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1. INTRODUCTION

Resonant tunneling structures (RTS), which are 
nanoscale heterostructures with field emission, are 
widely used in electronics as sources of very high 
current densities (up  to 1014 A/m²) [1–3]. They 
also form the basis for designing resonant tunneling 
diodes (RTD), transistors, quantum cascade lasers 
(QCL) of the “Stark ladder” type, THz transistors 
and switches [4–11], as well as other devices. For all 
these applications, switching times, response times, 
and overall transient times are crucial [11,12].

RTS is characterized by having one, two, or 
several quantum wells separated by barriers, where 
quasi-stationary resonance levels can arise [13]. We 
will refer to the electron-emitting left electrode as 
the cathode (denoted by the subscript c) and the 
right electrode as the anode (subscript a). For the 
intermediate electrode (grid), the subscript g will be 
used. In the case of equal electrochemical potentials 
of the electrodes μc = μa, the quantum potential V(x) 
between the two electrodes (in a diode structure) 
resembles an inverted parabola on a pedestal and can 
be strictly described by an infinite series of images 
that account for the electron work functions [1]. 
Approximating this series with an inverted parabola is 
rather crude [1,14]. A more accurate approximation 
is a fourth-order inverted parabola [1,2]. In this work, 

we will use an even more precise approximation for 
the potential in the diode 0 < <x d  under anode 
voltage Ua:
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In this formula, α δ= 2 2 1ln( )+( )  represents the 
cathode work function, assumed equal for both the 
cathode and anode W Wc a= , and is related to the 
parameter (gap size) d by the equation:

W ea = 16 .2
0/ πε δ( )

For simplicity, we will further assume equal 
Fermi energies E EFc Fa=  for the electrodes. 
Under potential V(x)V(x)V(x), the boundary 
conditions are V EFa0 =( )  at the cathode and 
V d E eUFa a( ) −= = ma, at the anode, meaning 
the quantum potential V coincides with the 
electrochemical potentials. In cases with different 
work functions (and materials of the cathode and 
anode), an additional term E E x dFa Fc−( ) /  should 
be added to (1). The accuracy of equation (1) is no 
worse than 1%. Diode structures do not allow for 
extremely high current densities. Current increase 
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occurs through resonant tunneling (RT), where one 
or more quantum wells are surrounded by barriers 
[1–3]. Reflections from the barriers interfere, and the 
total reflection coefficient cancels out. For simplicity, 
we further consider a single-well structure with three 
electrodes: cathode (source), grid (gate), and anode 
(drain). Equation (1) applies both to a vacuum gap 
(e = 1), and a dielectric gap between electrodes. In 
the absence of an anode voltage Ua = 0, the potential 
in the center of the gap is:

V d E
W d d

d
Fc

c/
/ /

/
2 =

1 1

1
.

2

2
( ) +

−( ) +( )
−( )

α δ

δ ε

For a work function of 3.6 eV, the corresponding 
value is d = 0.1. Thus, for typical work functions of 
materials (2–5 eV) and typical electrode and gap sizes, 
RTS structures on the order of nanometers satisfy the 
inequalities d/d << 1,  a / << 1d .  In the absence of 
anode voltage, the inequality V d E WFc c/ /2( ) ≈ + e
holds. A dielectric with dielectric permittivity e reduces 
the barrier height by a factor of e.

Suitable and convenient dielectrics for RTS 
include CVD (Chemical Vapor Deposition) diamond 
( ,e = 5.6  bandgap 2.5 eV) [15] and beryllium oxide 
(BeO, e = 6.7,  bandgap 10.6 eV). These dielectrics 
significantly reduce the barrier height and have the 
highest thermal conductivity, which is essential 
for high current densities [2,3]. Although CVD 
diamond with 88% sp³ hybridization has a density of 
88.2% of crystalline diamond, its dielectric constant 
can be taken as 5.6 due to the presence of a small 
graphite phase. Electrodes can be made of metals 
or doped semiconductors. Beryllium has the highest 
Fermi energy (14.6 eV), relatively low work function 
(3.92  eV), and the highest thermal conductivity 
among metals. To construct a complex profile V 
(Fig. 1), equation (1) is applied twice – once for the 
cathode-grid gap (replacing U Ua g® )  and once for 
the grid-anode gap, assuming E E eUFc Fc g→ − .  
On the grid, the quantum potential is constant and 
determined by its electrostatic potential Ug.

In RTDs and QCLs, highly conductive layers 
are usually considered electrically free, meaning 
the potential along them is not fixed and decreases 
[4–12]. Figure 1 shows typical profiles of V(x) for 
diode and triode structures under different anode 
(Ua) and grid (Ug) voltages for copper electrodes. 
To form a quantum well, a grid voltage U E eg Fc= /  
was applied. The energy E is measured from the 

conduction band bottom of the cathode, which 
coincides with the bottom of the well.

If an energy level En exists in the formed 
quantum well, it is quasi-stationary, as there is 
always an identical level at both the cathode and 
anode, allowing the electron to tunnel between them. 
Tunneling can occur both leftward to the cathode and 
rightward to the anode. Subsequently, the electron 
transitions from this level to the Fermi level of the 
corresponding electrode, from which it can enter 
the power supply circuit, as only electrons near the 
Fermi level participate in the diffusion current.

The issue of quasi-stationary level lifetime 
(decay time) in a spherically symmetric quantum 
well has been addressed in several works, such as 
[16–18]. However, the lifetime of quasi-stationary 
levels in a one-dimