from a Big
Bang singularity, expands to some maximum value
and then decreases and finally ends in Big Crunch.
In some cases it might be periodic without singularity.
A spinor description of a modified quintessence was
proposed in [23]

p=W(E—¢g,), We(-1,0), (70)
with g, being some critical energy density. The
model gives rise to cyclic or oscillatory universe.
Setting ¢, = 0 one obtains ordinary quintessence.
As one sees from (70), the pressure is negative as long
as € > g, . Since with the expansion of the universe
the energy density decreases, at some moment of
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time & becomes less than g, , i.e., € <g, . This
leads to the positive pressure and the contraction
of the universe. It can be shown that a modified
quintessence can be modeled by a spinor field
nonlinearity inserting (26)—(27) into (70)

w

— 5 QW
F§)=28"" + 10

(71)

We solve the system (59)—(61) for the values of
parameters as in case of quintessence. For critical
density we set g, =1.

In Figs. 7 and 8 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the universe is filled with nonlinear massless
spinor field simulating a modified quintessence. The
corresponding cases with massive spinor field are
illustrated in Figs. 9 and 10

In the figures, evolution of Hubble parameter
H is drawn for a much smaller time interval than
the scale factor a. It is just for technical reason.
For example, if in Figs. 3 and 4 we use interval 30
for both @ and H, as we see from Fig. 4 Hubble
parameter after crossing mark 5 it becomes almost
zero, thus giving rise to a visually ugly picture.
Whereas, setting interval 5 for both, we have a on
rising phase for all three values of k [cf. Fig. 3].
These two figures correspond to the same values of
problem parameter, only for good visual pictures
we have drawn them for different intervals. The
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric
FLRW model we have studied the role of a
nonlinear spinor field in the evolution of the
universe. It is found that in this case the spinor
field possesses nontrivial non-diagonal components
of the EMT. Since the Einstein tensor in this case
is diagonal, this fact imposes some restrictions on
the components of spinor field: 4° =0, 4° =0
and A' « A%. Corresponding equations are solved.
It is shown that if the spinor field nonlinearity
repesents ordinay matter such as radiation, the
factor k plays decisive role giving rise to close, flat
or open universe depending on its positive, trivial
or negative values. It is also shown that in this case
spinor mass influences the result quantatively. If the
spinor feild nonlinearity generates a dark energy we
have only rapidly expanding universe independent

JETP, Vol. 167, No. 1, 2025

to the value of k. Finally in case of a modified
quintessence the model gives rise to as oscillating
universe. Depending on the value of k and spinor
mass m there might be periodic solutions or the one
that ends in Big Crunch.
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1. INTRODUCTION

Since the advent of General Relativity (GR),
attempts have been made to construct models of
elementary particles in curved spacetime. Notable
contributors to such models include G.B. Jeffery
(1921), P. A.M. Dirac (1962), W. Israel (1970),
C.A. Lépez (1984), O. Gron (1984), A. Burinskii
(1974—2023), and others. Unfortunately, none of the
proposed models have found practical application in
classical and quantum field theory calculations.

Another longstanding problem, which has engaged
many researchers and is the focus of this paper, is the
issue of the infinite self-energy of a charged particle
in classical and quantum electrodynamics. Efforts to
eliminate the linear divergence of self-energy in classical
electrodynamics were made by H. Poincaré, M. Born,
L. Infeld, P. A.M. Dirac, J. Wheeler, R. Feynman, and
others. In quantum field theory, the renormalization
procedure for fermion masses was developed to address
the logarithmic divergence of self-energy.

Such efforts continue today. For example, in [1,
2], quantum electrodynamics demonstrates that the
self-energy of a point charge converges when the
nonlinearity of the theory is considered in any finite
order of the Euler—Heisenberg Lagrangian expansion
in powers of the electric field.

In this paper, using the electron as an example, we
propose two quantum models of charged elementary
particles with zero self-energy. By employing the
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quantum geometry of the Reissner—Nordstrom (RN)
metric and neglecting extremely small gravitational
coeflicients, all practical calculations in classical and
quantum electrodynamics can be conducted within
the paradigm of elementary particles as point masses
with electric charges.

Our approach is based on the phenomenological
description of quantum black holes for modified
Schwarzschild (Sq) and Reissner—Nordstrom (RNq)
geometries |3, 4]. In this framework, black holes contain
quantum cores described by coherent states of gravitons.
The coherent-state-averaged solutions of the massless
Klein—Gordon equation for longitudinal gravitons are
equated, with certain coefficients, to classical potentials.
Short wavelengths are eliminated by a graviton energy
cut-off, introducing a maximum graviton energy:

he

=—, 1

kyy Ry (1)
For convenience, as in [3, 4], we introduce the
parameter Rg. The primary quantity in this theory
is the maximum graviton energy k. The presence
of a quantum core gives rise to quantum ‘“hairs.”

Quantum black holes thus possess quantum hairs.

In a future quantum theory of gravity, the
graviton energy cut-off & will be replaced by strict
integration, and the absence of short wavelengths in
graviton coherent states will naturally result from the
application of a more advanced quantum theory.
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In our previous work [5], we extended the
approach of [3, 4] to modified M and Kerr—Newman dsi Ng =
(KNq) geometries, describing regular uncharged and
charged quantum rotating collapsars. As with the
RNq geometry, this term includes either black holes
with quantum cores and event horizons or rotating p
quantum cores without event horizons.

2rm§(Nq (r)
p2

1— dr* +

+4aerm§(Nq (r)sin26

5 dtdo —

2 .
P 2 2. Zsin®
In [5], for charged rotating collapsars with mass A dr” —pd® p2 de”, 3)

M, charge Q, and angular momentum J, we obtained . ) )
full regularization of the KNq quantum metrics at Where m§y, (r) is the mass function,

the following parameter value: pz =2 ae2 cos20, 4)
_preg _ T Q2 ) 2 e 2

RS_RS _gM_cz () A=r —2rmKNq(r)+ae, (5)

This regularization yielded finite values for key Y= (r2 +a? )2 — a?Asin, (6)

GR quantities, such as the mass function m gy, (r),

R} (r,0), the Kretschmann scalar K, (r,0), and
others.

Je

m, 2m,

| n

a, = —— = (7)

For Rg = R¢® |, the total energy of the quantum
charged rotating collapsar equals E = Mc?, meaning
its self-energy is zero. Due to the presence of a
quantum core, the electromagnetic forces responsible In general, for a black hole with mass M, charge

for the collapsar’s self-energy are counterbalanced by &> and angular momentum J, the mass functions
gravitational forces. m (r) for both classical and quantum Kerr (K) and

Kerr—Newman (KN) metrics do not depend on the
spin parameter a = J/M and are therefore equal
to the mass functions for the classical and quantum
In Section 2, we propose two quantum electron  Schwarzschild and Reissner—Nordstrém metrics.
models with zero self-energy based on RNq and

KNq quantum geometries. Section 3 compares these
models, favoring the RNg-based electron model. The Mg (1) =mgy, (r) =
conclusion summarizes the key findings of this paper.

In equation (7), m, is the electron mass, and
|J,| = 1/2 is the electron spin.

Similar results are obtained for the RNg quantum
metric [4].

For the electron, the quantum mass function is

2.kEy | Ge? k&

The Appendix provides the procedure for =Gm,—=Si we Tl 1—cos e T
calculating the energy of a charged rotating black T
hole with a quantum core (see [3]). ) )

r Ge r
_Gme—S7—71—COS—e]. (8)

2. QUANTUM MODELS OF THE ELECTRON S Ry

Based on regular quantum models of charged X i

: s . o .
rotating and non-rotating black holes [4, 5], we Where Si(x) = f o dx' is the sine integral function.

propose two quantum models of the electron with _ (U
modified KNq and RNq metrics. According to equation (2),
2
e _
2.1 Modified Kerr—Newman geometry R§ =g - =1.11-10 Bem. 9)
m,c

e
For the electron model, we will use the Clirses-

Ciirsey metric [6]1): According to equation (1), the maximum (cut-off)

energy of gravitons is

1) Below we will use units with the velocity of light ¢ = 1. When he

calculating the numerical values of the theory parameters, we kgV =_— =178 MeV.
will use the value ¢ = 3-10'0 cm/s. Rgv
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The asymptotics of the quantum mass function (8)
are

MmN, o =Gm,, (10)
1Gm,| r
MkNal, o T 18 R 0. (1)

According to equation (10), the quantum KN
metric becomes asymptotically flat as » — oo.

For the classical KN metric, the mass function
m$y =0atr, =e* /2m,,ie.at r = r,, the classical
metric is flat in this limit [7]. For the quantum Kq
and KNq metrics, the spacetime curvature persists
throughout the entire interval r € (0,00) [5].

2.2 Modified Reissner—Nordstrom Geometry

The quantum RNq metric [4] can be obtained
from equation (3) by setting a, = 0:

2 e
dspng = 1——mR’rV" ") |g2
1 2 2(an2 . 2
- drf —r(de° + smzed(D , (12)
_ 2m5€Nq (r) ( )

1
’

where m%y, (r) is given in equation (8).
The quantum RNq metric is asymptotically flat
as r — oo (see equation (10)). The go = —1/ g4

component at » — 0 is

2
Gm,

- 9nc? RS

r
RS

8o =1

2
=1-215-10%| |, (13)
Re

S

meaning that the metric (12) becomes flat at » = 0.

2.3 Characteristics of electron models

Let’s present some characteristic values for the
electron:

m,=9.1-102g 2 =231-10"" erg- sm,
spin :% =0.5-1.054-107% erg - sm,

3

_g Cm Sm
G =667-10% , c=3.10"02—,
g S2 S
JETP, Vol. 167, No. 1, 2025

2Gm
e __ e
Ry = "

=1.35-10"> cm,

Ge? _ (1.38 : 10—3“)2 cm?,

2
2 =1 =(1.93.10—“) cm?
¢ | 2m,c ’
_Ge® 4 )
B, = K Ee 42.10%,
(RS
442
By = —e =82-10%, re. By +B, > 1,
(R)
2
Ry =——=2.82-10"%cm,
m,c
2
RE=2_% —111-10 % cm
5 Sm C2 ‘ ’
e
ke, = 1€ = 178 MevV,
uv p
R
R¢  1.11-1071
—S='—55=O.82-1042.
RG  1.35-10°

We see that for the electron, B, + 8, > 1,

RS / R > 1. This means that in the models of electron
with the RNq and KNq quantum metrics, the event
horizons are absent [8]. The proposed electron models
represent either rotating (KNq) or non-rotating (RNq)
collapsars without event horizons and with quantum
cores defined by coherent states of gravitons with a
maximum energy of k;;,; =178 Me V.

2.4 Electromagnetic potentials

For the classical Reissner—Nordstrom and Kerr—
Newman metrics with mass M and charge Q, the
mass function consists of two terms:

me (r) = (m (r)) +(m (r))Q =GM —%. (14)

The “charge” part of the mass function
(m*! (r))Q =G0/

ensures that the “charge” components of
the Einstein tensor, divided by 8nG, match the
corresponding components of the electromagnetic
field energy-momentum tensor derived from
Maxwell’s equations:
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8nG

For the classical KN geometry, the electromagnetic
potentials Au are chosen as follows [9]:

A, =22(1,0,0,~asin? ). (15)
[

Electromagnetic fields at » — oo manifest as a
superposition of the Coulomb field and the magnetic
dipole field p = Qa. The gyromagnetic ratio p
/M| =Q/m, which coincides with the gyromagnetic
ratio for a Dirac electron. The complex internal
electromagnetic structure of the classical KN metric
source is discussed, for example, in [10].

For the classical Reissner—Nordstrom (RN)
metric, when (a=0) in equation (15), only the
scalar Coulomb potential remains 4y =Q /r.

For the regular quantum electron metrics
(considering the relation between m, and e? from
equation (9)), the “charge” part of the mass function
can be retained as in the classical RN and KN
metrics. In this case, the mass function (8) becomes:

Ming (1) = ming (r) =

4 €08 (r/Rg) Ge?
— - . (16)
T r/R% 2r

=Gm, ZSi
T

-
Ry

Thus, the electromagnetic properties of the
proposed electron models coincide with the
electromagnetic properties of the sources of the
classical Reissner—Nordstrom and Kerr—Newman
metrics.

2.5 Electron’s self-energy
In the study [5], we established that for

Rg = R = nQ?%/8M

the energy of a rotating charged quantum black
hole equals £ =M (see also the Appendix). A
similar equality holds for the RNq quantum metric
at any value of Rg. For electron models in natural
units:

RS =ne?/8m,c? =1.11-10"3cm.

The equality £ = m, means that the electron’s
self-energy E,, is zero.

3. DISCUSSION

We have examined two quantum models of the
electron based on modified Reissner—Nordstrom
(RNq) and Kerr—Newman (KNq) metrics. Can we
currently favor one model over the other? To answer
this question, let us compare some characteristics of
the considered models under the condition

TC€2

8m,

Table: Comparison of electron model characteristics in
Reissner—Nordstrom (RNq) and Kerr—Newman (KNq)
quantum geometries

Electron model characteristic RNqg|KNg
l\E,=m,, E,, =0 + +
2 |Weak energy condition + —
3||J]= E, Dirac gyromagnetic ratio LR

2 [J|  m,

4 |Absence of event horizons + +
Finiteness of the GRT quantities, such

5|as the mass function, Ricci tensor, + +
Kretschmann scalar, etc.

6 |Compatibility with the Maxwell equations | + +
Stationary bound states in the fields B
of regular black holes

In the table, the symbols “+” and “—” indicate
the presence or absence of key characteristics in the
considered models.

Let us briefly discuss points 1—7 of the table.
Point 1. For both models:

— 2 —
E, =m,",E,, =0.

We found an important aspect: gravity in the
charged quantum Kerr—Newman (rotating) and
Reissner—Nordstrom (non-rotating) metrics with
Ry = RS compensates for the electromagnetic
component in the expressions for the total energy of
the quantum black hole.

In classical electrodynamics, the self-energy of
a charged particle Eg,’n = 32/2r diverges linearly as
r — 0. In quantum field theory, the self-energy of a
charged particle is determined by an infinite series in
perturbation theory with logarithmic divergence terms.

Point 2. For the RNqg quantum geometry, the
energy density p,(r), radial pressure p;(r), and
stresses p, (r) = p3(r) take the following form [4]:

— nz (—Rg )3 X
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X
(r /RS
. : sin{_], (17)
2(r / RS) s
p2(r) = p(r) = E’;) x
TRy
1 ]
7 1—cos|— —1—2cos —r
(r /Rg) Ry 4(r /R§) Ry
— 3 sin| — (18)
4(r/R§) RS

Atr — 0,wehave p,(r) — K/24, p; (r) — —K/24,

3
where i =1,2,3 and K = me/Tt2 (R§) . Thus, for the

RNq quantum geometry near r = 0, the weak energy
condition p, >0, p, +p; >0, i =1,2,3 is satisfied.
Specifically, equations (17) and (18) show that at
r=0p.,=K/24,p.+p; =0,i=1,23.
For the RNq quantum geometry at » =0, the
energy dominance condition p, > |p,- , i =123
also holds. In our case: p, =|p;|.

For the Kerr—Newman quantum geometry, the
asymptotics of the energy density p, (r,u) at r — 0
follow from equation (7) in [5] (here and below,
1 = cos0):

K2 )
%(RH)‘ET[Z] =0,
pa(r,u)=84K,u=().

(19)

At pu= 0,+1 the energy density near » =0 is
negative. In this case, none of the energy conditions
are satisfied.

Point 3. In the KNqg quantum model, it is possible
to introduce the spin modulus |J| = #/2 , satisfying
the Dirac gyromagnetic ratio. However, introducing
the quantum spin operator S = (1/2)c is complicated
when the classical definition of angular momentum is

JETP, Vol. 167, No. 1, 2025

used in the Kerr—Newman geometry. Above,, c; are
two-dimensional Pauli matrices.

In the RNq quantum geometry, the angular
momentum J is zero. In the RNq electron quantum
model, the spin operator .§'and the gyromagnetic ratio
e/m, are pure quantum properties defined externally.

Point 4. In both these models, event horizons are
absent.

Point 5. In both models, general relativity (GR)
quantities such as the mass function, Ricci tensor,
Kretschmann scalar, and others remain finite.

Point 6. The RNq and KNq quantum geometries
are consistent with Maxwell’s equations (see Section
2.4 of this study). However, the electromagnetic
structure of the RNqg model is significantly simpler
than that of the KNq model. In the RNg quantum
model, the source of the electromagnetic field is a
point electric charge e located at the system’s center
(r =0). At large distances, the electromagnetic field
behaves as a Coulomb field.

In contrast, the source of the electromagnetic field
in the KNqg quantum model is a system of surface
currents and electric charges distributed over a disk of
radius a, = |J,|/m,c withthe centerat r = 0 [10]. For
r — oo, the electromagnetic field is a superposition of
the Coulomb field and a magnetic dipole p = ea.

Point 7. In the RNq quantum geometry,
the metric (12) becomes asymptotically flat as
r — oo . Importantly, for both Rg = RS and r — 0,
the metric (12) is also flat (see Equation (13)). In this
case, the problem of determining the eigenfunctions
and eigenvalues of the Dirac equation for motion
of fermions in the RNq fields can be solved by
using single-valued boundary conditions from the
analogous problem for the fermion motion in the
Coulomb field in flat Minkowski space.

In the Kerr—Newman quantum geometry, the
situation is different. At r — 0 u Rg = RS, the
metric (3) remains non-flat and takes the following
form:

ds;(Nq = dtz — cos29dr2 — aezcos2ed92 —

—a2sin’0dg?. (20)

In [11, 12], it was shown that in this case, the Dirac
equation has two quadratically integrable solutions,
making it impossible to formulate a well-defined
eigenvalue problem for fermions in the classical or
quantum KN spacetime.
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To establish a well-defined quantum mechanical
problem, one must perform a self-adjoint extension
of the Hamiltonian, which usually results in new
boundary conditions near » =0 (see, for example,
[13, 14]).

4. CONCLUSION

We proposed two quantum electron models with
zero self-energy based on the Reissner—Nordstrom
[4] and Kerr—Newman [5] quantum geometries. A
critical parameter for regularizing key GR quantities
is the choice of R§ =me?/8mc? ~1.11-10"3cm,
where the cut-off energy of gravitons
ki, =Tic/RE ~ 178 Me V.

The proposed models solve the long-standing
problem of linear divergence in the self-energy of
a charged particle in classical electrodynamics. In
the considered models, gravity compensates for
the electromagnetic component in the total energy
expressions for the electron.

It can be hypothesized that with more advanced
quantum gravity theories, the problem of infinite
self-energy of charged fermions in quantum field
theory will be resolved similarly.

Notably, when using the RNq quantum electron
model, all classical and quantum electrodynamics
effects can be calculated within the standard
paradigm of an elementary particle with point
mass m, and electric charge e <0. This is due
to the extremely small values of the parameters

Gm, /c?~0.7-107> cmand Ge? /c* ~1.9.107%8
cm? in Equation (16) for the mass function m% Ng ()

. . G
As a result of neglecting the coeflicients ™e and

2

2 c
G_i the RNq geometry becomes the flat Minkowski

c
space-time. In this case, we return to the domain of

classical and quantum electrodynamics for charged
Ieptons within the Standard Model.
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APPENDIX: ENERGY OF A CHARGED
ROTATING BLACK HOLE WITH A
QUANTUM CORE [5]

For the KN quantum metric, the total energy,
defined by the volume integral of the energy density
TO0 = p,(r,0), is given by:

E= fTOO\/%dV = %Tdrjdoc(rz +azo<.2)G00 (r, )=
0 -1

2
1% ! r4~|—(p2—r2) ~|—a2(2r2—p2) ra2(1—u2)
= Efdl’fd“ 2 2 m}(N ——2m;</N =
0 9 p q p q
15 r . a 2sin(r/Rg)  CQ? r co? . (r
= —4— —|GM = 1- — || = —
e {dr‘[S aarctgr G . p + 52 cos R, Ry sin R, +

2
2r — 2"—arctgg —2a atrctg2 GM =
a r r

+
n  r/Rg

2 2
+02Lsm[L] o [_]
r‘Rg Rs) 2rR3 Ry

2cos(r/RS)L_GMgsin(r/RS)L_CQz I_COS[L}
R} Rg

2
l=M+lﬂ_£Q i

+

3

T <r/RS)2 RS v

W n QWK

kyy — .
2n°Y 16 M R2
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For the K and KN metrics:

\/—_ = p2 sin 6; p2 =r2 4 azpz, [ = cosb;

2
mh = dmgy, _ d"myp,
KNqg — dr s KNqg — dr2 ’
2.0 r GQ2 r
=GM =Si|—|— 1— —.
Mgy, =G nSl R, > [ cos[RS}]
When the condition
2
= reg — E Q
Rs RS 8 Mc?

is satisfied, the total energy of the quantum charged
rotating collapsar equals zero: E = M. 2.

Under this condition, the key general relativity
(GR) quantities, such as the mass function m (r), the
Ricci tensor R, (r,0), and the Kretschmann scalar
K (r,0), become regular and finite throughout the
entire spacetime.
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Abstract. Tri-layered waveguide transforms a conventional collimated neutron beam into a narrow divergent
microbeam. Propagation of neutrons in a waveguide with enveloping magnetic layers is investigated. Intensity
of the neutron microbeam emitted from the end face of the nonmagnetic middle layer is registered. Neutron
channeling length is defined experimentally in dependence on the sign of polarization of the incident beam.
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1. INTRODUCTION

Neutron scattering is a powerful non-destructive
method for studying magnetic structures, polymers,
and biological objects due to the unique properties
of neutrons: the presence of an intrinsic magnetic
moment, high penetrating ability, and isotopic
sensitivity. The properties of neutron and X-ray
radiation differ significantly, making them
complementary methods. For example, polarized
neutron beams are a unique tool for studying
magnetic materials within the bulk of a substance,
which is inaccessible to X-rays due to their low
penetrating ability.

The width of the neutron beam determines
the spatial resolution and the scale of the studied
objects. The typical beam width in neutron
experiments ranges from 0.1 to 10 mm. To study local
microstructures on the scale of tens of micrometers,
very narrow neutron beams are required. For this
purpose, various focusing devices are being developed
(parabolic mirror neutron guides, refractive lenses,
curved monochromator crystals, etc.) [1], capable of
compressing the neutron beam to 50 um. Achieving
a smaller beam width is hindered by limitations
imposed by the physical properties of the materials
used and the technology of their processing. Another
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problem with these devices is their inability to
effectively isolate a “pure” microbeam. For example,
parabolic mirror neutron guides form a highly
structured beam in space, refractive lenses focus
only 20—30% of the initial beam, and capillary lenses
generate significant background noise.

In [2], the profile of a microbeam after passing
through an aperture formed by neutron-absorbing
crystal blades Gd,Ga;0,, (or GGG) was calculated.
The resulting microbeam had a central part about
100 um wide and wings ranging from 10 to 20 um.
The study also demonstrated a method for obtaining
a microbeam through total reflection of neutrons
from a silicon substrate. This method has undeniable
advantages: high intensity (~1000 neutrons/s), low
background (~2 neutrons/min), and compatibility
with time-of-flight techniques. However, the
practically achievable microbeam width at a neutron
wavelength of 4.0 A and an 8 mm wide silicon
substrate still remains around 30 pum.

The record holders for the minimum width of
neutron microbeams are triple-layer waveguides
(Fig. 1). Their operating principle is as follows.
A collimated neutron beam with an angular
divergence da; falls in a vacuum (medium 0) onto
the surface of the waveguide at a small grazing
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angle o; . The neutrons then tunnel through a thin
upper layer (medium 1) with a thickness of a =5
—20 nm and enter the middle layer (medium 2)
with d=100—200 nm. They are almost completely
reflected from the relatively thick lower layer
(medium 3), deposited on a thick substrate (e.g.,
glass). Some of the neutrons tunnel back through
the upper layer and exit the waveguide as a reflected
beam o, = a;. Another portion of the neutrons
reflects from the upper thin layer 1 and returns to
the middle layer 2. As a result of multiple reflections,
the neutrons propagate along the middle layer
as if through a channel and exit from its end as a
microbeam with an angular divergence do., . The
main contribution to the angular divergence da, of
the microbeam comes from Fraunhofer diffraction
day at the narrow slit d formed by the waveguide
channel day A /d, where A is the neutron
wavelength.

Layered neutron waveguides have been well studied
to date. In [3], an unpolarized neutron microbeam was
obtained from the end of a triple-layer waveguide, while
in [4], a polarized beam was achieved. The contribution
of Fraunhofer diffraction 8o to the angular divergence
of the neutron microbeam was experimentally
determined in [5, 6, 7]. In [2, 8], a polarized neutron
microbeam from a waveguide was used for spatial
scanning of a 190 um diameter microwire made of
amorphous magnetic material. At a distance of 1 mm
from the waveguide exit, with a neutron wavelength of
4.0 A, a waveguide channel width of 150 nm, and an
angular divergence 0.15°, the calculated microbeam
width at the sample location was 2.6 um. With a
microbeam intensity of approximately 1 neutron/s,
statistically significant data were obtained within about
10 hours. The experimental setup is described in detail
in [2]. The advantages of planar waveguides include
the record-low width of the neutron microbeam and a
relatively simple method for separating the microbeam
from the background. Their obvious disadvantages
are low intensity and relatively high beam divergence.
However, the commissioning of more powerful neutron
sources (SNS, ESS, PIK, IBR-3) may make the use of
layered waveguides more accessible.

In planar waveguides, two phenomena are
observed simultaneously — resonant enhancement of
neutron standing waves and neutron channeling. The
theory of neutron resonances in layered waveguides
is described in [9]. Let us introduce the following
notations:
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Fig. 1. Principle of operation of a planar neutron waveguide
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Here, p, is the neutron scattering length density
(SLD) for the upper layer 1, and p, is the SLD
for the waveguide layer 2. The general form of the
neutron wave function is given by:

W(ky,,z) = A expliky,z),

where A is the amplitude of the wave function.
Then, we obtain the condition |‘11|2 =4 |2. Inside
the middle layer, the wave function takes the form:

Y(z)=A [exp(—iszz) + Ry exp(ikQZZ)],

where R,; is the amplitude of the reflected neutron
wave function from the lower layer 3. The amplitude
A is determined from the self-consistent equation for
the neutron wave function in layer 2, if the origin z=0
is aligned with the boundary between layers 1 and 2:

A = Ty, expliky,d) + Ry Ry; exp(ik,, 2d)A, (1)

where Ty, is the amplitude of the transmitted
neutron wave function from vacuum (medium 0) into
medium 2, and R, is the amplitude of the reflected
neutron wave function in medium 2 from layer 1.
From the self-consistent equation (1), we find:

|Tha

. SN )
[l = Ry Ry exp(iky,d)|

¥ =|af =
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The quantity |4 |2 in equation (2) exhibits resonant
maxima under the periodic conditions for the phase
of the neutron wave function:

O(ky,) = 2k, d + arg(R,)) + arg(Ry3) = 2mn, (3)

where n =0,1,2,... is the resonance order. If the
neutron wavelength is fixed, the grazing angle of
the incident beam has resonances depending on the
angle a;, . If the time-of-flight method is used, the
grazing angle is fixed, and the final neutron spectrum
exhibits resonances depending on the wavelength A, .
In [10], it was experimentally shown using a time-of-
flight reflectometer that the spectral width of neutron
resonances increases with the divergence da; of the
incident beam.

The parameter |A |2 represents the neutron density
enhancement coeflicient inside the middle layer, and
for various resonators, it can reach values of the
order of 10'—103. Layered resonators are used to
amplify the weak interaction of neutrons with matter
[11]. Neutron resonances appear as weak minima in
the coeflicients of neutron specular reflection and
as corresponding resonance-enhanced maxima of
secondary characteristic radiation or specific neutron
scattering. During neutron interactions with certain
elements and isotopes, secondary characteristic
radiation, such as gamma rays [12] and alpha
particles [13], is generated due to nuclear reactions.
The experimental setup and the method of neutron
reflectometry with the detection of secondary
radiation are described in detail in [14—17].

Specific neutron scattering within the resonator
can also include neutrons that experience spin-flip
interactions with magnetically non-collinear layered
structures [18, 19, 20], incoherent scattering from
hydrogen [21], and off-specular scattering from
interlayer roughness [22, 23] and domain structures
[24, 25]. The high sensitivity of neutron resonance
positions to changes in the SLD of the resonant
layer has been utilized to detect small variations in
hydrogen concentration within the resonator [26,
27]. These resonators can be applied as sensors in
hydrogen storage systems.

Another type of specific neutron scattering is
neutron channeling. A neutron beam propagating
along the middle layer can exit through the
waveguide surface as a collimated beam of standard
width or from the channel end as a narrow divergent
microbeam (see Fig. 1). The intensities of both
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neutron beams exhibit resonance maxima depending
on energy. In [28], the idea of using planar neutron
waveguides to determine weak magnetization of
films on the order of 102 G was proposed. This idea
was experimentally implemented in [29] and [30].
In the three-layer waveguide, the outer layers were
non-magnetic, while the investigated ferrimagnetic
films TbCos [29] and TbCo,; [30] acted as the
middle waveguide layer. The magnetization value
is determined directly from the difference in the
resonance positions, which varies by about n=0
for the incident beam polarizations “+” and “—".
Moreover, registering the microbeam allows effective
separation of the useful signal from the background,
originating from the specularly reflected, refracted,
and bypassing beams. In this study, we examine a
waveguide where the outer layers are magnetic and
the middle layer is non-magnetic (see Fig. 2). In
such waveguides, the neutron density enhancement
coefficient within the waveguide channel depends
on the neutron spin projection “+” or “—” relative
to the magnetization vector direction. In [31], the
idea was proposed to control the chain reaction of
uranium fission within the non-magnetic waveguide
layer by magnetizing the outer layers using an applied
magnetic field. This approach alters the parameter
x, , which characterizes the exponential attenuation
of the neutron density, known as the channeling
length.

In [32], it was theoretically demonstrated that
during neutron propagation along the waveguide
channel, the neutron wavefield attenuates as
exp(—x / x, ), where x is the distance under the
unilluminated surface of the waveguide. The
expression for the neutron channeling length was
derived as:

k.d

X, — .
© ko [In|RyRy |

4

If the lower layer is sufficiently thick, we can
assume R,; = 1. If the neutron reflection amplitude
from the upper layer is close to unity R,; ~ 1, the
neutron transmission coefficient through the upper
layer becomes a small parameter:

T =|Ty| =1—|Ry|
Thus, we can write an approximate expression:
In|RyRys| ~ [In(1 =T~ T.
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Fig. 2. Neutron scattering length density (SLD) of the waveguide
with magnetic outer layers as a function of the coordinate z
perpendicular to the layers. The notation Py(+) corresponds to
the polarization “+” and a film magnetization of 7.2 kG, Py (—)
corresponds to the polarization “—” and a film magnetization
of 7.2 kG, while Py represents the unpolarized beam and the
demagnetized sample.

In this case, we obtain a simplified expression for
the neutron channeling length:
k.d

(5)

The neutron channeling length can be determined
experimentally. A strip of neutron-absorbing material
is applied near the exit edge of the waveguide,
creating an unilluminated region of length x. Then,
by varying the absorber’s position and changing the
length of the unilluminated region x, the intensity
1(x) of the microbeam emerging from the waveguide
end is measured. For normalization, the microbeam
intensity without the absorber 7(x = 0) is recorded.

According to the channeling theory [32], the
intensity of the neutron microbeam from the
waveguide channel end attenuates exponentially with
increasing length of the unilluminated waveguide
surface:

I(x) / I(x = 0) = exp(—x / x, ). (6)

From the experimental dependence of the
microbeam intensity (6), the neutron channeling
length x, can be determined. For various waveguides,
this value typically ranges between 0.5 and 5.0 mm.

Various materials are used as neutron absorbers:

Gd,0; powder, Cd plates, or boral (an aluminum-
boron carbide composite) bars. Fig. 3 shows the
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Fig. 3. Experimental setup for determining the neutron
channeling length using a sliding absorber bar.

experimental setup with a sliding boral block. Due
to the block’s curvature, an air gap of approximately
with A=10um forms between the block and the
waveguide surface. As a result, part of the waveguide
surface under the absorber, with a length Ax of about
1.5 mm, remains illuminated by the incident neutron
beam. In the experiment, the intensity /(L)of the
neutron microbeam is recorded as a function of the
distance L from the waveguide exit edge to the front
edge of the absorber. The coordinate L = Ax + x
includes both the illuminated length Ax and the
unilluminated length x of the waveguide surface
under the absorber. By transforming the coordinates,
the dependence of the microbeam intensity on
the unilluminated surface length x = L — Ax is
determined. The intensity /(x) of the microbeam
with the fully illuminated waveguide surface /(x = 0)
is used for normalization. The value Ax not need to
be known in advance; it is determined automatically
during the data processing, described in detail in
Section 3.

The experimental setup and various methods
for measuring the neutron channeling length are
presented in [33]. Two neutron absorbers were
compared: a sliding boral block and Gd,0; powder.
The advantage of the powder lies in its low background
in the microbeam and simpler data processing, as
there is no air gap between the surface and the powder.
However, the drawbacks of the powder include:
1) significant time consumption when changing the
absorber width; 2) practical infeasibility for neutron
channeling lengths shorter than 1 mm;

The advantages of the sliding boral block are:
1) precise position control using a micrometer
screw; 2) faster repositioning compared to the
powder absorber; 3) suitability for determining short
channeling lengths less than 1 mm. The drawbacks of
the sliding boral block are higher background levels
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in the microbeam compared to the powder absorber
and more complex data processing.

The same study [33] experimentally demonstrated
that the exponential attenuation parameter of neutron
density in the reflection geometry is smaller than the
channeling length in the microbeam geometry from
the waveguide end.

The phenomenon of neutron channeling in three-
layer waveguides was first observed in the reflection
geometry in [34]. The first experimental measurement
of the neutron channeling length in the microbeam
geometry was performed in [35] using an absorbing
powder on the surface. In [36], experiments were
conducted with a Cd plate on the sample surface. A
comprehensive review of studies on planar neutron
waveguides is provided in [37], showing that the
channeling length (5) depends on the resonance
order n =0,1,2... and the waveguide parameters —
upper layer thickness a, channel width d, and the
depth of the potential well defined by the scattering
length density (SLD) contrast Ap = p; —p, .

The following relationships were derived for the
resonance order n = 0:

Inx, ca, Inx, ocd, Inx, o< Ap

and the first three resonance orders n = 0, 1, 2:
X, o<1/ (n+1)

Experiments with the sliding boral block
determined the neutron channeling length as
a function of resonance order and upper layer
thickness [38], waveguide channel width [39], and
potential well depth for various waveguides [40].
The experimental results confirmed theoretical
predictions.

In this study, we experimentally determine the
neutron channeling length in a waveguide with
magnetic outer layers, where the potential well depth
varies depending on the neutron beam polarization.

2. CALCULATIONS

Calculations were performed for the Py(20 nm)/
Cu(140 nm)/Py(50 nm)//glass waveguide. Permalloy
(Py) is a magnetic Fe(20.6 at.%)Ni(79.4 at.%) alloy
with a narrow hysteresis loop. Figure 2 shows the
neutron scattering length density (SLD) profile
of the waveguide as a function of the coordinate z
perpendicular to the layers. The designations Py(+)

KOZHEVNIKOV, KHAYDUKOV

and Py(—) correspond to the SLD of saturated
permalloy for neutron spins “UP” and “DO,”
respectively, while Py represents the SLD for the fully
demagnetized state of permalloy. As seen in the figure,
the SLD of permalloy changes depending on the
neutron spin direction. The permalloy magnetization
used for calculations is 7.2 kG, and the neutron
wavelength is 4.26 A. Fig. 4 presents the calculated
squared modulus of the neutron wavefunction
|‘I’|2 as a function of the incident beam’s grazing
angle o; and the coordinate z perpendicular to
the layers. Fig. 4a shows “+” polarization, Fig. 4b
shows calculations for the unpolarized NM beam,
while Fig. 4c shows “—” polarization. Resonances
of orders n =0,1,2...,... are visible, with the most
intense ones located within the total reflection region
below the horizontal dashed line. The neutron
density enhancement coefficient reaches 30 for the
UP polarization and the » = 0 resonance. Notably,
the two-dimensional neutron density maps differ
depending on the neutron beam polarization. As
the waveguide potential well depth decreases, the
resonance positions shift to lower incident angles,
the distance between resonances decreases, and the
resonance peak intensities also decrease.

Fig. 5a shows the neutron specular reflection
coefficients for the UP polarization (thin line),
the unpolarized NM beam (dashed line), and the
DO polarization (thick line) as a function of the
incident beam’s grazing angle. It is evident that the
total reflection region shifts toward smaller grazing
angles for the NM and DO polarizations compared
to the UP polarization. Additionally, minima in the
reflection coeflicients appear in the total reflection
region, corresponding to resonance conditions
n=0,1,2....

In Fig. 5b, the square modulus of the neutron
wavefunction |‘I’|2 (in relative units), integrated over
the coordinate z within the waveguide channel, is
shown as a function of the incident beam’s grazing
angle. Resonance peaks n = 0,1,2... corresponding
to the resonance order are clearly visible. If the peak
value for the » = 0 resonance with UP polarization
is normalized to 1.0, the corresponding peak for the
unpolarized beam is 0.8, while for DO polarization
it is 0.4. Thus, the square modulus of the neutron
wavefunction |‘P|2 depends significantly on the
potential well depth of the waveguide.

Fig. 6 shows the neutron channeling length n» = 0
resonance as a function of the waveguide’s potential
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Fig. 4. Calculated squared modulus of the neutron wavefunction
as a function of the grazing angle of the incident beam and the
coordinate perpendicular to the layers for different initial beam
polarizations: (a) UP; (b) Unpolarized NM beam; (c) DO.
Neutron wavelength: 4.26 A.

well depth, calculated for a neutron wavelength
of 4.26 A using Equation (5). The dots represent
the calculated data, while the solid line represents
an exponential fit. It is evident that the neutron
channeling length increases exponentially with
increasing waveguide potential well depth. Thus,
preliminary calculations predict an exponential
growth of both the square modulus of the neutron
wavefunction and the neutron channeling length as
the waveguide potential well depth increases.

3. EXPERIMENT

The experiments were conducted on the NREX
polarized neutron reflectometer (FRM 1I reactor,
Garching, Germany) [41]. The sample plane was
positioned horizontally, allowing the boral block
absorber to rest freely on the waveguide surface. The
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Fig. 6. Calculated neutron channeling length as a function of
the waveguide potential well depth for different incident beam
polarizations.

dimensions of the Py(20 nm)/Cu(140 nm)/Py(50
nm)//glass sample substrate were 30 x 30 x5 mm?,
while the absorber block dimensions were
1x1x38mm’. The neutron wavelength was
4.26 A. In polarized beam mode, the wavelength
resolution was 1.5%, and the incident beam

divergence was 0.006°. The angular resolution of the
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3He two-dimensional position-sensitive detector was
0.072°.

The polarization efficiency of the single
supermirror polarizer was 97%, and it was used in
the transmission geometry. An external magnetic
field of 1.0 kOe was applied parallel to the sample
plane to magnetize the permalloy films to saturation.
The first aperture width was 0.25 mm, with a distance
of 2200 mm from the first aperture to the sample
and 2400 mm from the sample to the detector. The
detector’s spatial resolution was 3.0 mm. A second
aperture, 0.7 mm wide, was placed 200 mm before
the sample to reduce background noise.

The demagnetized state of the sample was achieved
by applying an external magnetic field of +3 Oe
along the film plane. This field value was determined
from the hysteresis loop measured using the degree of
polarization of the specularly reflected beam. During
the determination of the neutron channeling length
in the demagnetized waveguide, the unpolarized
beam mode was used, with the polarizer removed
from the beam path. The first aperture width was
0.35 mm, the neutron wavelength resolution was
2.0%, and the incident beam divergence was 0.009° .

Fig. 7a presents the neutron specular reflection
coefficients for “+” polarization (light points)
and “—” polarization (dark points) as a function of
the incident beam’s grazing angle. The solid lines
show the fit results with the following parameters:
layer thicknesses (nm), nuclear SLD (A-2), and
magnetization of the layers (kG).

PyO(2.3 nm,7.67-107 ¢ A~2)/
/Py(19.5 nm, 8.83-10 °A~2,7.0 kG)/
/Cu(132.0 nm, 6.58 - 1070 A~2)/
/Py(48.0 nm, 8.56 - 10 °A~2,7.2kG)//
//glass (2.63-1070A72).

The fit results indicate that the magnetization
of the upper permalloy layer is 7.0 kG, while
the magnetization of the lower layer is 7.2 kG.
Fig. 7b shows the specular reflection coefficient
for the unpolarized neutron beam reflected from
the demagnetized sample. The fit with zero
magnetization of the permalloy layers accurately
describes the experimental data.

KOZHEVNIKOV, KHAYDUKOV

10°
E a
107 E
i 102 E
10°t o DO
E — fit
10-4 1 1 1 1 1 1 1 1
0,2 0,304 0506 0,7 0809 1,0 1,1
o degrees
10°F
107 g
m 102 E
- o NM
0% — it
104_ ! l l l ! l l l
0,2 0,3 04 0,5 0,6 0,7 0,8 09 1,0 1,1

o;, degrees

Fig. 7. Neutron specular reflection coefficients as a function of
the incident beam’s grazing angle (dots — experiment, lines —
fit): (a) polarized beams UP and DO; (b) unpolarized beam NM.

Fig. 8a displays the neutron microbeam intensity
without an absorber on the waveguide surface as a
function of the incident beam’s grazing angle for
the initial polarizations “+” (light symbols) and “—”
(dark symbols) with the fully illuminated waveguide
surface. The resonance peaks are labeled with the
corresponding resonance orders n = 0,1,2....

It can be seen that the microbeam intensity peak
at the n» = 0 resonance (background-subtracted)
for the initial “—” polarization is approximately
twice lower than the peak intensity for the “+”
polarization. Higher-order resonances (n =1,2,3)
are clearly visible for the “+” polarization. For the
‘—” polarization, only a small peak at the » =1
resonance is observed, significantly shifted to lower
incident angles compared to the » = 1 resonance for
the “+” polarization. The intensity of higher-order
resonances for the “—” polarization is low, making
the corresponding peaks barely visible.

3
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Fig. 8. Neutron microbeam intensity as a function of the incident
beam’s grazing angle: (a) incident beam polarization UP (light
symbols) and DO (dark symbols); (b) unpolarized beam.

Fig. 8b shows the neutron microbeam
intensity without an absorber on the surface of the
demagnetized sample as a function of the incident
angle of the unpolarized neutron beam. The peak
corresponding to the » =0 resonance is clearly
visible. For normalization, the microbeam intensity
I(x =0) is measured with the absorber placed
at the very edge of the waveguide exit, when the
waveguide surface is fully illuminated by the incident
neutron beam. In this case, the main part of the
specularly reflected beam is blocked by the absorber,
reducing the background level near the microbeam
by approximately 50%. This position corresponds
to an absorber offset of L =1.0mm relative to the
waveguide exit edge.

Fig. 9 presents the neutron microbeam intensity
as a function of the grazing angle of the incident
UP-polarized beam for different absorber positions
relative to the waveguide exit edge: 1.0, 1.5, 2.5,
3.5, and 4.0 mm. These data were obtained and
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Fig. 9. Microbeam intensity for UP polarization as a function
of the incident beam’s grazing angle at different distances L
between the front edge of the absorber on the surface and the
output edge of the waveguide: (a) 1.0 mm; (b) 1.5 mm; (c) 2.5
mm; (d) 3.5 mm; (e) 4.0 mm. The dashed line indicates the
background level. Data obtained from [38].

published in our previous work [38]. As the absorber
moves away from the waveguide edge, the neutron
microbeam intensity decreases systematically. Further
studies were conducted on the demagnetized sample.
Fig. 10 shows the intensity of the neutron microbeam
as a function of the grazing angle of the incident
unpolarized neutron beam (NM) for the absorber
block positioned relative to the waveguide’s output
edge at 1.0, 2.3, and 2.7 mm. It can be observed that
the microbeam intensity decreases as the distance
from the waveguide’s output edge to the absorber’s
front edge increases.

Fig. 11 presents the neutron microbeam intensity
as a function of the grazing angle of the incident
polarized DO beam for different absorber positions
relative to the waveguide’s output edge: 1.0, 1.7,
1.9, 2.2, and 2.4 mm. As seen, the microbeam
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Fig. 10. Microbeam intensity in the unpolarized mode as
a function of the incident beam’s grazing angle at different
distances L between the front edge of the absorber on the surface
and the output edge of the waveguide: (a) 1.0 mm; (b) 2.3 mm; (c¢)
2.7 mm. The dashed line indicates the background level.

intensity decreases with increasing distance from the
waveguide output to the front edge of the absorber
block.

Fig. 12 displays the normalized neutron
microbeam intensity /(L)/I(x = 0) on a natural
logarithmic scale as a function of the distance L
from the waveguide’s output edge to the absorber
block’s front edge (upper scale and light symbols)
for the incident polarized UP beam (a), the
unpolarized NM beam and demagnetized sample
(b), and the polarized DO beam (c). The condition
I(L =1mm) = I(x = 0) is taken into account.

It can be observed that the experimental points for
L > 1 mm align along a straight line intersecting the
1.00 level at L. Vertical error bars represent statistical

uncertainties in the neutron microbeam intensity.

The data processing is performed as follows: the
normalized intensity point at L = 1 mm is placed at
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Fig. 11. Microbeam intensity for DO polarization as a function of
the incident beam’s grazing angle at different distances L between
the front edge of the absorber on the surface and the output edge
of the waveguide: (a) 1.0 mm; (b) 1.7 mm; (c) 1.9 mm; (d) 2.2 mm;
(e) 2.4 mm. The dashed line indicates the background level.

the origin (x = 0) on the horizontal axis. Subsequently,
all remaining points along the L coordinate (light
symbols) are shifted by a single value L along the
horizontal axis so that the line through all x = L — L
coordinate points (dark symbols and lower scale)
passes through the origin x = 0. The shift value
L depends on the accuracy of the initial absorber
block positioning relative to the waveguide’s output
edge and the size of the air gap between the absorber
and the waveguide surface. Consequently, the line
In[/(x)/I(x = 0)] = —x /x, intersects the 0.37 level
on the vertical axis at the point corresponding to
the experimental neutron channeling length. The
uncertainty in the neutron channeling length is
determined by the extreme trajectories passing
through the experimental points, considering the
statistical error of the microbeam intensity. It is
noteworthy that the longest neutron channeling
length is observed for the UP-polarized incident
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Fig. 12. Normalized microbeam intensity on a natural logarithmic
scale as a function of the distance L from the output edge of the
waveguide to the front edge of the absorber block (upper scale and
light symbols) and the length of the non-illuminated surface area
of the waveguide x (lower scale and dark symbols) for different
polarization values: (a) UP, (b) NM, (c) DO.

beam (Fig. 12a). The channeling length decreases
for the unpolarized NM beam and the demagnetized
sample (Fig. 12b). The shortest channeling length is
observed for the DO polarization (Fig. 12c).

The illuminated surface area under the absorber
Ax in Fig. 3 corresponds to the point L when the
absorber block just begins to partially cover the
waveguide surface from the incident beam. From the
equality Ax = L', the air gap under the block can be
estimated as 4 ~ o;Ax .

Fig. 13 shows the experimental neutron
channeling length as a function of the waveguide’s
scattering length density (SLD) depth Ap = p;— p,.
The points represent the experimental data, while

the line represents the least-squares exponential fit.

It is evident that the experimental data follow an
exponential dependence, qualitatively confirming
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Fig. 13. Neutron channeling length as a function of the
waveguide’s SLD depth for different incident beam polarizations.
Points represent experimental data, and the line represents the
least squares exponential fit.

the preliminary channeling theory calculations.
The quantitative comparison between theory and
experiment depends on the precise determination
of the actual structural parameters (oxide layer
thickness, layer thicknesses, SLD, and layer
magnetization). However, minor deviations of the
experimentally obtained structure parameters from
nominal values should not affect the overall trend
of the neutron channeling length’s dependence on
the waveguide potential well depth. The channeling
theory was previously validated experimentally [35].
The calculated neutron channeling length, with
refined Fe/Cu/Fe//glass waveguide parameters,
matched the experimentally obtained value within
statistical error limits.

4. DISCUSSION OF RESULTS

The examined magnetic waveguide Py/Cu/Py
can be utilized in two directions. First, as a polarizer
for generating a polarized neutron microbeam in
experiments studying magnetic microstructures.
From the intensity ratio of the UP and DO
microbeam polarizations for the resonance of order
n =0 (see Fig. 8a), it follows that the waveguide’s
polarization efficiency is 0.3. The review [37]
provides a detailed discussion of various polarizing
and non-polarizing magnetic waveguides. For
example, the Fe(20 nm)/Cu(140 nm)/Fe(50 nm)//
glass waveguide has a polarization efficiency of 0.6
for the n = 0 resonance. The polarization efficiency
of the magnetic waveguide Fe(20 nm)/Co(150 nm)/
Fe(50 nm)//Si reaches 1.0.

Magnetic waveguides have a significant drawback.
Due to the high divergence of the microbeam, the
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sample under study must be located approximately
1 mm from the waveguide’s exit. In such an
experimental setup, it is challenging to separate
the magnetic field on the waveguide from the field
on the sample. The most practical solution is a
combination of a polarized neutron reflectometer
and a non-magnetic waveguide [42]. In this
configuration, high polarization of the microbeam is
achieved conventionally, and the magnetic field on
the sample does not affect the operation of the non-
magnetic waveguide. This non-magnetic waveguide
setup was used in the experiment with the magnetic
microwire [2, 8]. Thus, non-magnetic waveguides
have an advantage over magnetic ones in experiments
studying magnetic microstructures using polarized
neutron microbeams.

The second application of magnetic neutron
waveguides is for controlling the chain reaction of
uranium fission. The idea proposed in [31] suggests that
by remagnetizing the external magnetic layers with an
applied magnetic field, the neutron density in the middle
non-magnetic layer can be altered. If uranium is placed
inside the non-magnetic layer, the uranium fission
reaction can be controlled using an external magnetic
field. Suitable candidates for this method include the
Py/Cu/Py and Fe/Cu/Fe magnetic waveguides. The
preferred choice is the Fe/Cu/Fe waveguide, which
has twice the polarization efficiency. However, in this
study, we investigated the Py/Cu/Py waveguide. For the
DO polarization of the incident beam, the waveguide
retains a shallow potential well of the scattering length
density (SLD), enabling experimental measurement
of the neutron channelling length for this polarization.
Clearly, non-magnetic waveguides are not suitable for
controlling the chain reaction, as they do not respond
to the magnetic field.

5. CONCLUSION

This study investigated the Py/Cu/Py//glass
neutron waveguide with external magnetic layers. The
magnitude of the SLD of the magnetic layer depends
on the sign of the incident neutron beam polarization.
Preliminary calculations based on the theory of
resonances in layered nanostructures showed that
the square of the neutron wave function modulus
inside the waveguide increases with the depth of the
SLD potential well. Calculations using the theory of
neutron channelling in planar waveguides predicted
an exponential growth of the neutron channelling
length with increasing SLD potential well depth.

KOZHEVNIKOV, KHAYDUKOV

The neutron channelling length was experimentally
determined for the UP and DO polarization of the
incident neutron beam for a sample magnetized to
saturation and for the unpolarized incident beam
for a fully demagnetized sample (non-magnetic or
NM mode). The results showed that the neutron
channelling length increases exponentially with
the depth of the SLD potential well. Thus, the
experimental results confirm the predictions of the
neutron channelling theory in layered nanostructures.
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Abstract. It is shown that irradiation of single-crystal aluminum with nanosecond ultraviolet pulses, causing
its surface melting, leads to a decrease in all resonance frequencies of the ultrasonic vibration spectrum of the
sample. The shear modulus decreases from 0.87% to 1.45% with an increase in the incident radiation density
from 1.1 J/cm? to 5.3 J/cm?. Subsequent heating to pre-melting temperatures causes the shear modulus to be
restored to its original value. The hypothesis is argued that the discovered diaelastic effect is due to interstitial
atoms in a dumbbell configuration, formed in the surface layer as a result of melting and preserved in this layer
in a solid state due to the high rate of its cooling. The possibilities of another interpretation are discussed.
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1. INTRODUCTION

Laser processing is one of the most promising
and in-demand methods for modifying the physical
properties of materials. The use of short laser pulses
allows achieving high heating and cooling rates of the
near-surface layer of the material [1]. It turns out that
the behavior of solids during rapid processes changes
significantly. This can lead to a fundamental alteration
of properties, enabling the creation of materials with
new mechanical, electrical, and optical characteristics.
Pulsed lasers serve as a convenient tool for experimental
research in the development of new materials and the
study of their properties [2]. The results obtained using
them provide broad opportunities for an in-depth
understanding of such phenomena as phase transitions,
recrystallization, formation of structural defects,
amorphization, etc. [4, 3].

A particular interest lies in the use of laser pulses
with a duration of about 10 ns and an energy density
of several J/cm?, leading to the melting of the
surface layer of a substance within the duration of
the pulse. The cooling of this layer occurs over a
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time comparable to the pulse duration [5, 6], and
the cooling rate when using nanosecond pulses can
reach 10® K/s [7]. In the case of a pure metal, such
a cooling rate is insufficient to form an amorphous
layer (for example, pure vanadium and tantalum
vitrify at a quenching rate of approximately 10'2
K/s [8]; there is reason to believe that vitrification
of monatomic metals is feasible in principle [9]).
However, it is evident that its defect structure
will undergo significant changes. Consequently,
macroscopic elastic characteristics may also
change, as the mechanical properties of crystals are
largely determined by their defect structure. This
experimental scheme was implemented in the present
work. The object of study was chosen to be pure
monocrystalline aluminum, subjected to nanosecond
pulses of an ultraviolet laser, which induced melting
of the surface layer and its subsequent rapid cooling
(quenching).

The initial motivation for this work was as
follows. Granato’s well-known interstitialcy
theory argues that metal melting results from the
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avalanche-like generation of interstitial atoms in
a dumbbell configuration (interstitial dumbbells),
leading to a significant reduction in shear modulus
and destabilization of the crystal lattice [10, 11].
The application of this theory to the case of
multicomponent metallic glasses yields very good
results, allowing a quantitative interpretation of
changes in their properties during heat treatment in
a solid amorphous state and tracing the connection
between these changes and the properties of the melt
and the parent crystal [11]. However, information
on the applicability of these concepts to pure metals
remains quite limited.

Firstly, it has been shown that monocrystalline
aluminum in the premelting region exhibits a
measurable diaelastic effect — a reduction in the shear
modulus beyond the standard purely anharmonic
decrease, indicating a significant increase in the
concentration of interstitial dumbbells as the melting
temperature is approached [12]. A similar situation
is observed in polycrystalline indium [13]. Secondly,
it was established that the observed premelting
nonlinear increase in the heat capacity of aluminum
can also be attributed to the intensive generation of
interstitial dumbbells [14]. Finally, thirdly, about
70% of the total melting entropy of aluminum
(and, accordingly, the heat of fusion) observed
in experiments can be interpreted as the result
of interstitial dumbbell generation at the melting
temperature [15].

Based on this information, it was hypothesized
that laser surface melting of aluminum would
cause a significant increase in the concentration of
interstitial dumbbell-type defects in the melt, and
subsequent rapid cooling would “freeze” them in
the solid crystalline state. The frozen interstitial
dumbbells would induce a measurable diaelastic
effect, the magnitude of which could indicate the
concentration of these defects in the melt. However,
other mechanisms of the diaelastic effect are also
possible, as discussed below.

2. EXPERIMENTAL METHODOLOGY

Monocrystals of aluminum with a purity of
99.996%, grown using a modified Bridgman method
with orientation 100 along the growth axis, were
studied. Orientation control was performed using
the X-ray method [12]. Samples in the shape of a
cube with a side length of 3 mm were then prepared
from the grown crystal using electrical discharge

JETP, Vol. 167, No. 1, 2025

machining. Each face of the cube was perpendicular
to the [100] direction. The samples were then
processed on a grinding machine with 1200-grit
abrasive and annealed by heating to 923 K followed
by slow cooling.

Sample processing was performed using a scanning
laser beam from an Optolette HR2731 (OPOTEC
Inc.), which generated radiation pulses with a
wavelength of 355 nm, a duration of approximately
10 ns, an output energy of up to 2 mJ, and a pulse
repetition rate of 100 Hz. The laser was calibrated
using a Nova Il energy meter (Ophir Optronics
Solutions Ltd.) with a pyroelectric detector PE50-
SH-V2. The laser spot size in the sample surface
plane was determined using a standard method [16]
by measuring the area of imprints left by laser pulses
on a reference aluminum plate. The characteristic
diameter of the laser spot in these experiments
was 180 um. Surface processing of the sample was
performed using a two-coordinate table, enabling
sample movement along a “serpentine” trajectory
at a speed of 3 mm/s with a line spacing of 25 um,
ensuring that adjacent laser spots overlapped with a
coverage coefficient of no less than 98%. Each area
of the surface was exposed to 30 laser pulses. The
energy densities on the surface of the processed
samples exceeded the ablation threshold and were
1.1 J/cm?, 2.4 J/cm?, and 5.3 J/cm?2. The exceeding
of the ablation threshold was visually observed as an
accompanying plasma plume and confirmed through
electron microscopy images of the irradiated sample
surfaces. All six faces of each cubic sample were
sequentially processed. The surfaces of the samples
before and after laser exposure were studied using
a multi-beam optical profilometer Zygo NewView
7300.

The irradiated samples were then examined using
resonant ultrasound spectroscopy (RUS) on a setup
similar to that described in [17]. The excitation
and detection of ultrasonic vibrations were carried
out using piezoelectric transducers, which pressed
the opposite vertices of the cubic sample. A special
lever-type system minimized the axial pressure of
the piezoelectric transducers on the sample, ensuring
that the measured resonance spectrum was close to
the natural one (i.e., determined only by the sample
properties and its geometry). An advanced hardware-
software RUS signal processing firmware enabled
the registration of sample resonance frequencies
with high precision, down to ppm levels. A total of
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Fig. 1. (Color online) 2D profilograms (a, b) and surface micrographs (c, d) (optical profilometer Zygo NewView 7300) of sample S5
in the initial state (a, ¢) and after treatment with 30 UV laser pulses with an energy density of 5.3 J/cm? (b, d).

five samples were studied in their initial state and A similar situation was observed for treatments with

after various laser treatments. The research results
are illustrated below with data for three of them.
Additionally, it should be noted that the time from
sample irradiation to RUS measurement was several
weeks.

3. RESULTS

Fig. 1 shows, as an example, 2D profilograms
(a, b) and surface micrographs (c, d) of sample S5
in its initial state (a, c¢) and after laser exposure with
30 pulses at an energy density of W, =5.3 J/cm?
(b, d). Linear morphological features in the initial
state (a, c) correspond to abrasive processing traces.
After laser exposure, these features disappear (b, d),
and irregular roughness is observed on the surface,
with a height comparable to that before irradiation.
Detailed studies using a scanning electron microscope
(SEM) revealed clear evidence of surface melting.

other laser energy densities.

The RUS spectra of the studied samples
over the full range of resonance frequencies
(500kHz<f<1300 kHz) contain 10—12 peaks
corresponding to different elastic moduli and
various interference modes due to the non-
parallelism of the sample faces and other geometric
defects. Fig. 2 shows the initial sections of the
RUS spectra of samples S1, S3, and S5 after laser
exposure at 1.1 J/cm? (a), 2.4 J/cm? (b), and
5.3 J/cm? (¢), followed by annealing via heating
to 850 K and slow cooling, demonstrating the
presence of several resonances. The differences in
the absolute values of the resonance frequencies
for different samples are due to variations in
their geometric dimensions. It is evident that the
resonance frequencies of the irradiated samples
in all cases are slightly lower than those observed
after annealing, while the resonance peak heights

JETP, Vol. 167, No. 1, 2025
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Fig. 2. (Color online) Initial sections of the resonant ultrasound
spectroscopy spectra of aluminum samples S1 (a), S3 (b), and
S5 (c), treated with UV laser pulses at energy densities of 1.1, 2.4,
and 5.3 J/cm?, respectively. The spectra of the same samples
after heating to 850 K at a rate of 3 K/min are also shown. It is
evident that the resonance frequencies increase in all cases after
annealing.

significantly increase after annealing, which
unequivocally indicates a reduction in sample
defectiveness. As is known, the lowest resonance
frequency corresponds to pure shear vibrations and
is controlled by the shear modulus (C,,) [17]. This
modulus (denoted as G hereafter) is of primary
interest in this study.
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Fig. 3. (Color online) Temperature dependence of the shear
modulus of sample S1 after laser exposure and subsequent reheating
to 850 K. The inset shows the initial sections of these dependencies.
Arrows indicate the effect of laser exposure on the shear modulus of
the annealed sample. It is evident that heating to 850 K eliminates
the influence of laser exposure on the shear modulus.

Table. Resonance frequencies of shear vibrations after laser
exposure (f;) and subsequent heating to 850 K (f,,,), as
well as the corresponding relative changes in the shear
modulus (AG/Go) for samples S1, S3, and S5, subjected to
laser exposure at the specified energy densities (W),)). The
error in determining the resonance frequencies and their
changes after annealing is approximately 5 ppm.

S e | | | aore
S, 1.1 673.20 676.16 —0.0087
S, 2.4 573.98 578.17 —0.0127
S 5.3 683.23 688.24 —0.0145

The table presents the resonance frequencies
corresponding to the shear modulus for samples S1,
S3, and S5 after laser exposure (f;,) and subsequent
heating to 850 K (£,,,,) for three energy densities (W,).

The relative changes in the shear modulus, calculated as
AG /G = [ [ fam —1-

are also shown.

As seen, the shear modulus of sample S1 after
irradiation at W, = 1.1 J/cm? is by 0.87% lower
than after annealing. The decrease in the modulus
after laser exposure increases with the energy of the
incident radiation, reaching 1.45% for sample S5 at
W, =15.3J/cm? This is the diaelastic effect discussed
in this work. Notably, this effect occurs not only
for the shear modulus but also for all other elastic
moduli, as all resonance frequencies in the RUS
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spectrum decrease as a result of laser exposure (see
Fig. 2). It is important to emphasize that no similar
data are known in the literature.

4. DISCUSSION

Metals, including the studied aluminum, absorb
light through the transfer of photon energy to the
electronic component of the skin layer, which has a
thickness of approximately 10 nm [19]. The transfer
of energy from the electronic subsystem to phonons
takes several picoseconds. The heating time is
approximately equal to the duration of the laser pulse
and is of the order of 10 ns. At any of the applied laser
energy densities W, surface melting of aluminum
occurs, as confirmed by the aforementioned SEM
observations of the irradiated sample surfaces.
Simultaneously with the surface heating process, heat
dissipation occurs due to thermodiffusion.

The characteristic heating depth during the laser
pulse can be estimated as:

L = 2. (1

With o = 9.7 % 10 * m?/s as the thermal diffusivity
of aluminum and a laser pulse duration of 10 ns,
using Equation (1), we obtain a heating depth of L =
2um. After the laser pulse ends, the cooling process
of the heated region begins. The cooling time can be
estimated from the equation [6]:

2
omn Tyn
where T = 933 K is the melting temperature of
aluminum, and 7o = 300 K is the initial temperature.
Using Equation (2), the complete cooling time of the
surface after laser exposure by a nanosecond pulse is 7,
=~ 25 ns. The cooling (quenching) rate from the liquid
state can be estimated as 7,/7, = 2 -10"! K/c, where
T, = 2792K is the boiling temperature of aluminum.
As noted earlier, this cooling rate is insufficient for
amorphization of the pure metal. Thus, within about
25 ns, the surface layer undergoes a phase transition
from the crystalline state to the liquid state and back.

(2)

Following the concept of melting of simple metals
outlined in the introduction, we assume that melting
of the surface layer results in a high concentration
of interstitial dumbbell defects, which, due to
subsequent rapid quenching, become “frozen” into
the crystalline structure.

AFONIN et al.

The key feature of an interstitial dumbbell is that
an externally applied alternating mechanical stress
induces oscillatory motion of 20—30 atoms near its
core (the atomic structure of this defect is shown in [11,
20]), leading to significant inelastic deformation and a
corresponding reduction in the shear modulus [11, 21].

For the shear modulus (G) in the presence of
interstitial dumbbells with a concentration ¢, the
interstitialcy theory gives the relation [10, 21]:

G =G jexp(-afic;), 3)
where Go is the shear modulus of the defect-free
crystal, o = 7 is a dimensionless constant, and f;
is the dimensionless shear susceptibility. Equation
(3) shows that if the constant f; is known, then by
knowing the shear modulus of the defective crystal,
one can estimate the concentration of interstitial
dumbbells ¢;, and vice versa.

A rough estimate using the Reuss approximation
shows that the relative change in the shear
compliance of the entire sample (4S5/S) is related to
the compliance change of the molten layer (4S,,,/S0)
by:

where AV/V is the ratio of the molten layer volume
to the sample volume. As noted earlier, the sample
melts to a characteristic depth of L =2 um. The
fraction of the molten part of the cubic sample with
an edge length a, having six faces, is

AV JV =6L/a=6-2-10°/2.2-107%)~6-107.

Since for small changes in shear elasticity,
AS/S = —AG/G, from table data, we find that AS/S
ranges from 0.009 to 0.014, depending on the laser
energy density. Since shear compliance is the inverse
of the shear modulus, the values of AS;,./S, range from
1.5t0 2.3, corresponding to S, values ranging from 2.4S
to 3.4S. Using Equation (3), for the shear compliance

of the irradiated crystal, we take

Sirr = eXp(aBici) / GO’

where for interstitial dumbbells in aluminum
af; = 27 [22]. Thus, the concentration of interstitial
dumbbells ¢, which provides such compliance in the
molten layer, should be 0.033 to 0.045.

Given the approximate nature of the initial data,
this estimate appears reasonable. Indeed, calculations
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of the interstitial dumbbell concentration for liquid
aluminum using three independent methods give
¢; = 0.08 [15], which agrees with Granato’s estimate
for copper (¢; = 0.09) [10]. On the other hand,
computer simulations of aluminum melting have
shown [23] that the shear modulus decreases from
14.9 GPa just below 7,, to 1.8 GPa just above 7,
According to interstitialcy theory, the shear modulus
of the melt is low but not zero. Using Equation (3),
we estimate the interstitial dumbbell concentration at
the melting temperature as:

¢, = 1n(14.9/1.8)/27 ~ 0.078,

which is close to the values obtained earlier. Finally,
the pre-melting concentration of interstitial
dumbbells in crystalline Al, based on precision shear
modulus measurements, was found to be ¢, = 0.004
[12]. The obtained estimate ¢; = 0.04 after laser
exposure is comparable to values at T,,, but, naturally,
higher than pre-melting values.

Thus, these calculations are consistent with the
understanding of the diaelastic effect in aluminum
after laser exposure as a result of melting of the thin
surface layer, accompanied by a sharp increase in the
concentration of interstitial dumbbells, which remain
largely frozen in the crystal due to high cooling
rates. These frozen interstitial dumbbells define the
observed diaelastic effect.

Other possible mechanisms for the shear modulus
reduction after laser processing should also be
considered. When exposed to a laser pulse, significant
thermomechanical stresses arise in the sample.
Assuming the temperature at the melt boundary
is equal to the melting temperature of aluminum,
while in the bulk of the sample, it remains close to
room temperature, the temperature difference across
the sample faces is approximately 600 K. Thus, the
laser pulses generate high-amplitude mechanical
pulses, which propagate through the entire sample.
This corresponds to a relative total strain on the
order of 10~2. This is a fairly large value, which can
lead to plastic deformation of the sample due to
dislocation formation. As is well known, an increase
in dislocation density can lead to a reduction in the
shear modulus [24]. To evaluate this mechanism, it
is necessary to assess the dislocation density in the
samples after laser processing.

Moreover, at high laser intensities, the

formation of shock waves may occur as a result of
the breakdown of the ablation plume [25]. In this
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case, shock-wave-induced nanograin formation in
the irradiated layer may take place, which could
potentially contribute to the observed diaelastic effect.

A more detailed study of this phenomenon
could provide new and important insights into the
formation of the defect system in the crystal as a
result of surface laser melting followed by high-speed
cooling. It is also reasonable to expect that such
experiments will lead to new significant information
about the melting mechanism of simple metals.

5. CONCLUSION

For the first time, using resonant ultrasound
spectroscopy (RUS), a diaelastic effect (reduction
in elastic constants) has been detected in
monocrystalline aluminum, induced by nanosecond
ultraviolet laser pulses, which lead to melting of a thin
near-surface layer of the sample. As a result of laser
exposure, the shear modulus decreases from 0.87% to
1.45% with increasing incident energy density from
1.1 J/cm? to 5.3 J/cm?. Thermal treatment by heating
to the pre-melting temperature range restores the
shear modulus to its initial values, while a significant
increase in the amplitude of RUS peaks indicates a
substantial reduction in the material’s defect density.

The hypothesis is put forward that surface
melting is accompanied by the formation of a high
concentration of interstitial defects in a dumbbell
configuration, which are preserved in the solid state
due to the high cooling rate of the molten layer. The
inelastic deformation caused by these defects leads to
the observed diaelastic effect.

Other possible interpretations of this phenomenon
are also noted.
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Abstract. Effect of sample boundaries on the spectrum of magnetoplasmons in the 2D electron gas was
investigated. using the example of a strip. As should be expected in the limit of the plasmon wave length far
exceeding the strip width the dispersion law of magnetoplasmons follows the one for 1D plasma waves however
the leading term in the dispersion relation depends on the magnetic field. The dispersion laws of intraband
plasmons in cases when one and two subbands are populated, depolarisation shift of the interband plasmon and
spatial distribution of the plasmon electric field are found. The concentration and magnetic field dependencies
of the plasmon frequency have been obtained numerically.
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1. INTRODUCTION

The edge magnetoplasmon (EMP) in a two-
dimensional (2D) electron system was first theoretically
studied in the works of Volkov and Mikhailov [1, 2].
The authors conducted both classical and quantum
analyses for a half-plane and found the EMP dispersion
relation as w(k) where k is the 1D wave vector of the
plasmon wave along the edge of the sample. Naturally,
a question arises about the role of boundaries in a real
experiment, particularly concerning plasma waves in a
finite-width strip, where the influence of the opposite
edge must also be taken into account. This formulation
of the problem was outlined in the introduction of the
paper by Balev and Vasilopoulos [3]. The authors
proposed a strip model with “soft” walls, described
by a parabolic potential for electrons near the strip
boundaries. However, in their analysis of plasma
oscillations, they effectively considered only one edge,
naturally obtaining the already known result for the
plasmon frequency. Meanwhile, the presence of the
second boundary leads to qualitatively new features
of the phenomenon: strictly speaking, one should not
consider an edge plasmon but rather the eigenmodes of a
planar plasma waveguide. It is important to note that in
such a “waveguide”, the electron motion is confined in
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one direction, while the electric field of the plasma wave
extends formally to infinity. Within the framework of the
classical hydrodynamic description of 2D plasma, this
problem was solved in [4, 5]. The plasmon spectrum for
a 2D electron strip under conditions of strong screening
by a metallic electrode was found in [6], using a classical
approach within the local capacitance approximation.

In the present study, we develop a quantum theory
of magnetoplasmon waves in a 2D electron gas strip
of finite width L = 2w. The boundary conditions
for the wave functions correspond to hard walls,
meaning the transverse electron motion (along the
x-axis) corresponds to a “truncated” harmonic
oscillator at x = +w with the cyclotron frequency
o, and a suspension point X = —pl? , where p is the
conserved y-component of the electron momentum
in the Landau gauge, and / is the magnetic length
(h =1). For the Landau level with index n, the wave
function has the form:

exp(ipy) .
Nz

Here N, y is the normalization coefficient, and
L, is the length of the strip. For the wave function
W, x (x), we have (see, for example, [7]):

\Ijn,X(x!y) :Nn,X(pn,X(x) (1)
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2 /52
‘/’n,X(x) = e*(fo) /207

X[, () / 2,1/ 2,6 = X)? / 17) -

—B(x = X)0((1-,(X)) / 23/ 2. = X7’ / )] )

The first index of the confluent hypergeometric
function in Equation (2) determines the energy of
the Landau subbands:

9,(X)=E,(X) /o, —1/2

via the dispersion equation following from the
boundary conditions vy, y(x = +w) = 0. From the
same conditions, the constant B is determined.

The dispersion of the Landau subbands E, (X)
is well known, and its graphs have been repeatedly
presented in the literature in connection with studies
of the quantum Hall effect (edge channels, edge
states). The functions y, y(x) and E,(X) are
required to formulate the equation for plasma waves.

2. BASIC EQUATIONS

The problem considered here belongs to the
class of plasma oscillations in multicomponent low-
dimensional systems. The solution scheme, i.e.,
finding the eigenfrequencies of plasmons in such
systems through the matrix dielectric function in
the self-consistent field approximation, is described
in [8] for 2D systems, such as quantum well
structures with more than one populated transverse
quantization level, double quantum wells, or
multilayer superlattices.

In the case of magnetoplasmons in a 2D electron
gas strip, the plasma components correspond to groups
of electrons in different Landau levels (subbands
E, (X)), effectively forming 1D systems. Therefore,
the Green’s function of the Poisson equation takes
the form of G (x —x')=—Ky(| k(x —x")|) /2nm,
where K, is the Macdonald function.

Another significant difference from [8] is the
dependence of the transverse wave functions
v, x (x) (Equation (2)) on the longitudinal electron
momentum p through the suspension point of the
oscillator. Accounting for these distinctions, the
equation for the matrix elements of the plasma wave
potential ¢(x)e iy takes the form (taking into account
the selection rules for the momentum along the strip,
which allow only transitions (n,X) — (m,X + ki 2) :
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gDn,)(;m X +k12

" f(Em,(X’+ kﬂ)) —f(E (X))
eLy . ry E (X' + k*) —E, (X') + o+ i3

xJ

m,n;m’n

(XX 3)

n' X'sm' X' +ki2’

Where ¢ is the average dielectric constant of the
two media separated by the 2D electron gas, f'is the
Fermi occupation factor, and Form factors J,, ...,/
are defined as:

J /

m,n;m ,n/(X’X/) =
w w

== /~ 7
J [, w0 %

—Ww—-w

X Ko ke =X Wy GWF (D ()

In Equation (4), ¥, x (x) = N, yv, x (x)represents
the normalized wave function of the transverse motion.
Thus, we obtain a system of linear homogeneous integral
equations for the functions ¢ » , which we will

n,X;m,X +kl
denote by ®,,, (X). Foranunbounded discrete electron
spectrum, the number of equations and, consequently,
the number of different plasmon modes is infinite, even
if only one level is populated, for example, Ey(X). The
off-diagonal terms in Equation (3) m = n correspond
to virtual transitions with an energy change of at
least o, , i.e., they are responsible for inter-subband
plasmons, whose spectrum has a gap A > o, at zero
wave vector k = 0. If one is interested only in the low-
frequency part of the plasmon spectrum o < o, , it is
necessary to restrict consideration to intra-subband
plasmons m = n and additionally require the long-
wavelength approximation k/ < 1. Inthe following, we
will consider both intra-subband plasmons, and inter-
subband plasmons from the lower part of the spectrum,
i.e., those associated with the levels Ey(X) and Ej(X).

3. INTRA-BAND PLASMON
OF THE ZERO SUBBAND

In this case, instead of Equation (3), we have:

Dyy(X) =
_ e [ax: S (Ey(X' + kI*)) — f(Ep(X"))
ne 12 Ey(X' + kI*) — Eg(X') + o + id
xJ 00,00 (X s X YD (X ). ®)
JETP, Vol. 167, No. 1, 2025
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Assuming k < p ~ pp (where pp is the Fermi
momentum), we expand the differences in Equation
(5) up to the linear term in k. In the form factors J,
we set k=0.

For T' = 0, the numerator becomes 8(Ey(X') — Ef)
(where Er is the Fermi energy), and the integral
reduces to the sum of two terms, corresponding to the
values of the integrand at the points X' = + X, , where
+X are the roots of the equation:

Ey(X) = Ep. Here (E,(X) isan even function of X.

By substituting variable X in left-hand side
of Equation (5) with +X,, we arrive at two

linear homogeneous equations for the quantities
D, = Dpy(+X,):

J J
o = Bk|l—=_ Tt P
+ ﬂ m—kVO B (D+kVO P (6)
J J
d® =8kl——p ————F @
B ﬂ [m—kVO - 0)+kV0 P

Where B = e’ / me,V, is Fermi velocity in the zero
subband, while

Jiv = Joo00(£X g, £Xp),
Sz = Jo0,00(FX 9, FXp)-

It is evident that J__ =J,__. In the Appendix,
it is shown that J__ =J, , . Thus, there are
two independent form factors. The roots of the
determinant of the system (6) determine the plasmon
frequency o\ (k):

k) = K2 (V3 + B2 =T+ 28V ) (D)

In the integrals defining J  , , the functions w%(x)
are localized near the points +X within a region
of order /. Therefore, for J, _, the argument K|, is
small under £k — 0, and we can use the asymptotic
form of the Macdonald function:

Ko(lk(x —=x") ) = ~In(| k(x —x") e/ 2),

where vy is the Euler constant. Then, for J__, we
obtain:

2 -7
Jo, = ln[e— T, (8)

| k|1

where

Ty = f dxdx i3 ¥, ()1

~2 !
|x_x/| WO,XO(X )' (9)
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The leading term in J,  is |In(| k | /) |. For the
form factor J, _, the argument y of the K, function
canbesetto 2| k | X, which may not be small, even
for kI < 1. In this case J,_ =K (2| k| X,) and
gives a significant contribution, provided the stronger
condition kX, < 1 is satisfied. Under this condition,
the plasmon frequency becomes

2e
|k |1

wp(k) =k lzﬁ[ﬂ(i++ —J1-)+ V]I

-2 —2
+VE+ B — T

+ 2BV0.7++}. (10)

Thus, we obtain the expected result for a one-
dimensional (1D) plasmon, as found in [9, 10]:

o ~ k/|In(|k| D).

However, it is important to note that in the
case considered here, the dependence of the
magnetoplasmon frequency on the electron
concentration and magnetic field cannot be
expressed analytically. Another important difference
is the change in the coefficient before the logarithmic
term: to the Fermi velocity V,, (for a 1D plasmon
without a magnetic field), the first term in the square
brackets of Equation (10) is added. This additional
term can significantly exceed V|, (for example, at
N, = 10 cm ™! , H=1.6 T, the enhancement is
more than an order of magnitude). The results of the
numerical calculation are presented below.

The formulas derived in this section are valid up
to the very beginning of the plasmon spectrum (k=0),
when the plasmon wavelength is much larger than
all characteristic lengths of the problem, including
the width of the strip L. In this limit, the system
effectively becomes one-dimensional. However, the
transition to the half-plane limit, studied in [1, 2], is
impossible, as it corresponds to an infinitely large
width L. The dispersion laws differ: in the half-plane
it is proportional to Ink , while in stripe it is Jink as
expected for one-dimensional systems [9, 10].

4. INTRA-SUBBAND PLASMONS
IN A TWO-SUBBAND SYSTEM

Let us now consider the case where the states
Ey(X) and E;(X) are populated, but we neglect the
off-diagonal contribution @ ;. The Fermi level lies
between E;(0) and E,(0), intersecting the curves
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Fig. 1. Electron spectrum of the strip. The figure shows the
two lowest Landau subbands. The horizontal line indicates the
position of the Fermi level, w/[ = 4.

Ey(X) and E|(X) at the points £X, and X,
respectively (Fig. 1).

The four equations for ®y,(+X,) and ®;;(+X,)
lead to a biquadratic equation for the plasmon
frequencies, the roots of which are equal (here, the
results are presented for infinitesimally small plasmon
momenta kX, < 1, in order to clarify the behavior
of w(k) at the very beginning of the spectrum):

(Dgc = k—;[Voz + V12 + ﬁ2 -7(2)+;0+ — -7§+;0— + .712+;1+ -
—.712+;1— + 2-73+;1+ - 2-7§+;1— +
+2B(V or0+ + Vi J1s1s)), (1)
@5y = @p +2k*In % (BWy + V) +
+B2 (.70+;0+ — -70+;07 + .71+;1+ -
—.71+;1— + 2~70+;1+ — 2'70+;17)}~ (12)

Here, V), are the Fermi velocities in the zero and
first subbands, respectively, while six independent
form factors such as Jo+,0+,J0+,1+ , etc. are defined
similarly to how it was done in the previous section.

It is important to emphasize that in Equation
(11), all logarithmic contributions exactly cancel.
The corresponding root of the dispersion equation
gives the linear dependence o, (k) as k — 0, which
justifies calling this branch acoustic. The second root

(optical branch, Equation (12)) exhibits the known
singularity at zero at k — 0:
@pp (k) ~ k* [In(lk] D).

opt

5. INTER-SUBBAND PLASMON
IN A TWO-LEVEL SYSTEM

The rank of the characteristic determinant,
considering N subbands, is N2, since the dielectric
function is a 4x4 matrix. Out of the N? roots,
N correspond to intra-subband plasmons, while in
the remaining N(N — 1) roots each pair gives rise to
one inter-subband branch, making the total number
of inter-subband branches equalto N(N —1) /2. We
focus on the lowest inter-subband branch, associated
with the E, and E; levels. The solution of the
problem in the general case (for arbitrary plasmon
momenta k) involves extremely complex numerical
calculations, as neither the dispersion relations
of electrons nor the form factors can be expressed
analytically. Therefore, we limit ourselves to
finding the threshold frequency (kK = 0) , which
determines the gap in the inter-subband plasmon
spectrum. The difference between this value and
the minimum energy gap between the E, and E;
subbands is known as the depolarization shift.

If we retain only the equations for m = 0,1 and
n = 0,1 in the system (3) and take the limit k — 0,
the right-hand side will only include the off-diagonal
element @, since the diagonal elements vanish due
to the difference in occupation numbers approaching
zero at y 0, X (x), v 1, X(x). In the same limit, the
function K (| k(x —x")|) simplifies to:

InQe™" /|k(x — x"))) = In2e™" /|k| 1) + In(l/|x — x]).

The first term does not contribute to the form
factor Jy; o, due to the orthogonality of the wave
functions y 0,X(x), v 1,X(x). As a result, we arrive
at the equation

2p 0
oy, (x) =2 de’x
-X
AXY) / /
— 220X, XDy (X)), 13
T a2 ) (13)

where A(X)= E|(X) — Ey(X) and o’ is the desired
eigenvalue (its minimum vakue is required, i.e. co,2n in)s
and the kernel factor Q(X,X") is equal to

JETP, Vol. 167, No. 1, 2025
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Fig. 2. Dependence of the depolarization shift of the inter-
subband plasmon between levels 0 and 1 on the magnetic field;
D=Q/AX=0)—1, N, =0.47-10cm™!, L =0.1 um.
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Fig. 3. Distribution of the plasmon wave potential across the
transverse coordinate for two opposite propagation directions or
magnetic field orientations; N, = 10cm™!, L=02um, H=1T.

w w

X, X = [ [dxdxig (XD x (x) x

—Ww—-w

xin(l /|x = x')g o (x Wy o (x). (14)
2

The value of ®,,;, was found numerically. We
replaced the integral with the corresponding Riemann
sum by dividing the integration interval into a large
number of points, reducing the problem to finding
the eigenvalues of a system of linear homogeneous
equations, the number of which equals the number
of partition points. The depolarization shift Q is
defined as the difference between the minimum
plasmon frequency o and the minimum energy

min

JETP, Vol. 167, No. 1, 2025
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gap between the levels A(0). Its dependence on the
magnetic field is shown in Fig. 2.

As is known, the depolarization shift also
determines the frequency of IR absorption during
an inter-subband (inter-level in an infinite plane)
transition, which differs from the energy gap due
to the dynamic screening of the electric field of the
exciting wave.

6. SPATIAL DISTRIBUTION
OF THE PLASMON WAVE FIELD

In this section, we derive the expression for the
coordinate dependence of the plasmon potential
¢(x), corresponding to the zeroth subband, i.e., the
lowest-frequency branch of the plasmon spectrum.
Within the self-consistent field theory, ¢(x) satisfies
the Poisson equation (quasistatic approximation,
neglecting retardation), with the right-hand side
containing the electron density perturbation induced
by the plasmon wave. In the present case, we consider
only the contribution from the zeroth subband:

Ax,z(pO(xszak) - k2(00(vaak) =

4o f(EO(X + klz)) —f(Eo(X))
=7 8(z)z 5 -
eLy, S Ey(X + k%) — Eg(X) + o+ id

Do (X W7g x (x). (15)

Equation (15) corresponds to a plasmon in the
form of a plane wave Ce’® | and the matrix element
@, (X) on the right-hand side is evaluated in the
plane of the strip z = 0. The solution to Equation
(15) is written using the Green’s function G (x — x’),
already defined in Section 2 for the plane z = 0. The
resulting integral for ¢y(x) in the long-wavelength
limit and for T =0 is evaluated similarly to the
calculation of the plasmon frequency (k).

Now it is necessary to find the solutions of the system
of two equations (6) for the matrix elements @ ,(X) at
the points +X, . The result has the form (Cis the wave
amplitude determined by the excitation conditions):

I_(x) B RI, (x)

@y (x) =Ckp

1) = [ax'Ky (k(x —x])W5 x, &), (16)
_ (k) + kVy kB, — wg(k) + k¥,

R
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Fig. 4. Dependence of the plasmon frequency on the linear
electron concentration. Magnetic field H = 1 T, strip width
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Fig. 3 shows the plasmon field ¢,(x) for opposite
propagation directions. As can be seen, for a given
propagation direction, the maximum of ¢(x) is
located near one edge of the strip. This result was
previously obtained in [2] within the framework of
the hydrodynamic approach.

The same mirror reflection occurs when the
magnetic field direction is reversed: it is easy to see
that under X , one should understand —plzsign (H),
while /? = ¢/ | eH |. Therefore, when the sign of H
is changed, the points X, and —X are swapped.
This “reflection” of the plasmon field relative to the
midline of the strip when the magnetic field sign is
reversed is, in principle, accessible to experimental

observation. When / < w and the Fermi energy is
such that the points £X, are close to the strip edges,
the maximum of ¢(x) is also near one of the edges,
and in this sense, such a wave can be called an edge
magnetoplasmon.

7. DEPENDENCE ON CONCENTRATION
AND MAGNETIC FIELD

The electron dispersion Ey(p) (see Fig. 1)
differs significantly from the standard parabolic
law p?/2m. Accordingly, all characteristics of
the magnetoplasmon in the strip (the frequency
dependence on electron concentration and magnetic
field) appear unusual. For the intra-subband plasmon
of the zeroth subband, the system is effectively one-
dimensional, so pr =nN; /2, where N; is the
linear electron density (spin splitting is neglected),
and X, =nN;I?/2. The dependence of Ep on ¥,
is given by the right half of the lower curve in Fig. 1.
The dependence of the plasmon frequency ®, on the
linear density is determined by the Fermi velocity ¥V,
and the form factors X , appearing in formula (7).
The results are presented in Fig. 4.

The dashed line in this figure is drawn to highlight
the superlinear character of the dependence. Recall
in this context that the classical 2D plasmon has a
frequency that depends sublinearly on the surface
density N :

o= (cof + (x)lz,)l/z,

where oof, x Ny.

The magnetic dispersion of the plasmon is even
more unusual: the curve in Fig. 5 has a minimum
at H ~ 2T. This occurs because, as seen from (10),
the dependence of the plasmon frequency on the
magnetic field is due to two types of contributions.
The terms containing the Fermi velocity V|, provide
the descending part of the curve in Fig. 5, as at a
given density, the Fermi level rapidly decreases with
increasing H and approaches the flat region of the
electronic dispersion E,(p) where V|, vanishes. Then
the main contribution remains the first (Coulombic)
term in (10), which leads to a logarithmically slow
increase in the frequency.

For the depolarization shift (see Fig. 2), a rapid
decrease is characteristic with a relatively small
increase in H : more than an order of magnitude
decrease at 6H / H =75%. As the field increases, the
behavior of the electron wave functions approaches
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that realized in an infinite plane, as the influence
of the strip boundaries decreases. However, in an
infinite plane, 2 = 0, because in a strong magnetic
field, screening (at least linear screening) is absent,
along with the electron density perturbations linear
in the perturbing potential.

8. CONCLUSION

We have demonstrated that the consideration
of sample boundaries significantly affects the
magnetoplasmonic oscillations of a two-dimensional
electron gas. Mathematically, the problem becomes
considerably more complex due to the non-standard
dispersion law of “magnetized” electrons — the
dependence of energy on the conserved momentum
component in the Landau gauge. In the simple
case of a straight strip, it is possible to analytically
obtain only the dispersion of intra-subband plasmons
in the long-wavelength limit, corresponding to
the lower part of the plasmon spectrum, which
generally contains an infinite number of branches.
The dependence of the plasmon frequency on
concentration and magnetic field was determined
using numerical methods.
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APPENDIX

Here we demonstrate the validity of the
relationship J__ =J_ .. For this, we need the
expression for y, y(x), which already accounts for
the boundary conditions. It has the form:

Vo () = e AT
x[qn(—qn (X)/2,1/2,(x = X2 /%) -
—0((1- g, (X))/2,3/2,(x = X /17 ) x
(x = X)D(~q,(X)/2,1/ 2,00 = X)*/P%)

x . (17)
(v = X)D((1 =, (X))/2,3/2,0w = X)* /1’

Furthermore, we need the explicit form of the
equation defining the electron spectrum, i.e., the
parameter g, (X). For it, we have:
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F(q,(X)) =0, (18)

CI)(—q/2,1/2,(w —X)? /12)

F(g) = ——
W —X)q>((1—q)/2,3/2,(w X))/ )

®(-q/2,1/2,w + X)*/P%)
+ .
W + X)cb((l —9)/2.3/2,(w + X)2/12)

(19)

Using the explicit expressions for the form factors

J. . , we write the difference J__ —J_ as:
w w
Jo—J,, = f f dxdx'K o (k(x — x"))) x

—W—w
X[ NG _xws—x Wi _x ) =

NG v Wy (), (20)

Here, v, x (x) is defined in (17). By changing the
integration variable in the first term within the square
brackets, we arrive at the expression:

w w
J_—J = [ [axdx'Ky(ktx = x))

—Ww—-w

X[N(A)',fxl//(ifx (—X)l//g,fx (—x')—
(21)

4 2 P
—Noxwox ywgx(x /)}-

It is evident that to prove the equality J__ =J, ,

it is sufficient to show that the relationships
Vo, x (=x) =g x(x)and Ny _x = N y.hold. Using
(17), we obtain:

Vo _x (=X) =y x(x) = e =102 /2 (x —X)x
><<1>((1 — qo(X))/2,3/2,(x — X)2/12) X

CD(—qO(X)/2,l/2,(w —X)2/12)

x 2 72 T
(w = X)((1-q9(X))/2,3/2,00 = X)* /1)

® [~y (X)/2,1/2,(w + X) /1)
0+ X)D((1-g5(X))/2,3/2,w + X)*/17)|

Thus, the expression under the square brackets in
(22) is the function F(gy(X)), defined in (19), and
therefore:

L 22)

wo_x (=X) =y x (). (23)

For N _x , we have:
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Abstract. The phase diagrams (magnetic field H — single-ion anisotropy D) for three-sublattice SU(3)-
ferrimagnet on triangular lattice with mixed sublattice spins (8 = 1,1/2,1/2) at different values of exchange
parameters / (between spins S = 1 and S = 1/2) and J (between spins § = 1/2) are calculated. To correctly
account for the algebra of the SU(3) group generators, which includes quadrupole operators, the representation
of Hubbard operators was used. It is shown that depending on the system parameters there can be implemented
ferrimagnetic Y- or inverted Y (Y )-phase, canted V-phase (spins S = 1/2 are parallel), fan-shaped W-phase,
as well as collinear ferrimagnetic and ferromagnetic phases. In the case of / < J, a line appears on the phase
diagram on which SU(3)-ferrimagnet splits into two independent subsystems, one of which is paramagnetic
with spins §' = 1, and the second one is antiferromagnetic with spins § = 1/2 in a zero effective magnetic field.
In the spin-wave approximation, the dependences of the average values of the quadrupole moment and dipole
moments of the three sublattices on the magnetic field and the single-ion anisotropy are calculated. The spin-
wave excitation spectrum is analyzed both at /> J and at / < J. It is shown that at / =J in the SU(3)-ferrimagnet,
an accident degeneracy occurs, which can be lifted by taking into account quantum fluctuations.

Keywords: mixed spin SU(3)-ferrimagnet, single-ion anisotropy, triangular lattice, phase diagrams in magnetic field.
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1. INTRODUCTION

In recent years, there has been a significant
increase in interest in materials where relativistic
spin-orbit interaction leads to the manifestation of
quantum effects on a macroscopic scale [1, 2]. These
materials are commonly referred to as quantum
magnets [3]. One of the most striking manifestations
of quantum effects is the significant reduction of the
average spin value in magnets with S >1/2 [4]. The
reason for the spin reduction lies in the consideration
of single-ion anisotropy (SIA) arising from spin-orbit
interaction or in the inclusion of pairwise interactions
associated with higher-order spin invariants of the
form (S, »*5 [5—15]. In magnetic systems where
such non-Heisenberg interactions are sufficiently
strong, spin-nematic phases have been observed.
These phases are characterized by zero magnetization
even at zero temperature (i.e., complete spin
reduction), but they exhibit spontaneous symmetry
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breaking due to quadrupole order parameters (mean
values of operators bilinear in spin components)
[10]. The enhancement of such quantum effects is
facilitated by frustration [2], low temperature, low
system dimensionality [16], and multi-sublattice
structures.

For example, in multi-sublattice ferrimagnets with
different magnetic ions, the manifestation of quantum
effects can be significantly amplified due to the
possible compensation of the effective field acting on
the spins of magnetically active ions [17—26]. Indeed,
as shown in [27], in a two-sublattice ferrimagnet,
quantum spin reduction in the anisotropic sublattice
(with § = 1) at low temperatures can be substantially
suppressed by the exchange interaction field from
the isotropic sublattice (8§ =1/2). If there are
more than two sublattices, the total effective field
from two isotropically antiferromagnetically coupled
sublattices acting on the ions of the third anisotropic
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sublattice can be nullified, thereby eliminating the
mentioned mechanism of spin reduction suppression.

In this regard, one of the key objectives in the
theory of quantum magnets is to find a microscopic
model that could predict and study new quantum
effects with both experimental and practical
significance. As outlined above, one promising
approach is to investigate the combined action of
multiple factors that promote quantum magnetism
phenomena. In the context of this research
direction, studies such as [28—30] proposed a
model of a three-sublattice ferrimagnet with
mixed spins S =1,1/2,1/2 on a triangular lattice
with Ising exchange interaction and SIA in the
S = 1spin subsystem. In those studies, based on
Monte Carlo simulations, the main focus was on
constructing phase diagrams in the temperature—
SIA plane and searching for a technologically
significant compensation regime, where the total
magnetization reaches zero below the critical
temperature. Notably, alongside SIA in the
S =1 spin subsystem, the model proposed in
[28—30] possessed essential features such as low
dimensionality and geometric frustration, which,
as mentioned earlier, enhance quantum effects.

In a recent study [31], the authors investigated
the SU(3) ferrimagnet (SU3F) model, which closely
resembles the model proposed in [28—30] but
includes two crucial generalizations. First, instead of
Ising exchange interaction, the SU3F model employs
isotropic Heisenberg exchange. It is well known that
transverse components of exchange interaction in
noncollinear magnetic structures induce zero-point
quantum fluctuations, leading to antiferromagnetic
(AF) fluctuations. These AF fluctuations, like SIA,
can cause quantum spin reduction, and therefore,
the quantum effects driven by AF and SIA should
be distinguished. The second major difference
between SU3F and the model proposed in [28—30]
lies in the use of different exchange integrals / and
J for interactions between the S =1 and S =1/2
sublattices and between the two § = 1/2 sublattices,
respectively. As shown below, the phase diagrams
of SU3F differ qualitatively depending on the ratio
between the exchange integrals.

Furthermore, it is essential to highlight an
important conceptual feature of the SU3F model.
This feature is associated with the fact that significant
SIA, as known from previous studies [8—15, 32—36],
necessitates the inclusion of the full set of generators
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of the SU(3) algebra acting in the Hilbert space of
the § =1 spin states. Therefore, conventional spin
operators are insufficient for describing such systems.
To emphasize this aspect, the model proposed in [31]
was named the quantum SU(3) ferrimagnet model.

The general characteristic of the SU3F model is
the simultaneous consideration of several factors
that enhance quantum effects: SIA, AF fluctuations,
multi-sublattice structure, low dimensionality, and
exchange frustration.

The study of the SU3F model in [31] was
conducted in the absence of an external magnetic
field and at zero temperature. The dependence of
the sublattice spin moments and the quadrupole
moment on the SIA parameter was calculated for
different exchange integral ratios //J. It was found
that the critical value of the SIA parameter D, , at
which SU3F transitions to the quadrupole phase, can
be significantly smaller than both / and J. Moreover,
for I > J , a compensation point was observed in the
total moment M dependence on the SIA parameter,
ie., Mat D <D,.

This work represents a logical continuation of
the studies conducted in [31]. Its primary goal is to
construct the phase diagram of SU3F in the external
magnetic field—SIA parameter plane and to analyze
the modification of the magnetic structure and order
parameters when crossing the phase boundaries.
The ground state energy and the corresponding spin
configuration are calculated within the mean-field
approximation at zero temperature. This condition,
as is well known, is unachievable by the Monte Carlo
method used in the previously cited works [28—30].
To correctly account for the SU(3) algebra generators
in the S =1 spin subsystem, the Hubbard operator
formalism is employed [11, 35, 37]. In the calculation
of order parameters, spin operator bosonization is
applied: the Holstein—Primakoff transformation
for the S =1/2 spin subsystem and the indefinite
metric formalism for the § =1 subsystem [11, 14].

The remainder of this paper is organized as
follows. Section 2 formulates the SU3F Hamiltonian
in an external magnetic field lying in the easy-
plane direction. Section 3 presents the SU(2)
transformation of the S = 1/2S = 1/2S = 1/2 spin
operators, corresponding to the rotation of local
coordinate axes. Section 4 details the Holstein—
Primakoff transformation for the S=1/2 spin
subsystem. Section 5 describes the transition to the
Hubbard operator representation and their triple
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SU(3) transformation for diagonalizing the single-
ion Hamiltonian of the S =1 spin subsystem. The
bosonization of Hubbard operators and the derivation
of the dispersion equation are covered in Section
6. Sections 7 and 8 analyze the characteristics of
phase diagrams and the changes in order parameters
for 1<J and [>J, respectively. Section 9
demonstrates the degeneracy of the SU3F mean-
field ground state at / =J . Section 10 discusses
changes in the spin-wave excitation spectrum as the
magnetic field increases under different exchange
parameter ratios. The main conclusions of the study
are presented in Section 11.

2. MODEL OF SU3-FERRIMAGNETISM

The crystal structure of the considered SU3F
is shown in Fig. 1. The red circles mark the lattice
sites of the sublattice with spin value § =1, further
referred to as the L-sublattice. The green and blue
circles mark the lattice sites of the sublattices with
spin value S =1/2, denoted further as F and G
sublattices, respectively. The periodicity of the
system is defined by the basis vectors a; and a,, equal
in magnitude. The vectors z and x connect the nodes
of different sublattices.

The Hamiltonian of SU3F in an external magnetic
field can be written as:

H= HA + Hexch + %eld’ (1)
where:
Hosen = JZSng + IZSfS, + IZSgS,,
{fg} {1} {gl}
2
Hy=DY (s ()
I

’Hﬁeld = —hZSZ — hZSg — hLZSlz.
f g /

The operator H,,,, describes the pairwise
exchange interaction between the nearest-neighbor
spins from different sublattices. The lower indices f,
g and / of the spin operators denote the lattice sites
from the F-, G- and L sublattices, respectively. The
exchange integral J determines the strength of the
antiferromagnetic interaction between the nearest-
neighbor spins from the F- and G- sublattices, while
the integral 7 governs the interaction between the
F(G)- and L- sublattices. The curly brackets under
the summation symbols in (2) indicate that the
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Fig. 1. Crystal structure of the three-sublattice SU3F on
a triangular lattice. Red, green, and blue circles indicate
the positions of the nodes in the L-, F- and G- sublattices,
respectively. |a,| = |a,| = a are the Bravais lattice vectors, while
&€ and C represent the basis vectors.

summation is carried out only over nearest neighbors,
with each pair of nodes counted only once.

The operator H, describes the effect of single-
ion anisotropy (SIA) of the easy-plane type acting on
the spins S =1 in the L- sublattice. The anisotropy
parameter D is positive. The y axis is directed
perpendicular to the ferrimagnet plane xz, which is,
therefore, the easy magnetization plane.

The operator Hp,; accounts for the Zeeman energy
of the spins in the external magnetic field H, lying in
the ferrimagnet plane (easy plane) and determining
the parameters 4 = gocp H ,and h; = g,z H , where
ocp is the Bohr magneton, and g and g; are the Landé
factors for the F(G)-sublattices, respectively. In general,
the g-factors may differ for different sublattices. In this
study, we assume that the moments are formed without
the participation of orbital degrees of freedom, i.e., they
are purely spin-related,so g; =g =2.

The direction of the magnetic field and the
type of SIA ensure that the average moment of
the L sublattice of R;, is oriented in the xz plane,
perpendicular to the anisotropy axis y. Furthermore,
considering the nature of the exchange interactions
and the results of Ref. [38], it can be argued that
the magnetic structure of the SU3F ground state for
any values of D and H is characterized by a planar
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configuration of spin expectation values. Therefore,
without loss of generality, we will assume that the
spins of all three sublattices lie in the ferrimagnet
plane xz, with the z axis of the original coordinate
system conveniently directed along the magnetic
field.

3. SU(3)-TRANSFORMATION
OF THE HAMILTONIAN

To calculate the ground-state energy of SU3F, it
is convenient to start with a unitary transformation of
the Hamiltonian H:

HOFp,0; ) =U,(0p,0; )HU;(QF,QG )s (3)

with the operator

U,0)= H exp(—iOFS;) H exp(—i@G Sy ) 4)
feF geCG
The transformation (3) allows one to switch to
new local coordinates for the F - and G - sublattices,
where the quantization axes z’ and z”’ are rotated
by the angles 6 and 0; around the y axis, aligning
them along the equilibrium magnetizations Ry and
R , respectively (see Fig. 2).
The unitary transformation (3) of the Hamiltonian
(1) corresponds to the following formal substitution of
the spin operators for the F- and G- sublattices [39]:

Sf — Sf cosOp + Sfsinbp, SY — S,

S§ — Sf cosOp — 87 sinbp, (5)
Sy — Sg cosg +Sgsinf;, Sy — Sy,
Sg — Sg cosOg — S, sinf . (6)

As a result, the Hamiltonian operator (1) is
transformed into the following form:

H=DY (S} +
/
+I3 {(sjfsg + 8552 )cos(Op — 05 ) +
iz}
+ SISy + (SFSE — SFSHsin@ —06)} +
+ I {(SFST + S7S7)costy +S)S) +
i1

(S} —SFSF)sin6y |+

Fig. 2. Rotation of local coordinate axes during the unitary
transformation (3). In the F- and G- sublattices with S = 1/2, the
axes z are rotated by the angles 6 and 0, taking new positions
7z and 7", respectively. The local coordinates in the L- subsystem
with § = 1 remain unchanged, while the angle formed by the
moment R;and the z axis is denoted by 6, .

+ I {(SEST + S5S7)cos +SyS) +
{el}

+(SEST — S557)sin6g }—
—hZ{Sf cosOp —S7 sin@F}—
S

th{Sg cos; — S sinfg } —hp >SS, (D)
g 1

where the operators Sﬁ and Sg (p = x,y,z ) relating
to F- and G-subystems refer to the projections
of the spin moments on the quantization axes
corresponding to index B in the new (rotated) local
coordinate systems.

4. HOLSTEIN—PRIMAKOFF
TRANSFORMATION

Following the strategy outlined in the introduction
for calculating the ground-state energy of SU3F, we
perform the Holstein—Primakoff transformation
separately for the F- and G- sublattices:

+ — , + — +
Sf = 2S—afaf'af, S; —S—afaf,
+ — + _ +
S{ =25 —bjb, -b,, S;=S—blb,,

where the bosonic creation a;f (b, ) and annihilation
as(bg) operators describe spin transitions at site
f(g) ofthe F(G) sublattice from the state [")(|"')),
corresponding to spin orientation along the z'(z'’)

8)
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axis, to the opposite orientation ||')(]|"")), and vice
versa.

Substituting (8) into the Hamiltonian (7) gives the
result:

H=Ey+H” + 1D + H?, 9)
where:
Ey = JoS>N cos(0p —05) —
—hSN (cosOr + cosb ), (10)

Here, H™ (n=0,1,2) denotes the number
of sites in the sublattice. The Hamiltonian H©
represents the sum of the single-ion Hamiltonians
for the L- subsystem:

HO =3 "Hy (),
/

where:
Hy(l) = D(SY)* + H,S§ + H,S7, (1)
The effective fields are defined as:
I?z = 1yS(cosOr +cosb; ) — h;, (12)

H, = 1,S(sin6; +sinf;), I, =3I.

The linear term in bosonic operators from the
Hamiltonian (9) can be written as:

HD = Z]\/g[coseFSf - sineFSﬂ(af + a}‘) +
{1}
S . i
+zf:\g [JoSsin(0g —0p) + hsinO (@ +af) +
+Zl\/§[coseGSf — Sinecslz](bg +bg) +
{gh)

S . .
+Z\/;[JOSSIH(0F —0g )+ hsinbg; |(b, +b;) +
g

1S
+7\/;[ZS,y (af — af+) + ZS{ (bg —b;)], (13)
i1 {gl}
where:
Jo =3J

The last term in expression (9) describes the
excitations in the F- and G subsystems and has the form:

S
H? = Ja{%}{[(“f +af )by +b;) —
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~2afa, +b]b, ))] cos(Op — 05 ) —
— (@ —af )by b))} -
—1) (cosOrS} +sin0pS) )af ar —
i
— 1 (cosb; i +sinb; ST )b b, +
{g.0}

+hcosOp Y afar +hcosbg » bib,.
f g

(14)

Next, the mean-field logic dictates replacing the
spin operators HY and H® of the L- subsystems
with their average values. In the considered zero-
temperature regime, averaging the operators S}
(o =x,y,z ) is sufficient to perform based on the
ground state of the single-site Hamiltonian (11).

5. DIAGONALIZATION OF THE SINGLE-ION
HAMILTONIAN

To diagonalize the single-ion Hamiltonian (11),
we use the approach developed in [40]. We transition
from spin operators to Hubbard operators [37], where
X" =|m)(n|, where m,n ={-1,0,4+1} are the
eigenstates of the operator S} with corresponding

eigenvalues |m) and |n) of Sf|n)=n]|n).
Substituting
S = %(X}’O + X0y +X?’T),
S =£(—X}’°+X}’O+X?’l_X?’l)’ (15)
(57 =g (X3T+ x XX T xg,

Sf=xM_x T=-1,
Describing the transition to representation of the
Hubbard operators into the single-ion Hamiltonian

(11) gives:
D —
Hy(l) = [7+HZ]X}" +DXM 4
D

D = \,i1 1,1 11
+[?—H1]X, —5()(, +X) )+

ﬁ _ _
+_X(X;’° + x4 x)0 +Xf”1). (16)

2

In the absence of a magnetic field, the ground
state of the system is degenerate with respect to
rotations around the y axis. Choosing the x axis
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along the vector R; and assuming equivalence
between the F - and G -sublattices (6 = —6; ,),
the parameter ¢\phi¢p becomes zero, and the last
term in (16) vanishes. In this case, the Hamiltonian
H(I) couples only two of the three states (| +1)

and | —1)), and its diagonalization requires only
one unitary transformation (see [31]). However, the
presence of a magnetic field couples all three states
|n) (n=1{-1,0,+1}), requiring three consecutive
transformations for the diagonalization of the single-
ion Hamiltonian.

The unitary operator U,,(a,/) for each
transformation is defined by its generator
C,,(D=X/"—-X"" from the SU(3) group,
according to the expression:

U,,(,l)=expfal,,, ()} =

=1+ (coso— )(X]/™ + X["") +sinaT,, (). (17)

The new Hubbard operators X,’ws~ =|F,0{,1,
defined through the new basis states

|F,l> =U,, (ol r,l>,

(18)

are expressed via original Hubbard operators as
follows:
X85 =U, (—,DXPU} (—o,). (19)
Thus, the unitary transformation reduces to a
simple substitution in the single-site Hamiltonian:

X = U () XF UL (a,0). (20)

Explicit expressions for the right-hand side
of the last formula were derived in [40] and are
provided in Appendix A for completeness. The
variational parameter o in (17) is chosen such that

the off-diagonal terms X/ and X" vanish in the
transformed Hamiltonian.

Performing the three consecutive unitary
transformations with the operators U, (a,),
Uy_(a3) and U, _ (o), following the rule (20),
and retaining the original notation for the indices
of the new states n ={-1,0,+1} (i.e., without
tildes), we obtain the diagonal form of the single-ion
Hamiltonian H(/):

Ho()=> e, X", n=—1,0,+1. (21)

The eigenvalues ¢, of the single-ion Hamiltonian
can be expressed as (1 = —1):
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& =erg sin%o + euCOSZoc1 + e, 7sin2ay,
&1 = eT,T COSZOLI + el sin2a1 — elj sin 20(1, (22)
€y = €9,0

where

D —
e = Dsinz(x2 + [— + HZ ]cos2(12 +

2

H
+—%sin2a,,

\/5 2

D . .

ey = Dcoszoczsinzot3 - jsmaz sin 2013 +

D = .2 .
+ ?+HZ sin“d,sin‘o3 +

D —
—I—[? — H, |cos’a; — (23)

2

NG
D . .
€00 — D cos’oycos’oy + ~ sina, sin 20 +
D - D —
[t e

H . .
+—% (cosa, sin 2013 — sin 20, cos’at3),

J2

(cosa, sin2a; + sin2a., Sin2a3),

H, D). ,
= [Tz — Z]Sln(2a2)sm o3 —

— 5 Cosa, cosag +

+F[x (—cos2a, sino; + sina, cosay)
NG 2 3 2 3)

From the requirement of nullifying the coefficients
of the non-diagonal X-operators in the transformed
Hamiltonian, the following system of equations for
the angles o; (j =1,2,3) is obtained:

[g — HZ sin2o, + x/il-_lx cos2a,

tgo; = — ,
: D cosa, —\/EHX sina,
(€20, = \/ng cosa, +DSiIl£)L2 (24
2E —l—[—f_l c()sz(x — —Xsin2a
z 2 z 2 \/5 2
20(1 = 2€1j /(el’l —eLT).
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Similarly, by sequentially applying formula
(20) with the operators U, y(a;) , UO,T(O%) and
U,:1(a)), to the representation (15), the spin
operators S;, 87, Sf and (S} )> can be expressed
through the new (transformed) X-operators. The
expansion coefficients of the spin operators S}
in terms of the new Hubbard operators X ;" will
represent the matrix elements of the spin operators
in the new states: s,/ ,, = (n|S;" |m) (o =x,y,2).
Explicit expressions for these matrix elements are
given in Appendix B.

Within the mean-field approximation, the spin
operators in the Hamiltonian H® should be
replaced by their average values, i.e., the diagonal
matrix elements s, , , calculated for the ground
state | n) , corresponding to the minimum value of
g, . Below, we will choose the set of solutions of
equations (24) for the angles o; (j =1,2,3) such
that the state | +1) is the ground state.

Since s}, =0 for any n (see Appendix B), the
last two sums in formula (13) for H" vanish. The
reduction of the remaining terms in (13) occurs under
the conditions:

To(syjcosOp — s sinbp) +
+JgSsin(@; —0r)+ hsinOp =0,

0Ssin(6; —Or) r (25)
Io(syjcosf; — st sinf; )+

+JySsin(0p — 05 ) + hsinf; =0,

These conditions will be further used to determine
the equilibrium values of the angles 6 and 6. The
angle 0;, introduced in Fig. 2 for clarity, is not a
tuning parameter and can be determined through
the ratio of the average values of the spin projections
S; and S7.

The magnetic structure of the SU3F ground state
is determined by the solutions of the five equations
(24) and (25) for the angles o; (j =1,2,3), 6y and
0, , followed by the selection of the solution set that
corresponds to the minimum value of the mean-field
energy of the entire system:

Eyr =Ey+Ng, (26)
where the values E, and ¢, are defined by equations
(10) and (22), respectively. In Section 7, the SU3F
phase diagrams in the # — D -coordinates, calculated
based on the methodology presented here, will be
presented.
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6. BOSONIZATION OF THE L- SUBSYSTEM
AND THE DISPERSION EQUATION

Within the chosen approximation, the ground
state energy E,,r is determined without considering
AF (antiferromagnetic) contributions. Therefore, the
contributions from the last term in the Hamiltonian
(9), quadratic in Bose operators, are absent in
expression (26) for E, . Nevertheless, when
calculating the dependencies of order parameters
on the magnetic field and single-ion anisotropy
(SIA), the energy spectrum of spin-wave excitations
is required, and to determine this spectrum, the
operator H® must be taken into account.

To compute the energy spectrum within the
spin-wave approximation, we first express the spin
operators through the new (transformed) X-operators.
Using (15) and the formulas from Appendix A, we
obtain expressions for the S-operators of the form:

Sl ZZSSmX?m, a=x),z,

n,m

(27)

where the matrix elements s, are given in Appendix
B.

Next, considering that the state spectrum H (/)
is characterized by three levels and the ground state
of the single-ion Hamiltonian is the state | +1), we
introduce, following [11, 14], two types of Bose
operators: ¢ and d . The creation of one ¢(d) boson
at site / is described by the creation operator c; (d}")
and corresponds to the system transitioning from
the “vacuum?” state | +1) to the state | 0)(| —1)) with
one c(d) boson. The Hermitian conjugate operator
c;(d;) , acting in the opposite direction, annihilates
the c¢(d) boson. States with more than one boson are
excluded by the metric operator as non-physical.

The representation of Hubbard operators
through Bose operators, proposed in [40] within the
framework of the indefinite metric formalism [41],
takes the form:

XY= —cfe,—dfd)e, X} =c,
Xpl=(—c¢fe,—djd)d,, X" =df, 08)
X?’T =c/d), XlT’O =dj¢, X?’O =c/c,

XM =did,, XM =1-cfe,—did).

We use the representation (28) in the formulas
(27) and substitute the resulting expressions for the
S-operators (see Appendix C) into the terms H M
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and H® of the Hamiltonian (9). As a result, an
expression arises in which only contributions up to
the second order in the a, b, ¢ and d - operators
should be retained. Performing the Fourier transform:

ikf a, b, ikg by,

_ 1 _ s
Y - 52 w2

1 ikl 1 ikl 29)
Cl:ﬁzk:e Ck» dl :Wzk:e dk’
we obtain the desired Hamiltonian, which can be
written as follows:
H=Eyr +Hgy. (30)

Here, the first term E,, corresponds to the
ground state energy in the mean-field approximation
(see formula (26)), while the second term H gy
describes spin-wave excitations and is defined by the
expression:

Hgy = {E,aifa; + Eybiby + E.cfc, + Egdfd; +
3

I (reagby +vibi g} +
(e @b b)) +
Hor (pcfay +yiaicy) +
Hop(eekay +vperay) +
L (vpdiay +vpaldy) +
Hp (i @’y + vida ) +
g (Veeibe +viebie,) +
Hlog (e by +veexb ) +
+I (Vrdibe + v b8d) +
e (e diib 5y + yedib_y). 30

In this expression, the following notations were
introduced:

E, =—JyScos(0p —0; )+ hcosOp —
—1(sficosOp + s7sinbf),
E, = —JyScos(0; —0p)+ hcosO; —

—Iy(sficosO; + s7;8in6; ),

4

Fig. 3. The Brillouin zone of the triangular lattice and three high-
symmetry points: I', K, M.

EC = &) — ¢, Ed =8T — &,
JoS
J. =%(cos(9F —0) £1),
y
IniA =[0 g SzICOSQA —SﬁlsineA Zl:s%l ,

n=1{0,1}, A={F,G},

k k.,

ws 1 k, 57 i
Ve = §Ze’ d = 3 ZCOSTZe 23 1 V3 (32)

In the sum defining the triangular lattice invariant
Y« > the vector & takes three values: {§,—C,C — &} (see
Fig. 1). The Brillouin zone, which bounds the region
of quasimomentum values, is shown in Fig. 3.

To obtain the dispersion equation, we define the
matrix retarded Green’s function ((X, | X))
where

® 2

— (ot Bt ot gt
Xy =(ag by e di,a_i by cpd_g).

From the requirement for nontrivial solutions
of the equation of motion for ((X, | X;7)),, , the
spectrum equation follows:

U)—Ak
By

_Bk

=0, (33
AR

where
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*

E, Jiove Iopvie vk
J.v. E, I I

A, = :Yk +b* 06Tk 1167k (34)
lorve logve  E. 0
I%_F'Yk ]%_G’Y/t 0 Ed

and

0 J_vi Torve Iipve
J v 0 I 15

B, = _—Yk . 0¥k TigYe| (35)
Lopve Togve O 0
IipYk Ii;v}l 0 0

7. SU3F PHASE DIAGRAM FOR /< J

We will discuss the SU3F phase diagram in
the magnetic field—anisotropy parameter (D)
coordinates separately for three cases of exchange
parameter ratios: I <J, I>J, I =J. In this
section, we consider the first case: 1 < J .

Fig. 4 shows the phase diagram of the SU3F
ground state, calculated according to the
methodology outlined in Section 5, for the exchange
parameter ratio / /J = 0.8. It is evident that three
phases are realized in the considered regime: the
inverted Y-phase (hereinafter referred to as Y ), the
W-phase, and the ferromagnetic phase.

In the Y phase, the average spin vector of the
L-sublattice, R; is aligned along the magnetic field
direction (the z-axis), while the average spin vectors
of the F- and G- sublattices, Ry and R, form equal
but opposite angles with the z-axis: 6 = —6;. The
magnitude of the angles 6 and 6 varies within the
range [r/2, «t].

In the symmetric W-phase, the angles 6 and
05 also have equal magnitudes and opposite signs.
However, unlike the Y phase, the range of these
angle magnitudes is different: [0,7t/2]. In this case,
the projections of all three vectors Rz, R; and R;
onto the z-axis are positive. The boundary between
the Y- and W-phases in Fig. 4 is marked by the
dashed line. To the right of the red line on the phase
diagram, the ferromagnetic phase is realized: the
average spin vectors of the L-, F- and G- sublattices
are aligned along the magnetic field.

The evolution of the magnetic structure as
the magnetic field at / <J is characterized by
a monotonic decrease in the absolute values of
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Fig. 4. The 4—D phase diagram of the SU3F ground state for
1/J = 0.8. The black dashed line corresponds to the boundary
between the Y- and W-phases, while the solid red line indicates
the boundary between the W phase and the ferromagnetic phase.
The pictograms illustrating the magnetic structure of SU3F
represent the R; vector with a red arrow, the RF( , vectors with
blue arrows, and the magnetic field /# directed upward. On the
dashed line, a phase is realized where the subsystems with spins
S =1 and 1/2 become effectively independent.

the angles 0y and 0; , as H increases which
vanish at a certain field value dependent on the
anisotropy parameter OA (see the red line in Fig. 4).
This behavior is illustrated by three pictograms
schematically depicting the magnetic structure in
each of the three regions of the phase diagram.

To further understand the presented phase
diagram, we will calculate the dependence of the
SU3F order parameters on the magnetic field for a
fixed anisotropy parameter OA and on the anisotropy
parameter OA for a fixed magnetic field A.

The average spin values Rp and R; in F- and
G-sublattices can be calculated using the Holstein—
Primakoff representation (8), according to which:

Rp =(Sf)=S—n,,

y (36)
Rg =(8g )=S5—ny,

where the boson occupation numbers n, = <ajﬁr ar)
and n, = (b; b,) are computed using the spectral
theorem from the matrix Green’s function
(X, | X)), introduced in Section 6.

The average spin magnetic moment of the

L-sublattice R; can be found using the formula:
2 2
Ry =\(Ri) +(RE), (37)

where the quantities R; and Rj are determined
by the average occupation numbers of ¢ - and d
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Fig. 5. Dependence of the total moment R; (red line), R Fc) (blue
line), M (black line), and | 03|/3 (green line) on the magnetic
field 4. The ratio between the exchange integrals is //J = 0.8,
while D/J = 3. The three pictograms composed of one red and
two blue arrows have the same meaning as in Fig. 4.

-bosons: n, = {cfc,) and n, = (dd,), as well as
correlators {(c;d,) and (d;c,). The corresponding

expressions are obtained by averaging the formulas
given in Appendix C.

Since the total magnetic moment
M = Rp + R; + R, is directed along the external
magnetic field (i.e., along the z-axis), its transverse
component must identically vanish:

Ry + RpsinOr + R sinfy =0,
and the longitudinal component equals:

M =R} + RpcosOr + Rg cosb; . (38)

The average value of the quadrupole moment [42]:
2
0%() = 3(5{) —2 (39)

is calculated similarly after averaging the
corresponding formulas from Appendix C.

Fig. 5 shows the dependence of the total moment,
the average spin magnetic moments R; , Rpg), M
(black line), and the quadrupole moment | Qg | /3 on
the magnetic field 4 for the anisotropy parameter OA
D /J = 3 and the exchange integral ratio //J = 0.8.

The change in the magnetic field on this figure
corresponds to the movement along the horizontal
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0.8

0.6

0.4
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Fig. 6. Dependencies of the quantities R; (red line), Ry, (blue
line), M (black line), and | 0Y|/3 (green line) on the anisotropy
parameter OA. The ratio between the exchange integrals is
I/J=0.8,and h/J =1

dashed line on the phase diagram in Fig. 4. It is
evident that at the transition point from the W phase
to the ferromagnetic phase, all curves in Fig. 5 exhibit
a kink. The values of M and R; increase as expected
with increasing field 4, while the quadrupole moment
decreases.

The dependencies of the order parameters M ,
R;, Rr, R; and Qg on the anisotropy parameter
h /J =1 are shown in Fig. 6.

The change in the anisotropy parameter D in this
figure corresponds to the movement along the vertical
dashed line on the phase diagram in Fig. 4. It can be
seen that when crossing the boundary between the
Y - and W -phases, the dependencies of the order
parameters on D exhibit a kink, while the quadrupole
moment saturates. The average moment of L-sublattice
rapidly decreases near the phase boundary but decreases
more slowly with further increase in D.

Clearly, the reduction of R; facilitates the upward
reorientation of the Ry, vectors, as it reduces the
exchange energy loss between the spins S =1 and
S=1/2.

An important feature of the phase diagram
presented in Fig. 4 is that along the entire boundary
between the Y - and W -phases (black dashed line),
the angle between the vectors Ry and R; equals m.
In this case, from expressions (12) for the effective
fields, we find:
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H,=—h,, H, =0. (40)

X
Taking into account these relations and the
condition 4; = 0, the solutions of equations (24)
for the angles a; (j =1,2,3) take the form:
D

_(_I)I’H-m’ az

2&1 = 2/’1L

=nn, az=mm, (41)

where n and m are integers.

Substituting these solutions into the expressions
for the matrix elements of the spin operators from
Appendix B gives:

st = cos2ay, si; =0. (42)
Since sj; =0 and 6 —6; = =, from equations
(25) for the angles 6 and 6 , we find the condition:

st =h/ly, (43)
which must be satisfied by the matrix element sf; at
the boundary between the Y - and W -phases. The
equation describing the boundary of these phases can
be easily obtained from the compatibility condition
of the three equations for the angle a; and the matrix
element sf,; in formulas (41), (42), and (43).

As a result, the following relationship between the
model parameters and the magnetic field is obtained:

p =282 )2, (44)

This expression analytically describes the dashed
line in Fig. 4.

It is important to note that at the points of
the phase diagram lying on this dashed line, the
orientation of the (antiparallel) vectors Rr and Rg
relative to the z-axis is not fixed. This fact implies
the degeneracy of the SU3F ground state with respect
to the simultaneous rotation of the spins from the F-
and G- sublattices around the z-axis, provided that
the vectors Ry and R; remain antiparallel.

Indeed, substituting the solutions (41) for the
angles a; (j =1,2,3) into formulas (22) and (23),
as well as fixing the difference in 7 in exprssion (10)
between angles 0, and 6, ,, we obtain:

6, =D/2—hi +(D/2), Ey=—JyS’N.

Thus, at the points of the phase diagram lying
strictly on the boundary between the Y - and
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W- phases (i.e., along the dashed line in Fig. 4), the
ground-state energy E,r = E, + Ng; (see equation
(26)) does not depend on the angles 6 and 6.

The physical reason for this behavior is that,
at 0 —6; = n, the two effective fields acting
on the spins in the L-sublattice from the F- and
G-subsystems compensate each other (see equation
(12)). As a result, the L-sublattice effectively
“decouples” from both the F- and G-subsystems.
Meanwhile, the external magnetic field 4, continues
to act on the L-subsystem, aligning the vector R;
along the direction 4;.

Simultaneously, the F- and G-sublattices
also “lose connection” with the L-subsystem, as
the effective fields generated by it in the F- and
G-sublattices are fully canceled by the external
magnetic field /. Indeed, as follows from expression
(7), the quantities E, and E, (see (32)) are precisely
the effective fields acting on the spins in the F- and
G-sublattices, respectively. Since, at the points
lying on the dashed line of the phase diagram in
Fig. 4, the conditions (42) and (43) are satisfied, the
contributions to effective fields £, and E, from
the L- subsystem (—/;sf,cosOp ), the external
magnetic field (4 cosOp ) cancel each other out.

Thus, at the points belonging to the dashed line
on the phase diagram in Fig. 4, the SU3F system
decouples into two effectively non-interacting
subsystems: one formed by the S=I1 spins of
L-sublattice and the other by the § = 1/2 spins of F-
and G-sublattice spins. In this case, the S=1 spins
behave like a paramagnet in an external magnetic
field, as they continue to experience the field 4;,
while the interaction between them vanishes. The
S =1/2 spins behave like a two-sublattice (F and
G) collinear antiferromagnet in an effective zero
magnetic field. This condition, allowing for an
arbitrary orientation of the antiferromagnetic vector
in the zx -plane, leads to additional degeneracy of
the ground state.

8. PHASE DIAGRAM OF SU3F AT 1/J > 1

When [ > J, the phase diagram of SU3F under a
magnetic field changes qualitatively. Fig. 7 presents
the phase diagram calculated for the exchange
parameter ratio //J =1.2. It is evident that four
magnetic phases are realized in this case: the Y-phase,
the collinear ferrimagnetic phase, the ¥ (V) phase,
and the ferromagnetic phase.
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Fig. 7. Phase diagram of the SU3F ground state at //J = 1.2.
The green line denotes the boundary between the Y-phase and
the collinear ferrimagnetic phase, the blue line separates the
collinear ferrimagnetic and Vphases, the black line separates the
ferromagnetic and collinear ferrimagnetic phases, the red line
separates the ferromagnetic and M phases, and the dashed line
marks the boundary between the V- and V- phases (on this line,
0; =—mn/2).

In the Y phase, the vector R; , representing the
average spin in the L-sublattice (red arrow in the
pictograms of Fig. 7), is directed opposite to the
magnetic field (along the — z axis), while the average
spin vectors Ry and R; (blue arrows) in F- and
G-sublattices form equal but opposite angles with the
z-axis: z: Op = —0g , while [ 05 l€ [0,7/2].

When transitioning from the Y phase to the
collinear ferrimagnetic phase, the angles 6, and 6,
simultaneously become zero, and all three vectors Rp,
R; and R; become collinear: the first two align with
the magnetic field, while the third opposes it.

Beneath the blue and red curves in Fig. 7 lies
the so-called V' phase, where the vector R; forms a
nonzero angle 8; with the z-axis, while the vectors
Rr and R; form equal angles 6 and 6. These
angles vary within the range 0, 7t/2.

This region can be further divided by a dashed line
(shown in Fig. 7) into two subregions. To the right
of this line, | 6; |< n/2, while to the left, | 6, |> n/2.
We retain the V designation for the first region and
label the second as the ¥ phase for distinction.
Along the entire dashed line, the angle 0, strictly
equals 7t/2.

In the ferromagnetic phase, all three vectors Rp,
R; and R; align with the magnetic field.

As in the previous section, to understand the
magnetic structure, we examine the changes in
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Fig. 8. Dependence of the quantities R; (red line), Ry, (blue
line), M (black line), and | Q%] (green line) on the external
magnetic field 4 at I/J = 1.2 and D/J = 6.

order parameters along two directions on the phase
diagram: along the horizontal dashed line at a fixed
value D /J =6 and along the vertical dashed line at
a fixed field 4/J =1 (see Fig. 7).

Fig. 8 shows the dependence of the quantities R;,
Rp@y, M and 09 on the external magnetic field
h at D /J = 6. This corresponds to movement along
the horizontal dashed line in Fig. 7.

It is evident that the changes in Ry, and o)
with increasing field 4 are minor, and the reduction in
the average spin value Ry, due to AF interactions
is insignificant. In contrast, the average moment of
L-sublattice is significantly suppressed due to both
AF and OA interactions. In the ferrimagnetic phase,
the vector R is directed opposite to the field, and its
magnitude decreases with increasing /4, as expected.
In the ferromagnetic phase, the vector R; aligns with
the field, causing its magnitude to increase.

A crucial observation from the graphs in Fig. 8
is that the evolution of the magnetic structure
follows the same sequence as in a triangular-
lattice antiferromagnet (TLAF) with § =1/2, but
without OA [38, 43]. However, while the extended
ferrimagnetic (or uud) phase in TLAF can only
be explained by quantum fluctuations (which lift
accidental degeneracy), in SU3F, this phase arises
solely due to OA. Moreover, the behavior of the total
moment M qualitatively reproduces the key stages of
the TLAF’s evolution: the monotonic increase of M
in the Y-, V- and V-phases; a plateau-like region in
the ferrimagnetic (uud) phase (commonly referred
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Fig. 9. Dependence of the quantities R; (red line), Ry (blue
line), M (black line), and | QY| (green line) on the parameter D
for I/J=1.2and D/J = 6.

to as the 1/3 plateau in TLAF); and the saturation
region of M in the ferromagnetic phase, which,
however, is less pronounced due to anisotropy.

It is also worth noting that as the anisotropy
parameter increases, the existence interval of the ¥
and V phases in Fig. 8 shrinks. As follows from the
phase diagram in Fig. 7, this interval collapses to a
point when D /J 2 7.

Fig. 9 presents the dependence of the quantities
Ry, Rpgy, M and |QY| on the anisotropy
parameter D at a fixed magnetic field #/J = 1. These
dependencies correspond to movement along the
vertical dashed line in Fig. 7.

It can be seen that the quadrupole moment
increases as the anisotropy parameter 4 increases,
while the spin moment R; from the L-sublattice first
slightly increases in the region of low fields and then
monotonically decreases. The spin moments Ry
from the F- and G-sublattices do not significantly
change throughout the entire range of D. Therefore,
the noticeable increase in the total moment M in
the ferromagnetic phase is not due to changes in the
orientation or absolute values of Ry, but rather
due to the decrease in R; caused by the anisotropy.
Upon transition to the Y-phase, the total moment M
begins to decrease, as the rotation of the vectors Ry
and R; around the y-axis reduces their projection
onto the z-axis.

The three vertical lines in Fig. 9 divide the four

previously described phases. During the transitions
from the V-phase to the ferromagnetic phase and
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from the ferromagnetic phase to the Y-phase, all
order parameter dependencies exhibit a kink. At the
same time, the transition from the V-phase to the V
-phase is not accompanied by any anomalies in the
presented dependencies.

9. GROUND-STATE DEGENERACY AT I=J

The case I =J is special because the classical
analog of the SU3F Hamiltonian, as we will now
show, exhibits continuous accidental degeneracy.

Indeed, let us define the Hamiltonian dependent
on the parameter A :

H, = IS8, + MY S8, + 03,8, +
) ) (el

+D3 (St )2 — (S8, + 338, #0308 | (45)
! f g !

where the direction of the magnetic field h = gocg H
is generally arbitrary. All the notations in Equation
(45) are the same as in the Hamiltonian (1). It is
evident that if the conditions A = I/J = g, /g are met
for A and the field 4 is directed along the z-axis, the
Hamiltonian (45) coincides with the operator H
defined by Equation (1).

On the other hand, it is easy to verify that the
Hamiltonian (45), up to the constant

v |3azs, s e S s =1 s

2 L\°L 4 6.]2 s L >

can be represented as
2
H,=DY(S}) +
/
J S S S hy 47
+ZZ pF T9pG T rL 37 (47)
p

where the sum p runs over all triangular plaquettes,
and the lower indices F, G and L of the spin operators
indicate their belonging to the corresponding
sublattices in the p-th plaquette.

Thus, if the SU3F parameters satisfy the condition

I _8
7=k, (48)
then the SU3F Hamiltonian in Equation (1) can be
represented in the form of Equation (47) with the
field 4 directed along the z-axis.
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If we now consider classical moments instead of
spin operators in Equation (47), i.e., ordinary vectors
of fixed length, it is easy to see that the minimum
value of the Hamiltonian (47) will be achieved when
both of its terms vanish. The vanishing of the first
term implies that the spins of the L-sublattice lie in
the easy-plane zx . The requirement for the second
term in (47) to vanish reduces to the equation

h

SF +SPG +}\'SPL ——=0

’ 3J 49)

It is evident that, for certain values of the
magnetic fields /4, this equation can be satisfied by
an infinite set of solutions, i.e., different orientations
of the three vectors R;, Rr and R, even when the
field 4 does not lie in the zx-plane. Moreover, if the
magnetic field is parallel to the zx-plane (as in our
case), the orientation of the vectors R;, Ry and R,
which minimizes the Hamiltonian (47), may not
necessarily be coplanar with the zx-plane.

The above analysis of the classical limit of
the Hamiltonian (47) suggests that the observed
(continuous) degeneracy of the SU3F ground state
should also hold in the quantum case when the
condition (48) is satisfied. Our calculations using
the mean-field approximationat / =J and g; =g
confirmed that this is indeed the case.

Similar degeneracy occurs in other quantum
magnets, such as the antiferromagnet on a triangular
lattice (AFTL) with §=1/2 [43]. As was first
demonstrated in [38], this degeneracy can be lifted by
considering zero-point quantum fluctuations. This
approach requires taking into account higher-order
terms (compared to the harmonic approximation
used in this work) when bosonizing spin operators
within the Holstein—Primakoff representation for
the F - and G -subsystems and within the indefinite
metric formalism for the L-subsystem.

For this reason, constructing the phase diagram of
SUS3F at critical parameters satisfying the condition
(48) will be carried out by the authors in a separate
study.

10. SPIN-WAVE EXCITATIONS
IN SU3F UNDER A MAGNETIC FIELD

The spectral properties of SU3F in the absence
of a magnetic field were thoroughly studied in [31].
In this section, we analyze changes in the spectrum
under a nonzero magnetic field while keeping the
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Fig. 10. Spin-wave excitation spectra at //J = 0.8, D/J = 3, and
four external magnetic field strengths: 4/J =1 (a), 1.87 (b), 3 (c),
5.5 (d). The wave vector k traverses the triangular path TKM in
the Brillouin zone (see Fig. 3).

anisotropy parameter OA fixed. Four dispersion
curves &, (j =1,...,4) were calculated for each set
of model parameters based on equation (33) derived
in Section 6.

Fig. 10 shows the results of numerical calculations
of the dispersion curves for four different magnetic
field strengths with the model parameters / /J = 0.8
and D /J = 3. On the phase diagram in Fig. 4, the
four black dots along the horizontal dashed line
correspond to these four field values. It is evident
that at # /J =1, the system is in the Y phase;
at h /J =1.87, the system is in the antiparallel
phase for the F - and G -sublattices; at 7 /J =3
the system transitions into the W phase; and at
h /J =15.5, the system reaches the ferromagnetic
phase. Each of the four panels in Fig. 10 displays four
dispersion curves corresponding to the four types of
introduced bosons. However, only one curve (black
in all graphs) can be confidently associated with the
high-energy d-bosons. The other three branches are
formed through the hybridization of the a-, b- and
c-boson states.

Crucial observation is that in the first three
graphs (a, b, c¢), there is at least one Goldstone
mode (blue curves) associated with the breaking of
symmetry in the ground state due to the collective
rotation of spins in the F- and G-sublattices around
the magnetic field direction. In the ferromagnetic
phase (Fig. 10d), the ground state does not break
this symmetry, and thus, the Goldstone (gapless)
mode is absent.

JETP, Vol. 167, No. 1, 2025
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Fig. 11. Spin-wave excitation spectra at I/J = 1.2, D/J = 6 and
four external magnetic field strengths: 4/J = 0.3 (a), 1 (b), 4 (c),
6 (d). The wave vector k traverses the triangular path T KM in the
Brillouin zone (see Fig. 3).

In Fig. 10b, two Goldstone modes appear
(coincident blue and red curves). The origin of the
second mode relates to the phase diagram feature
discussed in Section 7, specifically the dashed curve
(see Fig. 4). In this scenario, the moments Ry and
R align along the zx -plane in opposite directions,
causing the system’s energy to degenerate with
respect to the rotation of the Ry and R, vector line
around the y-axis.

As mentioned in Section 7, this behavior is due to the
vanishing of effective fields and the effective decoupling
of the L-subsystem from the F- and G-subsystems. In
such a case, the nodes of the L-sublattice become
effectively isolated (even from each other), which
explains the flat dispersion of the two high-energy
branches (black and brown) in Fig. 10b.

The dispersion dependencies ¢ shown in Fig. 11
were calculated with the following model parameters:
1/J =1.2, D/J =6, for four values of the external
magnetic field: 4/J = 0.3, 1, 4 and 6. On the phase
diagram in Fig. 7, these four field values correspond
to the four black dots along the horizontal dashed
line. As the magnetic field 4 increases, the system
sequentially transitions through the following four
phases: the Y phase at #/J = 0.3; the ferrimagnetic
phase at h/J = 1; the V- phase at #/J = 4.3; and the
ferromagnetic phase at 4/J = 6.

From the graphs presented in Fig. 11, it is evident
that the Goldstone mode appears only in the first
case (Fig. 10a), as the breaking of ground-state
symmetry (relative to rotations around the z-axis)
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occurs exclusively in the Y-phase. In all other
regions of the phase diagram (Fig. 7), the spin-wave
excitation spectrum remains gapped.

11. CONCLUSION

The main outcome of this study is the construction
of the phase diagram of the SU3F ferrimagnet on a
triangular lattice, plotted in the coordinates of the
magnetic field # (applied in the easy-plane anisotropy
plane) and the single-ion anisotropy parameter D at
zero temperature. Among the key features of the SU3F
model, the following three stand out: 1) different spin
magnitudes in magnetic sublattices: two sublattices
(Fand G) have spin § = 1/2, while the third L-sublattice
has spin $ = 1; 2) single-ion anisotropy: easy-plane
anisotropy acts on the L-sublattice with spin S=1; 3)
different exchange integrals: The exchange interactions
differ between the F- and G-sublattices (/) and between
the L- F(G) sublattices (/).

Numerical calculations under the mean-field
approximation revealed two qualitatively distinct
types of SU3F phase diagrams depending on the
ratio between the exchange integrals / and J. These
phase diagrams differ both in the number of realized
phases and in the nature of their magnetic structures.

For I <J, the ground state of SU3F can be
characterized by three magnetic configurations: the
Y , W phase, and the ferromagnetic phase (see Fig.
4). Notably, along the boundary between the Y - and
W -phases (dashed line in Fig. 4), the SU3F system
effectively splits into two independent magnetic
subsystems/ The first subsystem consists of spin-1 sites
on a triangular lattice and behaves as a paramagnet.
Another one consists of S =1/2 spins forming a
planar hexagonal lattice in a collinear two-sublattice
antiferromagnetic phase under an effective zero
magnetic field. This decoupling leads to an additional
degeneracy of the ground state, associated with the free
rotation of the antiferromagnetic vector within the easy-
plane. This degeneracy manifests as an extra Goldstone
mode in the spin-wave excitation spectrum.

For the reverse exchange ratio (/ > J ), the SU3F
the h—D- phase diagram undergoes significant
changes. It now features four distinct regions
characterized by different magnetic ground-
state structures, i.e. the Y- phase, two collinear
ferrimagnetic and ferromagnetic phases, as well as the
V-phase. The V-phase can further be subdivided into
two sub-phases (¥ and V), depending on whether
the angle 6; exceeds the critical value r/2.
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For both 7 <J and I > J, the quadrupole and
dipole order parameters were analyzed as functions
of both the magnetic field (at fixed anisotropy OA)
and the anisotropy parameter OA (at fixed magnetic
field /#). One significant result of this study is the
dependence of the total moment M on the external
magnetic field. For 7 > J and a specific finite value
of OA, this dependence qualitatively reproduces
the well-known behavior observed in quantum
antiferromagnets on a triangular lattice with uniform
spin § =1/2 and without anisotropy [38, 43].
Specifically, within a certain magnetic field range, the
magnetization curve exhibits a plateau (albeit with
a slight tilt in our case). In conventional quantum
triangular-lattice antiferromagnets (QTAFMs), this
plateau arises due to quantum antiferromagnetic
fluctuations, while in SU3F, it emerges due to the
presence of single-ion anisotropy.

A notable finding is the qualitative difference
between the two phase diagrams for / <J and
I >J . There is no continuous transformation
at I — J from one diagram to the other. This is
because, when the exchange integrals become equal
(I =J), accidental degeneracy arises, leading to
an ambiguity in the magnetic configuration within
the mean-field approximation for given magnetic
field and anisotropy values. We hypothesize that,
as with QTAFMs, quantum fluctuations should lift
the observed accidental degeneracy (as well as the
additional degeneracy noted for 7 <J ). However,
a detailed investigation of this issue requires further
study and will be addressed in future research.

In conclusion, we emphasize that in the present
study, the magnetic field 4 applied to the quantum
SU3F system was oriented within the easy-plane
anisotropy plane. If the magnetic field were instead
applied perpendicular to this plane, the behavior
of the magnetic order parameters could differ
qualitatively.
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APPENDIX A. UNITARY TRANSFORMATION
OF HUBBARD OPERATORS

As a result of the unitary transformations of the
Hubbard operators according to formula (20), with
the unitary operator U;;(a) (n = m )defined by
formula (20), the following expressions are obtained
[40]:

X" = cos?aX™ + sin’a X" —
—lsin2oc(XM +X”~”5),
2
XM = cos20 X ™ 4 ginla X" +
+1sin2a(x""’“ +X’“),
2
X" = cos2a X — ginlaX™ +
+%sin2oc()('m _ xm )
mn = P X o2 X

+%sin2oc(Xﬁﬁ —X’W’),

X" =cosaX? —sina X",

X" = cosaX?" —sinaXP",

XP" = cosa X + sinaXP",

X" =cosaX™ +sinaX",
xPa =X17!?’

where all four state indices p, ¢, n and m are
different, and the site indices are omitted. In the
main text, for brevity, the tilde notation, indicating
the new (transformed) states, is not used for the
indices of the thrice-transformed Hubbard operators.

APPENDIX B. MATRIX ELEMENTS
OF SPIN OPERATORS

This appendix presents the explicit form of the
matrix elements s, =(n|S;'|m) (a={x,y,z}
and n,m ={1,0,1}),, used in the decomposition
(27). These elements were obtained from the three
successive transformations of the Hubbard operators
using the three unitary operators U, (—a;),

Uy_i(—o3) and U y(—a,), followed by substituting
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the transformed results into the representation (15)

for the spin operators of the L -sublattice.

Matrix elements for the spin operator S} :
sf, = (cosa, cosa, + sinay sino, sinas)? —
—sin206100520t3,
si< = (cosay sina, sino; — sina; coso,)? —
11 1 2 3 1 2
—cos’0 cos L3,

z - .2 2 . 2
Sgo = sin“0,cos 03 — sin“03,

1 1 . .
sto = S61 = —581na1(1+51n2(12)51n20t3 -
1 .
—5 080y sin(2a,)cosa,
£ = 57 = —pcosoy(1 4 sino)sin 2o +
Slo SO] —ZCOS(Xl SIn (12 sin (1,3

. .
+§sm o, sin(2a,)cos a3,

1
. ) )
7= 500520(1 sin2a,sinaz +
1. . .
+§sm 20 (sin %0ty sin0t; — coscty — cos20ty)-
For the operator S7 :

57, = v2(cosaysino, —
—sino, sinoz cosa, )(cosoy coso, +
+sino, sinos sina,, + sino, cosal),

si7 = V2(sina sina, +

~+coso, sinaz cosa, )(sina, cosa, —

—coso, sinoy sina, — cosa, cosay),

1 . .
S0 = ﬁ(cos o, sin 203 — sin 20, cos’03),

x _ cos2ay , . .
51 = T(s1n 0, Cosa3 — sinay cos2a,) —

sin 204 . .
— (cosa, sin2a; + sin2a, (1 + sin03)),
NG 2 3 2 3

x _ cosoy

Sl = 75 (cos2a, cosay + sina, sinoag) +

+ 513;1 (cosa, cos2o; + %Siﬂ 20, sin 2ai3),

x _ singy

570 5 (cos2a, cosay + sina, sinag) +
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+ C(jgl (cosa, cos2az + %sin 20,5 sin2013),

i .
S0 = E(—smal cosa, +
+coso,(cosaz + sina, sinag)),
sL = L(cosoc cosal,y +
10 \/5 1 2
+sina,(cosasz + sina, sinays)),
y o b .
571 ﬁ(smaz cosaz — sinoy),
¢ =_¢

SR R S
Tl 172 10 Sorr STo S0t

For the operator (S} )%

A1) =24 ]

+ Ecos2a1sin2a2 +

N —

1 . .
+§Sin20tl(coszot2 sin2(13 —sina, sin2o3) —

l . . .
—5sin 20 cosa,(sino, sinay + cosag),

- - 1 1
(1] (S/y )2 | 1) = 3 + Esinzotlsinzotz +

+§coszotl (cos’aysin%ol; — sina., sin2013) +
1. . .
+§sm 20, cosay(sina, sinoy + cosay),
1 . .
01](SY)*0)= 5 (sin o, sin o +
+1+ cos’0ycos’03),
- 1
(T1S7)? 1) = 5 (cosasin’as; —
—sina., sin 20,3 — sin’a,)sin 20 —
1 . .
—§c0s2ocl cosa,(sina, sinoz + cosag),
- 1. . .
(1](Sy ) | 0) = 5sinay cosa,(sina; — sina, cosoz) +
. 1 .
+§cosoc1 sina,, cos20; — 5(;052(12 sin(2a3) |,

1Sy )| 0) = %cos a, cosa,(sina, cosoy —sino) +
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I . . 1 .
—i—ism o, |sina, cos2o; — Ecoszaz sin(a3) |,

(ST Y IT) = (TISY )P, (0IGSY )*[T) = (11(SY )*[0),
OS> 11)=1(11(S])*|0).

APPENDIX C. BOSONIZATION
OF SPIN OPERATORS FOR $=1

Using the representation (28) in formulas (27) and

retaining only terms up to the second order in boson
operators, the following spin operator expressions
through bosonic operators are obtained:

1
Sf = —=l(sgi(e/ +ep)+s7,d +dp)+

2
+57 (] ¢; +ejd)) + sty + (550 —sief e, +

st —stod; ),

1
—[sf)',l(c;r —¢))+ s{](df —d))+

V2

—i—S{O(d/JrC[ — Cfd/)],

s =

S; =s§,(c/ +ep)+s3d +d)+
+si0(d1+c, +efd) + sty + (s —stefe, +
+Hst _Slz,l)d;rdl’

(57 = 3152~ & e e +
HGY ) = gD d) —

—s% $ou(d]” +d)) + 5% s¥ (e +ep)+

T0°T,1
2 2
+H(sp,)" + (7)) + sg,ls%l(dfc, +cfd))).

The presented expressions, after averaging and

applying the spectral theorem to compute the boson

operator expectations, were used to derive the

formulas for calculating the order parameters R;, M
0

and Q, .
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Abstract. We investigate the role of gap states in processes of charge transmission along finite superconducting
Kitaev chain. We use the formalism of non-stationary Green’s functions, which contain full information
about the non-equilibrium and non-stationary properties of the system. We discuss tunneling current and
non-stationary transport properties of a finite Kitaev chain in the subgap regime. Under the assumption
that the finite Kitaev chain is connected at each edge to its own external lead (normal reservoir) we obtain
time-dependent behavior of the tunneling current after the sudden change of bias voltage in one of the leads.
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perturbation acts on the ”Majorana mode” at the other edge. Presented calculations are completely analytical
and straightforward, in contrast with many other methods.
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1. INTRODUCTION

In recent decades, significant attention has been
given to systems exhibiting “topologically nontrivial”
properties. However, for practical applications, it is
essential to assess the specific physical characteristics
of such systems in addition to their mathematical
interpretation of the ground state properties. One
of the simplest models that demonstrates properties
allowing for topological interpretation is the atomic
chain with ppp-wave superconductivity of spinless
particles, proposed by A. Kitaev [1]. The primary
interest in this model in subsequent years was driven
by the nontrivial topological interpretation of its
ground-state properties. It was shown that, due to

“topological reasons”, quantum states localized at the

chain edges appear within the superconducting gap.
These states, often referred to as “Majorana modes”,
are commonly associated with the existence of
quasiparticles [2] that bear resemblance to Majorana
fermions [3].

Possible experimental realizations of this model
are typically based on the proximity effect in

110

semiconductor nanowires with strong spin-orbit
interaction, placed on a superconducting substrate
[4, 5, 6]. The latest experimental advances and
discussions on the challenges encountered can be
found in the review [7].

It is widely believed that further progress in this field
may involve models with an effective Josephson action,
accounting for Coulomb blockade-type effects [8, 9,
10, 11, 12, 13]. There is hope that long-range Coulomb
interactions could facilitate signal transmission in
finite Kitaev chains using “Majorana states”. However,
recharging effects inevitably involve charge transfer
processes, so we must ensure that we accurately describe
tunneling transport and charge transfer effects first in
the simplest tunneling setup. Theoretical results can
then be compared with tunneling experiments under
various conditions [14, 15].

Some theoretical studies suggest that “Majorana
states” could be utilized as an error-protected
method for storing and transmitting information in
quantum technology [16, 17]. However, if a state
is protected from arbitrary changes due to external
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noise, the same protection may make intentional
changes to the system’s state equally difficult,
potentially rendering the system impractical for real-
world applications. One possible way to study how
well a system responds to a signal is to investigate its
nonstationary transport properties.

In [18], nonstationary effects related to tunnel
barrier transparency modulation were considered
in a quasiclassical approach. That work analyzed a
three-terminal system, where one of the contacts
was effectively used to fix the chemical potential
of the superconductor. In this study, we consider a
two-terminal geometry, where the superconductor is
connected only to two external contacts. To explore
the role of localized states in nonstationary transport
properties, we employ the formalism of nonstationary
Green’s functions for electrons.

Below, we will demonstrate that this approach
enables us to derive explicit analytical expressions
for both the tunnel current and nonstationary charge
transport, in contrast to more complex methods
based on density matrix equations, as discussed,
for example, in [19]. Furthermore, this approach
allows us to compare quasiclassical calculations with
microscopic methods and establish a connection
between the parameters used in these different
approaches.

The exact electronic Green’s functions for
the infinite Kitaev chain in equilibrium can be
obtained analytically [20]. These functions can be
used to derive the nonstationary Green’s functions
for a finite chain, allowing us to understand how
the system evolves over time when subjected to an
external perturbation. The key idea in our approach
is to treat the finite Kitaev chain as a cut segment
of an infinite chain or as a chain with strong defects
(for a single-cut chain, see, e.g., [21]). This trick
enables us to use the Green’s functions of the
infinite chain to study all single-particle states in the
system. Our calculations do not require any special
interpretation of singularities in the single-particle
Green’s function as specific “states”. It is important
to note that the poles of the single-particle Green’s
function, which appear inside the superconducting
gap in this model, can hardly be interpreted as
single-particle excitations. True Majorana particles,
as discussed in the pioneering works [3], are well-
defined particles (quasiparticles) with the usual
algebra of creation and annihilation operators. In
any physical problem, such real particles contribute
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to the single-particle Green’s function with a residue
equal to one. It is well known that bound states
localized around defects, such as paramagnetic
impurities [22] or resonance impurities [23] with
energies lying inside the superconducting gap,
frequently appear in conventional superconductors.
These states are genuine single-particle states. In
the present case, we observe that the appearance of
poles in the electronic Green’s function within the
gap, with residues smaller than one, is more likely an
artifact of the model, which has a degenerate (in the
highly symmetric case) ground state, rather than the
emergence of new quasiparticles.

2. PROPERTIES OF AN ISOLATED
KITAEV CHAIN

In this section, we briefly reproduce some results
related to the spectral properties of a finite Kitaev
chain, using the Green’s function formalism, which
we will employ in later sections.

We start with the free ideal Kitaev chain, which is
completely isolated from any external systems.

The model Hamiltonian of such a system can be
written as

—~ N N-1
H= _MZ\Vn\Vn —I‘Z (\Vn\l]nJrl + Wn+1\|]n)+
1 n=1

" (1)
N-1 .
+Z (Awnwnﬂ +A Vi41¥n )
n=1

Here, vy, and vy, are the creation and
annihilation operators for a particle at site n, u is
the chemical potential, 7 is the hopping parameter
between neighboring sites, A is the superconducting
order parameter, which in this study we consider as
a fixed parameter, N is the total number of sites in
the lattice.

To obtain exact solutions for the Green’s
functions of the Hamiltonian (1), it is convenient to
use the Green’s functions of an infinite Kitaev chain.
Indeed, the behavior of a finite chain can be modeled
by considering an infinite chain with infinitely strong
point defects U—~+oo added at sites 0 and N+1 (see
Fig. 1). As a result, the particles located between
these two sites will be completely isolated from the
outer parts of the chain, and the Green’s functions
will be identical to those of a finite Kitaev chain of
length N, as long as the node indices lie between 0
and N+1.
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Thus, the behavior of the system is described by
the following Hamiltonian, corresponding to the
system shown in the figure:

(2)
where

Ho = 030 130 (VWm0 + WV ) +
n n

+Z(AW”Wn+1 + A*‘Vn-HW” )’
n

R gy =|Gm @ 1) Fan @) _
e FRE@ 1y GRE@ 1)
oty = Gt 1) Fh, | _
e FAv@, ¢y GA+@, 1)

K<t = ,fm(t ty Foo(tt)

e ety Gl )

where j&,B =ab + 521, <a>= Tr(f)cAz). The indices
R and A denote the retarded and advanced Green’s
functions, respectively.

Using Dyson’s equation for Hamiltonian (2),

we can express the retarded Green’s functions
IR (t,t") of the finite chain in terms of the Green’s
functions FOR (¢,t") of the infinite Kitaev chain. In
the Appendix, it is shown that the functions an( ®)
have poles at points ® = +w,, where

0y = |A|4r% — u?) (XJJ\F/H XZ_VH) ©6)
it\/4(t2 — APy -2
Here
—pil\/4t u +4|A|2)
e ™ 20 +A) @
As | . [<1 (see 52), expression (6) is written for the

case |X:|:| < 1. For sufficiently large N, the parameter
o, is small compared to other system parameters and
decays exponentially as the N chain length increases.

For the cases |A| < tand |A| < t, |A| — ¢, the
“exponential smallness” of expression (6) in N can
be explicitly demonstrated:
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V=u (‘l’o‘l’o TV +1‘VN+1)-

This Hamiltonian (2) is identical to Hamiltonian
(1) when U~oo. To determine the physical properties
of the chain, we use the formalism of normal

and anomalous Green’s functions, denoted as

G,m @1,
use the followmg definitions of Green’s functions:

m (@,1") , respectively. In this work, we

(., v @} (v, 0, v, ()}

o —1), (3)
v, v @} {ur©, v, 00}
(Wi @, v @} {v,©, v, )}
o’ —1), (4)
{W,T @), v (t’)} {\V,T ), vy ')}
] <wmwm>wmwmv )
+ +
Yo @YW @), @ (@)
4Ale N B, lA| <<1,
®o = N In(\[2r/~[a) (8)
2te ., -|Ah <t

The exponential decay of ®, with increasing
chain length is explained by the exponentially weak
overlap of the two bound states at opposite edges of
the chain. Using (8), we can estimate the localization
length of the bound states as:

a(t/|A),

a/ln(,/zz/(z —|A|)),

where a is the lattice constant.

|A] <<1,

)

~
loc —

¢ —|A) <t

Such an exponential dependence has been
observed in tunneling experiments using Coulomb
blockade methods, as described in [15].

In the limit N—oo, the states near each edge begin
to behave as if the chain were semi-infinite. In this
case, the two poles with residues equal to 1/2 together
correspond to a single Fermi excitation, which is
split between the two edges of the chain. Thus, the
residue in terms of Bogoliubov excitations is equal to
1, as it should be. However, when observing only one
end of the chain, we “see” only half of this excitation.
This Fermi excitation is very specific because it is

JETP, Vol. 167, No. 1, 2025



STATIONARY AND NON STATIONARY CURRENTIN FINITE KITAEV CHAINS

u u
e ® X X X . s X X X ==
0 1 2 N N+1

Fig. 1: Infinite Kitaev chain with two defects

the excitation that connects two degenerate ground
states with different parity (i.e., a different number of
electrons), but with the same energy.

This statement can be easily illustrated with a
simple example of a two-site chain. The Hamiltonian
(1) for two sites can be diagonalized using the
Bogoliubov transformation. In terms of Bogoliubov

operators, the Hamiltonian takes the form
Hy = E, +gcite; + ey¢5 ¢, (10)

where

4
=u(W1+W2)iv(\V1 v3)

V2 V2o

viu? = l[1 + 7“],

€12

2

A
’ 2 2
2

For A = 1> — uz (which in the case p = 0 gives
A = 1), we obtain g = 0 (the solution 53 for the case
N =2, =0). Then, | ®, >=%(W—\v§)|0>
corresponds to the ground state and satisfies
c12|®y>=0. At the same time, the state
| @, >=c, |®y >=( +uy;y;)|[0> also has
zero energy, which means that the ground state is
degenerate. For the matrix elements between these
ground states, we have

<D |y | Dy >=u/\/§,<®1|\V1|‘D0>=V/\/§-

This means that in the single-particle function G |,
at ® = 0, a pole appears with a residue equal to 1/2.

3. TUNNELING CURRENT

We first consider the stationary tunneling
properties of the Kitaev chain. To do this, we assume
that the chain is connected at sites 1 and N to two
external reservoirs with a large number of degrees of
freedom, labeled by indices / and r, respectively.

The total Hamiltonian can then be written as
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A= H+YX (hj,*wl +Wh1’))+
p
+> 1 (h;+‘VN +\Vj\',h;) +
p

+>ELhyhy + > Eyhy Ty
)4 V4

The current flowing into the chain through site 1
is given by the standard expression ([24]):

1,@t)= iZ‘c}, < h1],+\;/1 - \urhll) >,
p

(1)

(12)

Using the nonstationary diagrammatic technique,
this expression can be rewritten as

Ln=-3% (GNZJJ(t,t) ~G{p (t,t)), (13)
where ’
Gpatn = [dng,@n)gGie.n +
+ [dngly (t.1)5G 0,0,
Gy = [anG nhen . +
+ f danG f et ty.0).

The parameter p corresponds to the density of
states inside both reservoirs, g,,(w) is the Green’s
function of reservoir o when it is disconnected from
the chain, where a takes values / and r, GX (¢, t1)
are the exact are the retarded and advanced Green’s
functions of the chain, accounting for tunneling
transitions into the reservoirs.

Crucially, the tunneling Hamiltonian (11) and
the tunneling current (12) are expressed in terms of
real electron operators, and they directly provide
the actual electric current in the system. It should be
noted that attempts to use effective Hamiltonians in
terms of Majorana quasiparticle operators often lead,
in our opinion, to questionable results, as handling
Majorana operators requires great caution and
precision. Due to the Clifford algebra commutation
relations, there is no Wick’s theorem directly applicable
to Majorana operators, and pair correlators do not
have the meaning of Green’s functions, which form
the basis of conventional diagrammatic techniques.
In the calculations presented in this paper, we do not
encounter any difficulties that we would have faced if we
had worked with Majorana operators. For the problem
of a finite Kitaev chain of arbitrary length, inserted
between two leads and described by Hamiltonian
(11), we have exactly computed the electronic current
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(12). It is not surprising that some discrepancies may
arise between our results and those of [26, 27, 25]
and other authors, as the latter were obtained using a
number of approximations in the Majorana operator
representation.

In what follows, we assume, as usual, that due
to the large number of particles and degrees of
freedom in each reservoir, the particle distribution
function does not significantly change throughout
the experiment, and thus each reservoir remains
practically in equilibrium. However, the system as a
whole is not in equilibrium, although in this section,
we consider it stationary, meaning the current does
not change over time. Thus, Equation (13) can
be rewritten using frequency-dependent Green’s
functions as follows:

== Z—:(G i@ =G @) (14)
P

where
G i@ = gp (@G (0)+ gh (TG (o),
Gt =G (@)thgn (@) +G (o)) (®).

We can simplify this expression by introducing the
irreducible part

2
510 = S 0
p

15)

(16)

Then, we can use the identity
25 (0) = 1, (0) (24 (@) — 2f (@),

where n,(w) are the Fermi-Dirac distribution
functions for the / and r reservoirs.

Thus, Equation (14) can be rewritten as:
T do A R
I = —[52(2 @ -=f @) >

(17)
x(n (@)(Ffy o) — FF ) - Fil(m)).
Here, the current /; is determined by the upper-
left element of the matrix /; (];1 ).

An expression of this type in terms of
nonequilibrium Green’s functions was first derived
in [24] and later applied in [28]. At first glance, this
expression appears asymmetric with respect to the
left and right contacts. However, in the stationary
case, a properly calculated current (17) can always
be rewritten in an explicitly symmetric form.
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In our case, Equation (17) can be further
simplified using the relations

710 = T ()] (@ (o) +

=R < =A (18)
+I N (@)Z, (@) (o),

7 1(0) = T (@) () (o) + (19)
+TTy (@2 (@I ().

where
() =T - T,
22 (0) = 2 (0) - =K ().

Using the wide-band approximation for the
reservoirs, we assume that for the considered values of
w, the condition Z;‘tr)(()\)) ~ i'Yl(r), Z;Er)((})) ~ —i'Yl(r),

holds, where vy, = chl(’)(r;(’))2 and v/") are the
densities of states in the rese rvoirs /(r) .

Direct substitution gives:
~ do - .
1, = 4yp, f T:Fﬁ N (@O 1(©)(1)(0) — 1, (). (20)

A formula of this type was derived in [24]. It
should be noted that the obtained equation for
the current through the system is symmetric with
respect to its two edges. Naturally, this implies
that, in the stationary case, the current flowing
into the system equals the current flowing out
of it. The conservation of total current cannot
be violated in any system and does not require
additional conditions, such as equal tunneling
rates or symmetrically applied voltages at different
edges. Thus, the appearance of asymmetric
expressions for stationary tunneling current, as
obtained in some works on Kitaev chain-type
systems (e.g., [29]), signals the need to verify the
applied approximations. This statement remains
valid even for interacting systems, but deriving an
explicitly symmetric expression in such cases is
more challenging. Examples of such calculations
for systems with electron-phonon interactions can
be found, for example, in [30, 31]. We emphasize
that Equation (20) is exact and explicitly symmetric
for the left and right contacts.

Since we aim to study the low-energy bound state
corresponding to the “Majorana mode”, we consider
the case where the applied voltage is smaller than the
superconducting gap. In this case, we exclude the
influence of quasiparticle states from the continuous
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~R
spectrum. To express I'tn (o) through the Green’s
functions of the isolated chain F,If,m (w), we use

Dyson’s equation:

(@) = T, (@) + & (@K @) m ()

115
~R e ~ R R
v (o) = [I + 1Y, (I + lerl,l(w))rl,N (o) X

. -1
X(I +iy, TN v ((D))FZISI,I(@)} X

X(i + inrﬁl(w))FﬁN (03)(i +iy, TN § (CO)>-

where 1 is the identity matrix. The explicit form

. . <R (21)  of the Green’s functions Ty, (0) for |o| < |Al,f
+I N (@Z (O)T'N m (®). is derived in the Appendix. A simpler form can be
obtained for A%/ (ty) > 1. Retaining the leading
Simple algebraic transformations yield: terms in (55) for this parameter, we get:
o
~R C
Fiv () =g - (22)
o —oy + 2y, +7, Co—4yy,C7 1A
A
A4 - p? A4 - p?
co_ ||2( 2u)2 - 2 _ [AlC uz)_ 23)
240 —|A]) —p?) 2(t +|Al)
Substituting this result into (20), we obtain:
do 8y,v,C %o}
= [52 Y 2o S (1 (0) — 1,.(0). (24)

These and further calculations are performed for
the following parameter hierarchy: 7 > A >y, . For
the case y,, > A, we cannot exclude the influence of
the continuous part of the spectrum on conductivity,
and information about low-energy resonances is lost,
so this case is not considered here.

We see that the magnitude of the current (25) is
directly proportional to oa(z) , meaning that the current
decreases exponentially with increasing chain length.
Moreover, if oy = 0, which is typically associated
with Majorana particles, then no current flows
through the system at all. Note that Equation (25)
is symmetric with respect to the contact parameters
[ and r, as expected. A similar expression for the
normal component of the current was obtained in
the quasiclassical approach in [18], where it was
also noted that the zero-bias peak in tunneling
conductance is unlikely to be observed for a realistic
ratio between o, and v, ,.

The tunneling conductance peak associated with
Majorana states was also studied in [32]. That study
considered a single NS contact, where it was assumed
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‘co2 - 0)(2) +2i(y; + 7, )Co— 4y,er2‘

that the chemical potential of the superconductor
was somehow fixed. The problem was solved using
the effective transmission coefficient method for
quasiparticles, which, in the presence of a bound
state, always leads to formulas of type (25). However,
the peak amplitude for the two different systems —
a single NS contact and a superconductor between
two normal contacts — cannot be directly compared
due to the problem of fixing the superconducting
chemical potential. It is worth noting that results
similar to those in [32] for the current in an NS
contact, considering Majorana states, can also be
obtained using the methods from [33].

If in Equation (25) the applied voltage is greater
than the width of localized states, but less than the
superconducting gap, meaning »n;(®) —n,(®) =1 for
|o| < v/,7, then we obtain a simple final expression
for the tunneling current associated with Majorana
modes:

2

. (25)
7 4y7,C* + of
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Thus, the magnitude of the current is always
determined by the smallest transfer rate present in
the system (the weakest link); in our case, these rates
are defined by the parameters o3 / (v, +7,),7,»7, -
If oa% >C 2y,y, , then the general equation (25) leads
to a current proportional to v,y, / (y; +v,), which
is the usual expression for tunneling through an
intermediate state. For the considered system, the
physically reasonable relation is o, < y;,y, . Using
this, we obtain:

o

- 0 26
I, TN (26)

If we use Equations (8) and (23), this formula
gives:

(v 2ﬁtv )eizN(Am’A <
I= ’2 . 27)
1 e—Nln(Qt/(t—A)),(t_A) <t
(Yl + Yr)

For arbitrary parameters u < A <t , the current
is always small in long chains. In the case of @, =0,
which is considered the most favorable scenario for
observing unusual topological properties, we will not
be able to observe a zero-bias peak in the tunneling
conductance at all. This observation holds true for the
model considered in this paper, where the chain has
two contacts at its edges. In any experiment measuring
stationary current, at least two external leads are
required, connected to the “left” and “right” edges of
the system. Of course, there are more complex multi-
contact configurations, but their analysis is beyond
the scope of this paper. Real hybrid semiconductor-
superconductor structures, which simulate the Kitaev
chain, require the consideration of a model Hamiltonian
that describes a semiconductor nanowire with strong
spin-orbit interaction, which is coupled due to the
proximity effect to an underlying superconducting layer.
In this case, the superconductor can be considered
as a reservoir with a fixed chemical potential, and
the “second contact” as the interface between the
semiconductor and the superconductor. Alternatively,
instead of edge connections, we could also consider a
Kitaev chain lying on a substrate, where all chain atoms
are weakly coupled to corresponding substrate atoms.
In this case, the “second contact” with the reservoir
becomes spatially distributed. This problem can be
solved, but it is different from the one considered in
this paper. Nevertheless, if the overlap of the localized
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state with the reservoir states is small, then the zero-
bias current peak should also be small. Its magnitude

in the case of a spatially distributed “second contact”
will not decay exponentially with chain length, but will

still be much smaller than what would be expected from

naive formulas. This may be a possible reason why the

zero-bias peak is often poorly observed in conventional

tunneling experiments [14].

We want to emphasize that naively applied general
formulas for the tunneling current between two contacts
often lead to misleading results when used for low-
dimensional systems, such as the Kitaev chain [21],
due to the possible appearance of localized states in
the contact region.

The lowest-order response (second order in
the tunneling coupling) of quantum mechanical
perturbation theory describes the current only at
the initial moment after the tunneling connection is

“switched on”. Howeyver, the stationary tunneling current
can only be calculated using the full system of kinetic
equations, or equivalently, the full system of equations
for the nonstationary Keldysh-Green’s functions. Only
in simple systems with a continuous spectrum, where
rapid electron relaxation to equilibrium is implicitly
assumed, is the formula based on the equilibrium local
density of states of the leads guaranteed to be valid.

To clarify this idea, let us consider a tunneling
contact with a localized state at the edge of one of the
leads. This localized state creates a sharp peak in the
local density of states and contributes to the simplest
formula for tunneling current. Suppose this state is
empty at the initial moment (i.e., lies above the Fermi
level). Then, immediately after applying a positive bias
voltage to the other lead, the current begins to flow
into this empty localized state. However, after some
relaxation time, determined by the tunneling rate, this
state becomes occupied, and from that point onward,
no more electrons can tunnel into it. The stationary
tunneling current then vanishes, even though the
simplest formula still predicts a “zero-bias peak” in
the tunneling conductance. For this localized state
to contribute to the stationary current, some inelastic
processes must be included, which are responsible for
removing (or adding) electrons from this localized state.
For a finite system, it is also possible that this localized
state at one edge has some overlap with the second
contact. (This corresponds to our case and the case of a
distributed “grounded contact” in a real system.)

In the usual formula for tunneling current, which
relies on the local density of states of the contacts, it is
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implicitly assumed that at any moment, the chemical
potentials of all contact states are fixed. To maintain
a constant chemical potential, the system must be
connected to some reservoir via a contact that allows
for particle exchange. Thus, when we say that we fix the
chemical potential of localized states, we are implicitly
including some inelastic relaxation processes or a direct
connection to a reservoir for these states.

4. NONSTATIONARY CURRENT

Now, let us attempt to answer the question of what
the typical time scales are for current or charge transfer
from one edge of the chain to the other. We will pose
the problem differently than in [18], where the effect
of periodic modulation of tunnel barrier transparency
on zero-bias tunneling conductance was studied. An
interesting result in that study was the discovery and
analysis of resonance between the external driving
frequency and the splitting of Majorana states @y . In
our case, we are interested in the characteristic speeds
of transient processes. To do this, let us assume that
the system is initially in equilibrium at ¢ < 0, and then
at + = 0, avoltage is applied to one of the leads. This
additional voltage induces a nonstationary current,
which at t—oo reaches the stationary value (25).

The applied voltage shifts the energy levels in the
reservoirs by V, where the index o denotes the reservoir.
Thus, the reservoir Hamiltonian can now be written as
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Ho@) = > (kg vy +wihy )+
! (28)
+Y0(Ep -+ Vo0 )y hy

p

The current flowing from the left reservoir into
the system is given by (for the “right” contact r, all
formulas can be written similarly):

I,(t) = —fdt’ (zf(t,z’)ﬁf’,l(r’,t) +

R ~<
+zl (tatl)Gl,l(t 5’)_

. (29)
—G 1t ) —
Gl (z,t’)zf(t’,z)).
Here, the irreducible part takes the form:
Rty =iy ()6 —1') x
8 (30)
t
x exp[—iE;‘ ¢ —t)—iV, ft ,dzle(tl)],
Sott') =iy (15)’ng x
’ 31

« exp[—iEg —1) =iV, [ dn o0, )].

In the frequency representation, these expressions
correspond to the following formulas:

T (0,0) = i) [dev* (@)

1

1 1
m—s—Va+2i6[_m’m2i6+m'03+Va]+

(32)

o' —¢&+2id

1

3

1 1
Co—o —V +co—0)’—2i6]

a

S5 (0,0) = i(t*)? f dsv“(a)n“(g)[
()]

where v*(g) is the density of states in the reservoir
o, 8 — +0. For simplicity, we assume that t* does

not depend on p. In the wide-band approximation,

where we assume that v(g) remains constant for
e ~ o,0,V,,, these expressions simplify to:

Zf (0,0) = —iy,2n6(co' — ),

=5 (0,0) = %fdsnl(s) X
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1 1 1
—s—Va+i5_m—s—i8][m’—s—VQ—iS_w’—s—H‘S

]. (33)

1 1
8 oo—a—V,+i5_c0—s—i8]X

X

1 1
o —e—V, is_co’s+i5}'
As a result, in the frequency representation,
Equation (29) simplifies to:
~ dQ ~3
hw=-[5 [siae-ofh@-o-
2
. (34)
—2i’Y1F1,1(Q,Q — (D))
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where 1 1
. X y Xo)—s—V,+i6_c0—s—i8x
MiQQ—0) = TLIQZ(QQ—o)l11(Q— o)+ 1 1 ] (36)
~R ~A X = =~ |
+ FI,N(Q)Z:(Q,Q—CO)FNJ(Q—Q)), (x)/—afV, —i8 o —c+id
~5 ~A ~R
Q- o) = ILi(Q — o) = (). We see that the first term in (35) exists only

Using Dyson’s equations for retarded and

advanced Green’s functions, we can show that:
~0 u R A
FiQ-w)= o) TT,(Qr(Q- o)+
n=I

~R . ~A
+I11(Q)2iy, T11(Q — ©) +
~R ~A
+ILN ()20, TN 1(Q — ).

Substituting these last expressions into (34), we

obtain:

@=-[2

N_RrR -4
0)21“1;, QI 1(Q — o)
n=1

><Z,<(Q,Q—0)) (35)
+2i(y,z,<(Q,Q — ) — 720 — ) x)
~R ~A
XTI N (I N,1(Q — co))
Here
_ Iy I
o) =2- [aen' )
. t ] -
— ) e “'Co

My y(telV)=— i0(—t)— .

(e+iC(y; +v,)) —0" |A

A
A
_ iCmoe(t)e—C(y,+yr)z—ia)t |A|
20 A |

Al
A
B iC(x)oe(t)e—C(y[+yr)t+i(Tat |A|
—2® A .

m _

if V; =0 and does not directly depend on the
properties of the right reservoir 7.

This means that this term corresponds to the
filling of states at the left edge of the chain due to a
change in its chemical potential.

Consequently, the second term represents the
current that flows from one reservoir to another
through the entire chain.

If we consider only the second term, we obtain:
- o) —~ —~
L= 200 [deav My e V)M y@eV))
- , )

b

x[n’(g)S(V — V) —n" ()5 —V,)

‘o ~R
d—Qef’Q’Fl,N (Q) x

M\LN(tag:V): '

1 1
X —_—
[Q—s—V+i8 Q—g—1id
Since our goal is to study the propagation of
perturbations through the chain, we assume that
at time ¢ = 0, the voltage changes only at the right
contact, and we observe the time-dependent current

at the left contact under the condition V; = 0. Then,
by direct calculations, we obtain that:

A 1 A
1Al 7i(a+Vr)tC 1Al
a — i6(r) : 1t als
. (e+V +iC(y, +7,)) —o"|A .

A

1 1
- - —+ - —
[ e+ V +iC(y;+v,)—o e+iC(y;+v,)—0

1 1
- ; — + ; =
[ e+ V +iC(y; +v,)+o® 8+1C(y,+yr)+m]
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2

4y,y,C %0} 1
1) = %e(n f den’ (s)|

e +iCy+7,)P —o|

2 2
,Me(t)fdgnr(g —V.)x
T

e*l&l‘ 1
X|— ——=e

. —2
E+iCy +7,)) —o 20

1 67C(yl+yr)t+i073t 1

7C(yl+yr)t7iat

1 1
=+ =
e+iC(y; +v,)—o =V, +iC(y;+v,)—o
2

1

+ =
20

Here

&= o3 —C2y —1,)%. (37)

As expected, if 7~oo, the current approaches its

stationary value (25):
4y,y,C %00}
I — ooy = HC00 g0
T

x [de(n' (e) = n" (e = V,)) x

2

y ! |
e +iCh, +1)7 o)

If + — 40, the current at the opposite edge of the
chain is not observed, illustrating the continuity of
the current change when passing through r = 0:

4yy,C 200}
I — +0) = =261 x

xfde(n[(s) —n"(g)) x

2
1

— =0
(6 +iC(y +7,)) — 0|

X

If now, as in the previous section, we are
interested in the role of “Majorana states,” we apply
an additional voltage to the right contact, which is
greater than the width of the localized states but
less than the value of the superconducting gap. This
means that the conditions

nle)=n"(e) =0, n"(e-V,)=1.
are satisfied for € < v,,v,
The current is defined as
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=+
e+iC(y; +v,)+o

e—V, +iC(y, +v,)+ 0

_ ZYIYrC 0‘)(2) 1

1) =
T of +4C 2y,

o) +

2yy,Co}
B0 =2 gy

(1) + 7)o
[0 o+ iC (Vl + yr)
C 2@(2) e—2C(yl +v, )t—2i<u‘e(t)

+iyy, — =
" o—iCy+y,)

(38)

We consider the case y,, v,>> o, under the assumption
that o, is always small. However, for very symmetric
tunneling coupling with the leads, we could have
03(2) > (v, — y,)z. This case appears unrealistic, but
it demonstrates an oscillating current signal at the left
edge:

e
2C(y; +v,)
1— e—2C(yl+yr)t _

1,@t) =

X

]
2

—2C(y;+vy,. )t
xe (Y[ Yr) .

Cly +v,)
2

— sin(2wgyt) — (1 —cos(Cmyt))

(39)

If oy<]vy,—v,| and >0, Equation (38)
simplifies to:
2
%
2C(y; +v,)
4Ylyr

¥ -,

) (e yrewv,rﬂ,
(YI - Yr)

1) =

e’zc(le“’r)t (40)

x 14+
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Note that the negative sign indicates that the
current flows from r to /. For significantly different
tunneling rates, for example, y, > v,, the time
evolution of the leading contribution to the current
is determined by the slowest rate:

03(2) ‘1 B e—4Cylt}
2Cy, '

[,@t) = — (41)

The final formula shows that if y; — 0, the
current signal at the other end of the chain increases
very slowly.

5. CONCLUSION

This paper demonstrates that the transport
properties of a finite-length Kitaev chain can be
fully investigated using the conventional Green’s
function technique. For any nonstationary
problem, this formalism appears much more
convenient than the language of Majorana
fermions or other methods, allowing for the exact
analytical results. Our calculations bridge the
gap between phenomenological parameters for
quasiparticles in quasiclassical calculations and the
microscopic description of quasi-one-dimensional
superconductors.

It has been shown that the stationary tunneling
current through a finite chain is always determined
by the lowest transfer rate among the parameters
03(2) /(v; +v,),v,Y, » provided the applied voltage
is less than the superconducting gap. For arbitrary
u<|/A|<t, the stationary current is always
exponentially small for long chains. It should be
noted that for a finite Kitaev chain placed between
two external thermostat contacts, no significant peak

can be observed at ®, in the tunneling conductance.

Furthermore, in the case of o, =0, the stationary
current completely vanishes.

We have also obtained the time-dependent
behavior of the tunneling current following a sudden
change in the bias voltage at one of the leads. It was
shown that the typical timescales of tunneling current
evolution are primarily determined by the tunneling
rates vy,,y, from the left and right edge sites of the
chain to the corresponding leads. Although the
results presented here are for an ideal system, we can

be confident — based on the conclusions of [34, 35]—

that weak disorder does not significantly affect the
properties of the ideal Kitaev chain. Therefore, only
strong disorder can completely alter our results.

BILINSKII et al.

In conclusion, it is worth noting that when
considering systems of multiple Kitaev chains, an
effective description based on Coulomb blockade
effects is often constructed. However, such an
effective description is sensitive to charge transfer
rates, which may be important for modern proposals
related to signal transmission, quantum information
exchange, and storage using Kitaev chains.
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APPENDIX ANALYTICAL DESCRIPTION
OF THE ISOLATED KITAEV CHAIN

In this section, we present the formulas for the
Green’s functions of the isolated Kitaev chain.

As shown in [20], the exact solution for the Green’s
functions of the infinite chain can be written as:

@) = .
AA" =) A, —A)

(42)

X

X‘:_m‘ﬂl - X‘f_mb‘?z}

Here
©-p-24, 2Asign(n —m)
A% 1
W = +
! . (:0+u—|—2tA+ ’
—2Asign(n —m) ————+
JA2 -1
O—pu—2A4_ .
ﬁ 2A51gn(n—m)
M\ _ —
’ —2A*sign(n—m) ofpt2d. '
JA2 -1

The complex value of the square root \/Ai -1
is defined such that it has a branch cut along the

interval \JA2 —1 and takes positive values when
AL >1.
2 ® +id)’
TS p? + 4(A| —1%) 1—%
) 4
£ = 3 )
28" = (43)
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L =A, — A2 -1 (44)

We assume 6 — +0. The Green’s function for
the Hamiltonian (2) can be written in terms of the
Green’s function of the infinite chain, using Dyson’s
equation with the perturbation V',

R (@)= IR (w)—T8
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IR (@) =0k (0) + TO (@)U o, T, (©) + 45)
+F0N+1(‘”)U0 TN 41 (©).

If we solve Equation (45) for F . (@) and take the
limit U — oo, we can find the exact solution for the
Green’s functions TR (o) :

1
X(@)(Fglf)(ﬂ)) - Fglzev +1(03)(F?VR+1,N +1(03))71F9VR+1,0(03)) X

X0 @) = TOR 4 @Ry (@) TRy (@) -

(46)

0 0R -1
I @[Ty (@)~ T @@ @) T @) >

XT3, 1 (©) = TR o (@)(TE (@) TE (@)).

The matrix elements of FR (0) describe the
Green’s functions of the finite cham, provided the
indices satisfy the condition O <mm<N+1.1t
can be directly verified that F ', (©) =0 if one of
the arguments n or m is pos1t1ve, while the other
is negative, giving us direct proof that our procedure
effectively removes the site #» = 0 from the system.
The same is true for the site n = N +1.

We can see that the function FR (®) may have a
set of poles at values o determmed by the equation:

det (TG (@) = T 1 (@) (@) To 11(@)) = 0.(47)

Since FOR (w) has no poles inside the
superconductmg gap, it can be assumed that
the solutions of this equation correspond to the
energies of states localized at the chain edges. Direct
substitution of the Green’s functions (42) allows us to
find the solution for ® at arbitrary parameter values.

For the semi-infinite chain, if ¥ — oo, the
situation simplifies significantly. Equation (47)
simplifies to:

det(rgfg(@)) =0, (48)
and it has only one solution in the gap o = 0. This
solution does not arise if || > 2z. This pole at @ = 0
exists in the Green’s function FR (®) only ifboth n
and m are positive or both are negative, for any set
of parameters f,u,A satisfying the condition

2> (n/2)? + A%
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the condition that separates the topologically
nontrivial and trivial phases. This means that the
system described by the Hamiltonian (2) has two
states with energy o = 0: one to the left and one to
the right of the defect, which cuts the chain into two
subsystems.

If we now consider a long finite chain of length 7,
we can write the equation for localized states as

det|T{% L (@) = (49)

where Fg\ﬂf v +1(®) is the Green’s function for the
semi-infinite chain:

F%)R () =

= TR (@) — TOR (m)(rgf)(m))‘l IO (@).  (50)

Since we are interested in bound states within the
gap with energies close to zero, the calculations can
be simplified using the following fact. For ® — 0,
the values of y satisfy the condition |X jE| < 1. Indeed,
for o = 0, Equation (44) gives

—uil\/4t u —I—4|A|2)
= 51
e = 2( +1A) D
As a result,
2[4
=|—F"]. 52
I 1 +1A| (52)
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This means that || <1 for 12> ((n/2)?+ A%
and o < |A|. Thus, quantities like |y|" appearing in
the Green’s functions I’y , are small parameters for
large N. Henceforth, we will refer to such quantities
as “exponentially small,” implying exponential decay
with chain length (or number of sites).

Expanding Equation (49) in terms of ® and

XJI , which we treat as small, as explained above, we
obtain

o t
0 = det lo———
S @ =)
A
A 2 2
* Al |Ajer 2“) . (53)
AP 2@e - (A - u)
4]
N+l N+1)
=]

where 1 is the identity matrix. The solution ® =0
corresponds to the pole of the Green’s function,

R o A4 —p?)
" (@ +8)” — (09)” 24> —|A") — 1)
A
A
<\ = A =A™ + o -
m 1
B @ Al — )
(o +8)* — (w)” 24> — [A]') — n?)
'
| =TT =N
2
A

Diagonal elements T show the spatial

nn
distribution of density in localized states. In the limit
A =t, only T'|; and T'yy remain non-zero, since
Equation (52) gives

1 ocq ocli— A"
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which exists only on the semi-infinite chain segments.
The other pair of solutions has finite but small
energies ® = twm,, where
LTS

it\/4(t2 —[AP) =2

g )

Here we see that this solution satisfies the
approximations we made, if ‘XN “‘ < 1. Considering

N+1

N+1
X\ X+

—x- (34)

Equation (51), the condition #* = W/ 2)? + A?)

separates the two regions with oscillating and non-
oscillating solutions for o, . If @, crosses zero with
varying u, this implies a change in fermion parity, as
discussed in [36].

The leading term in the expansion of the Green’s
function FR (w) near o — +w,, which in quantum
mechanics would describe the spatial structure of the
wavefunctions of the two localized states, takes the
following form:

;A
A
A
Al
(35)
"
+(XN+1 n N+1 n)(x+ . r_n) . .

2
A

In the high-symmetry case u = 0 and |A| — ¢, the
energy levels are equal:

N
_ 4Afr (1 =1a))2
DAl
xsin Tw —0 (56)
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As noted earlier (see, for example, [37]), for an

odd number of sites is equal to zero for any values

of rand A.
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Abstract. This study examines electron transport in astrophysical plasmas mediated by Coulomb collisions and
collisionless wave-particle interactions, using a kinetic transport model that incorporates spectral evolutions
through these interactions. It investigates the transport of suprathermal electrons via whistler turbulence and the
effects of plasma magnetization. Key findings indicate that in strongly magnetized plasmas, diffusion timescales
in pitch angle space become saturated at large pitch angles, independent of increasing magnetic field strength.
Conversely, in weakly magnetized plasmas, these timescales decrease with decreasing magnetic field strength,
enhancing electron transport in velocity space. The study also identifies minimum conditions for resonant
scattering, dominated by wave-particle interactions over Coulomb collisions, which depend on Coulomb
collision effects and the power-law slope of the whistler turbulence spectrum. These findings have applications
in weakly magnetized astrophysical plasmas, from the relatively strong magnetic fields of the interplanetary
medium to the very weak magnetic fields of the intracluster medium.
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1. INTRODUCTION

Plasma physics is essential for understanding
various astrophysical and laboratory phenomena,
where electron transport significantly influences the
behavior and evolution of plasma systems. In the
field of fusion plasma, plasma heating and current
drive have been primarily examined to maintain the
conditions necessary for the magnetic confinement
of plasmas [1]. It has been demonstrated that the
propagation and damping of radiofrequency waves,
including ion cyclotron, electron cyclotron, and
lower-hybrid waves, produce energetic ions and
electrons through Landau and cyclotron damping,
which leads to current drive generation in the plasma
system. Along with such collisionless damping, the
collisional relaxation of energetic particles is involved
in the evolution of particle distribution in the
plasma system. Likewise, collisionless wave-particle
interactions and collisional relaxation also play a
crucial role in particle transport in astrophysical
plasmas. Indeed, turbulence and the associated
plasma instabilities are ubiquitous in astrophysical

plasmas, and understanding energy transport through
such turbulence is a long-standing problem [2—5].

Plasma phenomena and their dynamical evolution
in space and astrophysical plasmas depend on the
magnetization, defined as follows:

\,47[}106 /m, \/7

Q eB, /m,c

e

(1

where

Wpe = Jamnge? /m,, Q, =eB, /m,c

stand for the plasma frequency and electron
gyrofrequency, respectively, and these quantities
depend on the plasma density n, and magnetic
field B,. Thus, the phenomena associated with
plasma physics have been examined across a wide
range of magnetization factors [6—11]. For instance,
the characteristics of plasma instabilities in space
plasma depend on the properties of the medium,
such as strongly magnetized plasma in the solar
atmosphere near the Sun (o,, / Q, <1) and weakly
magnetized plasmas in the solar wind propagating
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toward Earth (0,, /Q, > 1) [6, 7]. Additionally, a
wide range of o,, /Q, can be adopted to model
the pulsar wind propagation from the strongly
magnetized magnetosphere of a pulsar to the weakly
magnetized pulsar wind nebulae propagating toward
the interstellar medium [8, 9]. Furthermore, rigorous
theories have been proposed for kinetic turbulence
and their roles in particle heating through energy
transfer in ambient astrophysical environments,
including weakly magnetized media such as
interplanetary, interstellar, and intracluster media (
®ye / Q, > 1) [10, 11].

Understanding turbulence and dynamical
evolution in various astrophysical media is crucial
for comprehending particle transport across strongly
magnetized to weakly magnetized plasmas, which is
essential to examine the nature of plasma distribution
in various space and astrophysical plasmas. The
mechanisms behind particle transport in space
weather have been particularly examined so far.
Indeed, suprathermal electrons have been observed by
the Parker Solar Probe in the interplanetary medium;
these electrons are expected to originate in the solar
corona and escape into the interplanetary medium
along open magnetic field lines [12, 13]. While particle
transport in plasmas has primarily been attributed
to Coulomb collisions, observational evidence of
suprathermal electrons highlights the importance
of collisionless wave-particle interactions. In this
regard, recent theoretical studies have proposed a
kinetic model based on the Fokker-Planck equation,
including wave-particle interactions mediated by
plasma turbulence [14—23]. For instance, Kim et
al. [14] highlighted that the persistence of a non-
Maxwellian distribution in the solar wind could be
exhibited through wave-particle interactions due
to Langmuir turbulence in the absence of Coulomb
collisions (see also [15]). Tang et al. [16] incorporated
Coulomb collisional effects along with wave-particle
interaction terms into the kinetic model and showed
that Coulomb collisions predominantly transport core
electrons following a Maxwellian distribution, whereas
suprathermal electrons are preferentially accelerated
through whistler turbulence. Simulation studies using
the particle-in-cell (PIC) method have also shown the
formation of suprathermal electrons through whistler
turbulence [24, 25]. These findings are consistent with
observational evidence of suprathermal electrons in
interplanetary space [12, 13].
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Despite the considerable progress mentioned
above, several gaps persist in our understanding,
particularly regarding how these mechanisms operate
under different plasma magnetization conditions.
Notably, the plasma parameters, including
magnetization, differ between interplanetary space
and other astrophysical media such as interstellar
and intracluster media. Consequently, plasma
phenomena related to particle transport could also
differ. While simulation studies using kinetic plasma
simulations have demonstrated possible acceleration
mechanisms through collisionless shocks and
turbulence in various astrophysical media [26—31],
it is essential to understand the transport of such
accelerated particles in these media to demonstrate
the persistence of non-Maxwellian distributions.

In this context, this work aims to improve our
understanding of particle transport theory based
on the kinetic transport equation and whistler
turbulence under different plasma magnetization
conditions relevant to various astrophysical media.
To achieve this, we adopt a kinetic transport model
that incorporates the spectral evolution influenced
by both Coulomb collisions and wave-particle
interactions, as proposed in previous works [16—
19]. By examining how suprathermal electrons
are transported through whistler turbulence under
varying degrees of plasma magnetization, we extend
the applicability of the kinetic transport model to
various astrophysical environments. This work reveals
distinct behaviors in diffusion timescales for weakly
and strongly magnetized plasmas, with significant
implications for electron transport dynamics.
Additionally, we identify minimum conditions for
resonant scattering dominated by wave-particle
interactions over Coulomb collisions, highlighting
dependencies on Coulomb collision effects and the
power-law slope of the whistler turbulence spectrum.
This comprehensive approach allows us to explore
diffusion timescales in both velocity and pitch angle
space, providing new insights into the underlying
processes governing electron transport in plasmas.

2. DESCRIPTION OF THE KINETIC MODEL

The evolution of the electron velocity distribution
function in astrophysical environments has been
examined using the kinetic transport equation [ 16—
19]. The electromagnetic interaction in a typical
astrophysical environment includes the electric force
and the Lorentz force, which are described as follows:
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a=—£——(va)—a (r)+a;.
me e

(2)

Here, e and m, are the electric charge and the
mass of electrons, and E and B denote the electric
and magnetic fields, respectively. a,(r) is the radial
component of the acceleration due to the electric
force, whereas a; is the non-radial component due
to the Lorentz force. Using the acceleration a due to
the external forces along with the terms responsible
for Coulomb collisions and wave-particle interactions
of kinetic turbulence, the kinetic transport equation
can be described as follows:

W F V-V V) + (@ V(Y. =
_[of of
(3] [¥] g

Here, the electron velocity distribution function is
expressed in the position (r ), velocity (v ) and time
(1) domains, and (&f /SI)CC and (&f /St)wp include the
effects of Coulomb collisions and kinetic turbulence,
respectively. In the coordinates of the radial distance
r, the velocity v , and the parameter including the
pitch angle 6 between the velocity and magnetic
field vectors (pn = cos0), Equation (3) becomes

of of of —o?) Of
EJFW(? +a(r )[ v 806]
v 20 _(8f &
SLa-yL - [g] +[§]Wp )

The Coulomb collisions with Maxwellian
backgrounds of electrons and protons have been
employed in the solar wind environments [16]. The
term associated with the Coulomb collisions [32] can
be expressed as:

[i] =cve{erf[ Y ]—G Y lIx
St cc ’ vth,e vth,e
3
2v
19 v | of
+v_2$G[Vth’e ]VW +

JI-HOON HA

L1
p2 Ov

2
2v —"’G[ y }/ ’ )
Vth m Vth,e

where m, /m, is the proton-to-electron mass ratio
and vy, , and vy, , are the thermal velocities of
the background Maxwellian electrons and protons.
erf(x) and G (x) are the error function and the
Chandrasekhar function, respectively. The collision
frequencies corresponding to the collisions with the
Maxwellian background electrons (¢, , ) and protons
(¢, , ) are given by:

4nnge® In A
Cye = 0 T2 (6)
me
_4mnget InA
Cv,p - P ) (7)
mp

where n, and InA are the plasma density and the
Coulomb logarithm.

To model the terms for wave-particle interaction,
we consider the resonant scattering of electrons by
right-handed polarized whistler waves as a main
wave-particle interaction mechanism in the turbulent
plasma system. Considering the cyclotron resonance
of electrons with waves propagating parallel to the
guiding magnetic field B, the resonant particles
satisfy the following condition:

(,Or(k) = VMkH + nQe, (8)
where o, and k are the oscillatory wave
frequency and the wavenumber, respectively, and
| . =le| B, / m, isthe electron gyrofrequency. The
integer n = 0 must be finite for cyclotron resonance
through the parallel waves. In the whistler regime (
o, <Q,), the magnetic power spectrum [18, 22] can
be described as follows:

; )

2025

Py(k) = kc

AT
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where A is the normalization constant, and the
spectral index s is expected not to exceed 2 [22]. The
evolution of the electron distribution function due to
wave-particle interaction through whistler turbulence
[16—19] can be expressed as

I O\ ¥ 1,y O
[St]wp 8H[Duuau+me uvavJ+
Lo\ Lp T 1y O
+v28vv meD“‘v(?oc+m2DW8v (19)
e

The diffusion tensor for nonrelativistic electrons
is expressed as:

s—1
— D n A B|H| 3 2
D E—vv ==\ l_ ) 11
vy Qe(meC)2 34 ( u ) ( )
D = Dy _ D,, _
W Q,(me)  Q,(m,e)
| | s—2 | | s—1
nA|p(B] 3 LR Blu 2
—— == == (1—p9), (12
_ D T A
—_ M _ 2
D = Q, 3a 8
WS BT,
Blu w(Bly| 3
—  +2
a |M|l3
%
+[B] P} 2 1y ) (13)

Here, we used dimensionless parameters,

B=v/c and a= mf,e /Qg with the plasma
frequency ,, = \4mnge’ / m, . To consider both

weakly magnetized plasmas such as interplanetary,
interstellar, and intracluster media (a > 1) and
strongly magnetized plasmas near the stellar
magnetosphere (a <1), we examine the properties
of wave-particle interactions mediated by whistler
turbulence over a wide range of parameter a .

In the kinetic model described by Equation
(4), the detailed evolution mediated by Coulomb
collisions and wave-particle interactions depends
on the initial electron distribution. The electron
distribution of thermal plasma is typically modeled
as Maxwellian, given by:
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Jine ) = exp|— (14)

3/2 3
# the

2
v
Vihe ]
While the Maxwellian distribution is suitable for
describing the medium in the absence of nonlinear
processes such as plasma and magnetohydrodynamic
(MHD) waves, shocks, and turbulence, it has been
demonstrated that plasma processes associated
with such phenomena can accelerate particles. This
particle energization results in a distribution that
deviates from Maxwellian, known as the kappa
distribution [33—35]. The electron kappa distribution
is defined as:

_ nO F(K + 1)
Sre®) = 3/2v3he (x — 3/2)3/2r(1< -1/2)
1 51 +1)
\4
. ”m——s/z)[m W

where T'(x) is the Gamma function and
the parameter k determines the slope of the
suprathermal distribution. For v > v, the kappa
distribution follows a power-law form,

fre(V) y~20ED,

A smaller value of x results in a flatter particle
distribution, whereas a larger value of k makes
the kappa distribution closer to Maxwellian. In the
subsequent section, we explore how the initial slope
of the electron distribution function influences
electron transport through whistler turbulence, taking
into account the dependence on magnetization.

It is noteworthy that the nature of plasma
turbulence and wave-particle interaction mediated
by such turbulence could be substantially different
from the interpretation obtained through linear
theory [36, 37]. Specifically, the effects of nonlinear
processes on energy dissipation by whistler waves
have been examined through PIC simulations
[38, 39]. According to the results of these numerical
simulations, the significance of nonlinear damping
of whistler waves depends on the fluctuation energy
of the turbulence and the magnetization of the
plasma system [38]. In weakly magnetized plasma,
linear damping dominates over nonlinear damping,
indicating that the theory developed in the linear
regime could be applicable for examining wave-
particle interaction through whistler turbulence. In
strongly magnetized plasma, when the turbulent
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fluctuation (8B ) is sufficiently weak (i.e., 8B < B,

), linear theory could be applicable. In this regard,
the kinetic model in this work could be suitable for
weak turbulence systems in space and astrophysical
environments. For systems with strong turbulence (
3B > B, ), nonlinear processes should be taken into
account in the model, which is beyond the scope of
this paper.

3. ELECTRON TRANSPORT THROUGH
WAVE-PARTICLE INTERACTION AND ITS
DEPENDENCE ON THE MAGNETIZATION

OF THE PLASMA SYSTEM

Comparison of T / Ty (Upper panels) and
Ty / Ty (lower panels) across parameter space.
The plots depict variations with respect to electron
velocity B ranging from 107 to 107", and
magnetization parameter ¢ spanning from 107 to
10* . Larger values of a indicate weakly magnetized
plasmas, whereas smaller values denote strongly
magnetized plasma

Firstly, we examine the acceleration timescales
through whistler turbulence and their dependence on
the magnetic field strength using the three diffusion

coefficients. The acceleration timescales can be
derived as follows:
1—s
S Temer 30 PMT )
o' o'p, An [a ’
T EE| VoMV |::
o' |e;'p,
oWl fobl] |
w B3 ulBk|3
= +_ _ 1 X
i B[ a
x(1—o?)™ !, (17)
up EE| ! |=
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)5 2u(Bl) 3
3a |[Bly|]| 3 2u | Bluf] 3
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where vy, isthe Lorentz factor, which is approximately
1 for nonrelativistic particles. To assess the relative
importance of pitch angle scattering, the following
ratios were calculated:

-1

Blul

fw o _ (Br

wo|[u]

2
Tﬂ = Bz [%] :

Ty a

; (19)

!
ﬂ[% +u? . (20
W | @

In a strongly magnetized plasma (a — 0), the
ratios simplify to:

‘va . |u|71 ,Tﬂ . |H|72
T 1% vy

indicating that the relative importance of diffusion
in pitch angle space is independent of the particle
velocity B and magnetic field strength parametrized
by a once the particles satisfy the resonant condition.
Given that the pitch angle parameter satisfies

| c|< 1, the following relations hold true in strongly
magnetized plasmas:

; 21

w < T < Ty

T (22)

In weakly magnetized plasmas (a > 1), however,
the ratios of these characteristic timescales may vary
depending on the particle velocity f and magnetic
field strength a.

Fig. 1 shows 1, /,, and 7, /1, asfunctions
of electron velocity f and magnetization a. A few
points were noted: (1) In weakly magnetized plasmas
(a > 1), diffusion processes in the pitch angle space
become prominent, whereas a saturated behavior
is observed for particle acceleration in sufficiently
strong magnetic fields (@ <« 1). (2) The dependence
on magnetic field strength is more pronounced for
accelerating electrons with higher . Particularly,
panels (a) and (d) show that <, /1, and t,, /7,
exhibit similar asymptotic behaviors for small
and large pitch angles || > 0.5, irrespective of A.
Conversely, panels (b), (c), (e), and (f) illustrate
that the effects of magnetic field strength on pitch
angle scattering are more significant for electrons
with larger . (3) In strongly magnetized plasmas
(a<1), 1, and 7, increase as the pitch angle [u|
decreases, whereas the opposite behavior is observed
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Fig. 1. Comparison of t,,/t,, (upper panels) and t,,/7,, (lower panels) across parameter space. The plots depict variations

with respect to electron velocity B ranging from 103 to 107!, and magnetization parameter a spanning from 107 to 10%.
Larger values of a indicate weakly magnetized plasmas, whereas smaller values denote strongly magnetized plasma

in weakly magnetized plasmas (a > 1). This indicates
i ) . &f 10 1 of

that wave-particle interactions are influenced by the 5 F _28_ v? —2DW =
magnetic field strength of the background medium. wp e

Next, we examine the conditions under which
the acceleration timescales are dominated by wave- 1|z D, = L/ 4w 9Dy, V_ )
particle interactions over Coulomb collisions. v2|m? Iy v 2 Ov
Assuming fixed background temperatures (constant
Vine and vy ), these regimes depend on the p2 9 f
magnetic field strength and the initial distribution +—D,, Y 5 ) (24)
of suprathermal electrons. Considering the diagonal me v

terms in (8f / 5t) .. and (& / 6t) for velocity space

For v > v, ., the Chandrasekhar function can
diffusion, we have the following expressmns the
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¥ Lolg|l vy [V, Equation (23) simplifies to:
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Assuming the suprathermal electrons follow a

kappa distribution function, the distribution of high-

energy electrons with v > vy, , approximates to a
power-law tail, f o< v~9. The derivatives of f are
expressed as follows:

L=y, 26)
2
% —g(q + 1Y, 27)

Using Equations (26) and (27), Equations (24)
and (25) can be rewritten as
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In this case, we obtain the following inequality for
D
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Using the inequality (30), we examine how the
slope of the initial distribution of suprathermal
electrons could influence the relative importance
between Coulomb collisions and wave-particle
interactions. For nonrelativistic electrons where
Vihe /€ < P <1 (or the Lorentz factor y, ~ 1), the
acceleration timescale (t,,) satisfies

_nemp _
Ty = D— =
vy
5 —1
—1n3 1| Vine
<cy QP (4—1)1—5 N (g+2) +
1{v 2 o
_ m
e, B —DE S| (g +2) . ()
mp

To explore the dependence on the slope of the
suprathermal electron distribution, we estimate
the maximum acceleration timescales for the two
different regimes as follows:

3,.-1 , Mo 1 _
4B (e, +—5c, ), forg =35,
mp
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T ~12B ey e
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2
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Fig. 3. 1, .. and 7, .., for weakly (left panels) and strongly (right panels) magnetized plasmas. Here, the electron thermal velocity

is assumed as v, ,/c = 107, and the gray lines display the value T, /c;} = 1

Because electron velocities satisfy v/vy, , > 1 and
v/vip, > 1, the maximum acceleration timescale
is much larger when ¢ — oo . This indicates the
evolution of the electron distribution function with
a larger ¢ more effectively depends on Coulomb
collisions, and such a distribution is likely to resemble
a Maxwellian. It is understandable that wave-particle
interactions with sufficiently large ¢ are inefficient
due to the absence of a sufficient number of resonant
particles. Indeed, acceleration timescales become
longer regardless of electron velocity for larger
g (panel a of Fig. 2), and these effects are more
pronounced for suprathermal electrons with higher f.

While the analysis in this section has focused
on the diagonal terms of the diffusion tensor, it
has been demonstrated that the off-diagonal terms,
particularly those involving diffusion in pitch angle
scattering, are significant in weakly magnetized
plasmas. Using equations (19) and (20), we can
roughly estimate the maximum values of T,y and
Ty for wave-particle interactions. Applying the
inequality (31) to Equations (19) and (20), we obtain
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v
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Fig. 3 shows the behavior of the two characteristic
timescales t,, and t,, across a wide range of
slope parameters ¢ and electron velocities . In
weakly magnetized plasmas (a = 104) , shown in

the left panels of Fig. 3, wave-particle interactions
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can effectively transport electrons with softer
distribution slopes due to enhanced diffusion in
pitch angle space. This enhancement occurs even
in scenarios where t,, > cv’,z, ;as 1y, <1, K c;,é
can be satisfied. Conversely, in strongly magnetized
plasmas (a = 10~*), shown in the right panels of Fig.
3, diffusion in pitch angle space does not significantly
enhance efficient transport through wave-particle
interactions when collisional effects dominate

~1
(tyy > ¢ye)sas 1, < Ty < Ty -

4. CYCLOTRON RESONANCE
OF SUPRATHERMAL ELECTRONS
AND NATURE OF WHISTLER WAVES

In this section, we derive the conditions for the
minimum velocity of resonant electrons and the
characteristics of whistler waves corresponding to
wave-particle interaction. The criteria described in this
section encompass the characteristics of the turbulent
power spectrum, such as its power-law slope, and
the effects of Coulomb collisions, as depicted in the
schematic Fig. (see Fig. 4). Assuming that the energy
transferred through whistler turbulence remains
constant across spectra with arbitrary slopes, the
maximum wavenumber of a flatter spectrum could be
larger than that of a steeper spectrum. Additionally,
Coulomb collision effects may suppress energy transport
to smaller scales, thereby allowing for a larger maximum
wavenumber with stronger Coulomb collisional effects.
Such wave characteristics could influence particle
transport through turbulence by determining the
minimum momentum of electrons required for wave-
particle interactions.

Considering only the electron collision term, the
minimum velocity criterion can be derived using the
inequality (31) as follows:

3
3 211 1(1=5)/3 | Vihe
> | — 1 }
P TEA( u) |“| ¢ X

Cp/+2)

. (35)

—1

e

—1
e

v,e

-3 —1
vth,empe

x(g —1)

(2s+1)/3[ .

Here, for simplicity, we consider only electron-
electron collisions since the collisional timescales
satisfy ¢, }3 < ¢y, 11, . Clearly, more electrons with
lower velocities can be energized through wave-
particle interactions when collisional timescales are
longer. While the minimum velocity increases as the
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(a) 1

Py(k)

(b) 1

Py(k)

Fig. 4. a — Schematic diagrams illustrating whistler turbulence
spectra with two different power-law slopes (s, 5,). Assuming
constant energy transport through whistler turbulence, the
maximum wavenumber for a steeper (s,) spectrum may be
smaller than that for a flatter spectrum (s,) (k,, < k,;). b —

m2

Schematic diagrams demonstrating the influence of Coulomb
collisions on turbulent energy transport. Coulomb collisions
hinder energy transfer to smaller scales, potentially resulting in
a smaller maximum wavenumber (k) compared to scenarios
without Coulomb collisions (k,,)

magnetic field strength decreases (or, | ;1 increases),
we interpret that these effects could be minor when
considering regimes dominated by wave-particle
interactions (| ;1 <y, ;). Additionally, a steeper
initial slope of the suprathermal electron distribution
g leadsto a larger minimum velocity, indicating that
transport of suprathermal electrons is less likely when
g is sufficiently large.

For low-frequency whistler waves (o, < Q,),
the wavenumber K and wavelength v for scattering
particles are derived as follows:

_2n

nQ, N
I :k_HN

ko~

2mvu
nQ,

(36)

From the inequality (35), we obtain the maximum
wavenumber K|, and the minimum wavelength
M min fOr wave-particle interactions:

3
ck 3 _ y
[lmax 7 2v—11 |(1=5)/3| Vthe
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Fig. 5. a — Minimum electron velocity, » — minimum collisional mean free path, ¢ — maximum wavenumber, and d — minimum
wavelength as functions of pitch angle p. Solid lines correspond to ¢,,/Q," = 10°, while dashed lines correspond to ¢3,,/Q," = 107.

The results are shown for ¢ = 5 as an example
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We also consider the minimum collisional length
defined as
QA c, !

mfp,min __ v.,e
P ~ Bmin Qe_l : (39)

In the criterion (37), the maximum wavenumber
decreases as the initial slope of the electron
distribution function (g) increases. This indicates that
the wavenumber range of wave-particle interactions
could be reduced when there are fewer suprathermal
electrons (i.e., the spectrum is steeper with larger g).

JETP, Vol. 167, No. 1, 2025

According to the conditions for resonant scattering
and efficient wave-particle interactions, we explore
the minimum electron velocity and wave properties
relevant to wave-particle interactions across varying
power-law slopes of turbulent spectra. The maximum
wavenumber k., and minimum wavelength
M min » derived using the inequality (31) that includes
Coulomb collisions and wave-particle interactions,
align with the physical insights demonstrated in
Fig. 4. Specifically, k. decreases and Ay
increases as the power-law slope of the turbulent
spectra increases. This suggests that turbulence with
a flatter spectrum is more efficient at transporting
particles. Additionally, as shown by the solid lines
in Fig. 5, relatively strong Coulomb collisions can
suppress particle transport by reducing Ki|max - In
contrast, weakly collisional plasmas (represented
by dashed lines in Fig. 5) exhibit greater k|,
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values. It is important to note that this analysis
generally applies to weakly collisional plasmas where

k“,min < }‘mfp,min .

5. SUMMARY AND DISCUSSION

In this work, we demonstrate how wave-particle
interactions through whistler turbulence differ
between weakly and strongly magnetized plasmas.
In strongly magnetized plasmas (characterized
by a= m’%e / Qz < 1), the diffusion timescales at
large pitch angles (|u| > 0.5) exhibit saturation for
sufficiently small values of a, indicating that strong
magnetic fields effectively regulate particle diffusion
in pitch angle space. In weakly magnetized plasmas
(where a>1), on the other hand, large-angle
scattering can be enhanced due to the increased
magnetization factor a. This enhancement suggests
that electron transport via wave-particle interactions
may dominate over Coulomb collisions, facilitated by
enhanced diffusion in pitch angle space. Additionally,
incorporating Coulomb collision effects, we provide
conditions for electron transport through whistler
turbulence, including the minimum electron velocity
and wavelength required for resonant scattering.
These findings are broadly applicable to weakly
collisional astrophysical plasmas, offering insights
into the range of resonant velocities and maximum
wavenumbers for wave-particle interactions across a
wide range of magnetic field strengths parametrized
by a. In such environments, weakly magnetized
mediums benefit from efficient transport via wave-
particle interactions, particularly when suprathermal
particles are present.

We further comment on the significance of
investigating particle transport through plasma
turbulence in space and astrophysical media. The
generation of suprathermal particles is feasible
through collisionless shocks or plasma turbulence
in various astrophysical environments, with multi-
wavelength emissions serving as observational
evidence of particle acceleration. While studies
on electron transport via whistler turbulence have
predominantly focused on non-Maxwellian electron
distributions in solar wind environments, similar
investigations in diverse astrophysical contexts are
warranted. For example, research has shown that
velocity anisotropy in interstellar and intracluster
media can induce whistler waves [27, 40, 41],
potentially maintaining non-Maxwellian electron
distributions within localized regions experiencing
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whistler turbulence. Additionally, it has been shown
that suprathermal electrons can be generated by
various plasma instabilities in astrophysical media,
including whistler, firehose, mirror, and cyclotron
instabilities. In particular, current drive exhibited in
localized areas, such as the upstream and downstream
regions of collisionless shocks, could trigger plasma
instabilities that significantly amplify the magnetic
field and generate suprathermal particles through
waves satisfying cyclotron resonance conditions
[26—28, 40—43]. The characteristics of these plasma
instabilities and their acceleration efficiency depend
on the properties of collisionless shocks, including
the shock Mach number, plasma magnetization,
and the geometry of the background magnetic field
[27, 40]. Moreover, Lower-Hybrid waves could be
induced by diamagnetic currents in inhomogeneous
plasma systems, which typically propagate in space
and astrophysical plasmas, including those with
compressible turbulence. The roles of particle
acceleration or heating through Lower-Hybrid waves
have also been proposed [44, 45]. In this context, it is
necessary to conduct further investigations, including
the theory of particle transport through various
plasma instabilities triggered in astrophysical media,
corresponding numerical simulations to support the
theory, and complementary observations representing
particle acceleration and heating.
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Abstract. In a planarly-aligned layer of a nematic liquid crystal (LC) with a luminescent dye, the spectra of
luminescence arising upon laser excitation of dye molecules and propagating in the waveguide mode were
investigated. It was shown that the presence of ITO electrodes confining the LC layer leads to significant
resonant losses of radiation energy. These losses are explained by phase synchronism between the waveguide
modes in the LC layer and the ITO electrodes. The spectral position of the loss maxima depends on the
polarization state of light, and their intensity increases with decreasing LC layer thickness. It was shown that the
use of LC alignment layers made of fluorinated polymers with a low refractive index coated onto ITO electrodes
allows one to significantly suppress resonant radiation losses.
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1. INTRODUCTION

Alongside the widespread use of liquid crystals
(LCs) in information display technologies, there
has been increasing interest in utilizing LCs
for various photonic devices. In particular, LC
materials doped with laser dyes can be employed
both for studying the photonic properties of LCs
[1, 2] and as an active medium for microlaser
systems [3, 4, 5, 6, 7]. Among these systems,
microlasers operating in the waveguide light
generation mode hold a special place [8, 9, 10, 11,
12]. However, despite the many advantages of the
waveguide generation mode, this approach also
has certain drawbacks. For example, controlling
the LC layer to create spatially periodic refractive
index modulation and, consequently, distributed
feedback, requires control electrodes that confine
the LC layer. In LC devices, transparent electrodes
based on indium tin oxide (ITO) are widely used.
In this case, an inevitable problem arises due to
the need to minimize light energy losses in the
electrodes during waveguide mode propagation.

In [13], numerical FDTD modeling demonstrated
that light propagation in the waveguide mode within
oriented LC layers confined by transparent ITO
electrodes is characterized by significant resonant
losses. These losses occur in specific spectral ranges
due to phase-synchronous energy transfer from
the liquid crystal layer to the thin electrode layers.
The present study aims to experimentally observe
the resonant losses predicted in [13] by exciting
luminescence in the LC layer and recording the
luminescence spectrum at the output of the liquid
crystal waveguide formed by the LC layer and the
confining layers, including ITO. The study also
investigates the possibility of reducing these losses
by introducing alignment layers with a low refractive
index between the ITO electrodes and the LC layer,
as recommended in [13].

2. EXPERIMENTAL SAMPLES

The experimental scheme of the liquid crystal
(LC) cell with ITO electrodes is shown in Fig. 1.
The cell consists of two glass substrates 1, 2, with
transparent ITO electrodes 3, 4 at their inner sides.
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Fig. 1. Schematic diagram of the layered structure of the LC cell.
1, 2 — glass substrates; 3, 4 — ITO electrode layers; 5, 6 — polymer
alignment layers rubbed in the direction z; 7 — LC layer (E7)
with DCM dye (cylinder axes indicate the LC director direction).

We used industrial glass for display technologies
with a measured ITO electrode thickness of
150 £ 10 nm. To achieve planar alignment of
the nematic LC (E7, Merck), thin polymer
films 5, 6 were applied to the ITO surfaces and
mechanically rubbed with a soft cloth along the
z-axis, determining the easy axis direction and,
consequently, the optical axis direction in the LC
layer. Two types of polymers were used for the
alignment films: (a) polyimide (PI) with a refractive
index of 1.65 (AD9103 lacquer, NPO Plastik)
and (b) fluorinated polymer with a refractive
index of 1.42 (copolymer of tetrafluoroethylene
and vinylidene fluoride, F42-V). The LC layer
thickness, alignment film type, and presence of
ITO electrodes varied depending on the sample
number (see table).

As seen from the table, Sample 1 does not
contain ITO electrodes. This LC cell was used as
a reference sample to visualize spectral changes
in the emitted light due to the presence of ITO
electrodes.

The choice of the liquid crystal E7 is due to the
extensive study of this material and the availability
of many of its physical parameters. For example,
the spectral dependencies of the refractive index,
crucial for our studies, are well known across a wide
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Fig. 2. Scheme of luminescence excitation in the LC layer.

1 — laser beam (A = 532 nm, t = 10 ns); 2 — cylindrical lens
(focal length = 100 mm, characteristic focusing area dimensions
6z = 0.1 mm; éx = 3 mm); 3 — liquid crystal cell; 4 — set of
optical filters and polarizer; 5 — radiation registered by a fiber
optic spectrometer.

spectral range [14], allowing us to build a realistic
model of resonant losses in the E7 layer between
ITO electrodes in [13]. To impart luminescent
properties to the LC layer, we used the well-
known laser dye DCM (4-(Dicyanomethylene)-
2-methyl-6-(4-dimethylaminostyryl)-4H-pyran,
Sigma Aldrich, 0.6 wt.%). This dye is characterized
by intense luminescence in the 570—650 nm
wavelength range and is widely used to achieve
lasing effects in various LC systems.

The luminescence excitation and registration
scheme is shown in Fig. 2. Luminescence excitation
in the LC layer was performed using radiation 1 from
a neodymium laser operating in Q-switched mode
at a wavelength of A=532 nm with a pulse duration
of 10 ns. The pulse energy was approximately
80 wJ. The laser radiation was linearly polarized
along the direction z (along the LC director),
ensuring maximum luminescence efficiency [11].
The laser beam was focused on the LC layer in cell
3 by cylindrical lens 2 into a narrow stripe with a
width of 8z = 0.1 mm and a length of éx = 3 mm
along the direction x of waveguide luminescence
propagation 5. The position x of the focused area
center, measured from the LC cell end, varied from
1.5to 2.5 mm.

Luminescence from the LC layer end face was
recorded using a fiber optic spectrometer Avantes
Avaspec 2048. To exclude the registration of light
propagating into the substrates, the ends of the
latter were coated with an opaque (black) dye
layer, and a mask with a slit was used. To register
polarization spectra, a polarizer 4 was placed in
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Table. Analyzed samples and their parameters

PALTO et al.

Sample No.| LC layer thickness, um

Sample type

Alignment layer thickness, nm | ITO presence

1 6.7+£0.2 PI

20+ 10 No

6.8+0.2 PI

20+ 10 Yes

24£0.2 PI

20+ 10 Yes

20+ 10 Yes

2
3
4 12+0.2 PI
5

6.3+0.2 ®42-B

350+ 10 Yes

front of the fiber optic cable lens, allowing the
recording of TE-polarized spectra (electric field
oscillations along the z axis and LC director, see
Fig. 1) and TM-polarized spectra (electric field
oscillations in the xy plane). Additionally, glass
optical filters were used to attenuate both scattered
laser radiation and luminescence when necessary,
installed alongside the polarizer in front of the fiber
optic cable input lens of the spectrometer.

3. DISCUSSION OF RESULTS

Fig. 3 shows the spectra of unpolarized
luminescence for the reference sample 1 (see table)
without ITO electrodes (curve 1) and sample 2
(curve 2), obtained under identical laser excitation
pulse energies (approximately 80 uJ). It is worth
noting that the luminescence intensity here and
below is presented on a logarithmic scale. As
seen, the luminescence intensity for sample 2
with ITO electrodes is significantly lower than
that recorded for the reference sample 1. In the
spectrum (curve 2), a characteristic dip at the
wavelength of 588 nm is observed, which is absent
in the sample without ITO. When the spectrum
of sample 2 is divided by the spectrum of sample
1, the spectral dependence of the relative losses
I,/I; in sample 2 compared to sample 1 is
obtained (see the inset in Fig. 3).

It is evident that the relative losses associated
with the presence of ITO electrodes are
characterized by a spectral band with a maximum
absorption at the wavelength of 592 nm. The
luminescence intensity at this wavelength for
sample 2 is approximately 8 times lower than that
for sample 1. There is also an increase in losses at
wavelengths longer than 625 nm. Unfortunately, it
is challenging to register this longer-wavelength
band accurately across the entire range due to the

1, rel. units
7] 12/1 |

0.75

592 nm

10000 0.50

0.25

560 600 640

1000

| 2
588 nm

100

550 600 650 700 A nm

Fig. 3. Luminescence spectra at the output of the LC cell (see
Fig. 2) after light propagation in the LC layer in the waveguide
mode. The pump area length determining the propagation
distance is 6x = 3 mm, and the distance from the pump center to
the LC cell edge is x, = 1.5 mm. Curve / — spectrum of sample 1
(no ITO electrodes); curve 2 — spectrum of sample 2 (with ITO
electrodes, thickness 150 nm). The inset shows the ratio of the
spectrum of sample 2 to that of sample 1.

very low luminescence intensity at wavelengths
above 650 nm.

According to the numerical calculations in
[13] for a planarly-aligned liquid crystal layer E7
confined by ITO electrodes with a thickness of
170 nm, two resonance bands exist in the spectral
range of 550—900 nm, with maximum losses at
wavelengths of BonrH A; = 570 nm and A, = 705 nm
for TE- and TM-polarized light, respectively. The
spectral position of these losses does not depend on
the thickness of the LC layer. However, as shown
in [13], changes in the ITO layer thickness and
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Fig. 4. Polarization spectra of luminescence measured for
sample 1, where curve / corresponds to TE-polarization and
curve 2 to TM-polarization. The distance from the pump center
to the LC cell edge is x, = 1.5 mm.

the presence of a polyimide alignment film can

shift the spectral position of the resonance bands.

Considering the experimental error associated with
measuring the ITO layer thickness and the presence
of a thin polyimide alignment film in experimental
sample 2, we associate the observed loss maximum
at 592 nm with the resonance band calculated at

Ay =570 nm for the TE-polarized mode in [13].

Similarly, the increasing losses at wavelengths
above 625 nm (inset in Fig. 3) are explained by
the calculated resonance band at A, = 705 nm for

TM-polarized light. The spectral data in Fig. 4,
showing the polarization spectra of luminescence,

confirm this conclusion. The luminescence
intensity dip at 588 nm is characteristic only for
the TE-polarized mode (curve 1 in Fig. 4). As the
wavelength increases beyond 625 nm, the intensity

of TM-polarized luminescence, shown by curve 2,

decreases faster than that of the TE mode (curve
1). Thus, the observed long-wavelength losses also
agree with the numerical model in [13].

According to the analytical model of a thin ITO
layer with a refractive index n; between the glass
substrate n, and the liquid crystal layer n,, the
wavelengths corresponding to the maxima of the
resonance losses are determined by the following
relations [13]:
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where the indices TE and TM refer to TE- and TM-
polarized light, respectively, and m is a natural
number. The additional phase shifts 8¢ in Equation
(1), associated with double reflection of waves in
the ITO layer from the boundaries of the ITO-
glass substrate and the I'TO-LC layer interfaces, are
determined for TE- and TM-polarized light by the
following expressions:
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It is also important to consider the spectral
dispersion of refractive indices: ny = ny(L) is the
refractive index of the glass substrate, n; = n;(})is
the refractive index of ITO, ny rg rp = 1y 75,7 V)
is the polarization-dependent refractive index
of the liquid crystal (for planarly-aligned LC,
nyrg =N, Nyry =ny), 6 is the angle between
the layer normal and the wave vector in the
ITO layer (for phase-synchronized coupling of
the planar mode from the LC layer to the ITO,

sin@; = n; /n2,TE,TM ).
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Fig. 5. Spectra of unpolarized luminescence for sample 3 (curve /
d = 2.4 um) and sample 4 (curve 2, d = 12 um). Distance from
the pump center to the LC cell edge is x, = 2.5 mm.

As follows from Equation (1), real solutions exist
only under the condition n; > n,. For ITO, there is
strong spectral dispersion of the refractive index [13],
so the corresponding solutions exist only in specific
spectral ranges, which differ for TE- and TM-
polarized light due to the optical anisotropy of the
liquid crystal and, accordingly, the conditions:

ny znyrg, My 2Ny

As shown in [13], for planar LC alignment, there
are only two solutions for TM-polarized light:
Ay =720 nm for m =1 and A, =440 nm for
m = 2. Since the luminescence spectrum is limited
to approximately 550—700 nm, we can observe
only the short-wavelength edge of the TM mode
absorption for m =1, which appears at wavelengths
above 625 nm (see the inset in Fig. 3).

For TE polarization, the corresponding loss
peak occurs at A = 570 nm, which, considering
measurement errors and differences between our
experiment and the model, is very close to the
observed peak at 592 nm (see the inset in Fig. 3).
In the experiment, as in the model, this loss peak is
observed exclusively for TE-polarized light (Fig. 4).

The model in [13] predicts a significant
increase in losses with decreasing LC layer
thickness. This was confirmed experimentally
(Fig. 5). Here, curve 1 corresponds to sample 3
(see table) with an LC layer thickness of d =2.4

Fig. 6. Spectra of unpolarized luminescence for sample 2
(curve I, d = 6.8 um) and sample 5 (curve 2, d = 6.3 pm).
Distance from the pump center to the LC cell edge x, = 2.5 mm.

um, and curve 2 corresponds to a thickness of
d =12 um. Both curves are for unpolarized light,
showing the loss peak at 592 nm and the onset
of a sharp luminescence decrease at wavelengths
above 625 nm, associated with the existence of a
longer-wavelength loss band peaking beyond 700
nm. A comparison of luminescence intensities at
590 nm reveals that reducing the thickness from
12 to 2.4 um increased the losses by approximately
40 times. The presence of strong loss bands
for sample 3 around X, =590nm and in the
longer-wavelength region (2, > 700 nm) leads to
significant narrowing of the luminescence spectrum
(curve 1, Fig. 5), with the luminescence maximum
shifting to the longer-wavelength region near
A = 625 nm, where losses are minimal. In sample
4 (curve 2), the loss bands appear only as shoulders
in the luminescence spectrum, and there is virtually
no shift in the luminescence peak (A =611 nm).
Notably, at a fixed pump energy of approximately
80 wJ, the luminescence intensity peak in sample
4 was so high that we had to shift the pump center
from the LC cell edge to x;, = 2.5 mm to remain
within the dynamic range of the spectrometer.

Thus, the spectral measurements fully confirmed
the presence of resonance losses caused by the
ITO electrodes. According to the aforementioned
numerical modeling, resonance losses can be
significantly suppressed by introducing thin
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low-refractive-index films between the LC layer
and the ITO electrodes. This condition is satisfied
in sample 5, where relatively thick (350 nm)
fluorinated polymer F42-V films with a refractive
index of 1.42 were used as LC alignment layers. The
results of luminescence spectra measurements were
quite impressive (Fig. 6). At a fixed pump pulse
energy of 80 uJ, the peak luminescence intensity
increased by approximately 50 times compared
to sample 2. The characteristic loss band with a
maximum at 590 nm disappeared, as did the long-
wavelength spectral losses characteristic of sample
2. At wavelengths above 650 nm, luminescence
increased significantly, so that even at 750 nm, the
measured luminescence signal was significantly
above the noise level.

To note, the luminescence intensity in sample
5 significantly exceeds not only that of sample 2
but also that of sample 1, where ITO electrodes
are absent. Thus, the high luminescence intensity
in sample 5 is not only due to the elimination of
resonance losses. We hypothesize that another
significant factor contributing to the increased
luminescence intensity in sample 5 is the low
refractive index of the fluoropolymer (n =1.42),
which is significantly lower than that of the glass
substrates (n, =1.51). As a result, a significantly
larger number of TE- and TM-polarized waveguide
modes can propagate in the LC layer of sample 5
compared to samples 1 and 2. Indeed, in samples
1 and 2, the lowest refractive index of the LC,
n, =1.52, interacting with TM-polarized modes,
is very close to the refractive index of the display
glass (1.51). Therefore, the critical angle relative to
the substrate plane, below which waveguide modes
exist, is very small, causing a significant amount
of TM-polarized luminescence propagating at
angles above the critical angle to leak into the glass
substrates.

The situation is further complicated by the fact
that, in reality, the LC director does not strictly
coincide with the TE polarization direction due to
a slight (2—4°) pretilt angle of the director relative
to the substrate plane. Thus, even TE-polarized
radiation, for which the waveguide condition is
satisfied over a wide range of propagation angles,
partially converts into TM-polarized modes
that leak into the substrate. Resonance losses, in
turn, are characterized by relatively broad spectra,
significantly reducing luminescence intensity even
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at wavelengths far from the resonance maxima.
This is evident not only from the inset in Fig. 3
but also, for example, in Fig. 5 for sample 3 (curve
1), where, as already noted, significant losses
on the “tails” of the resonance bands lead to
spectral narrowing and a shift of the luminescence
maximum. Thus, resonance losses lead to reduced
luminescence across the entire spectral range. It
is also worth noting that the modeling in [13],
where the resonance bands are relatively narrow,
was performed for a single-mode regime, where
the light “injected” into the waveguide was
characterized by a wave vector strictly parallel to
the LC layer plane.

4. CONCLUSION

The experiment confirmed the presence of
resonance losses during light propagation in
waveguide mode within an LC layer confined by
ITO electrodes. The observed spectral loss bands are
polarization-sensitive. The spectral position of these
bands does not depend on the LC layer thickness,
while their intensity increases with decreasing layer
thickness.

It was also demonstrated that the use of fluorinated
polymer alignment layers with a low refractive index
effectively suppresses resonance losses. The obtained
results are significant for the application of waveguide
modes in electrically controlled LC devices utilizing
light propagation in waveguide mode, particularly for
liquid crystal microlasers.
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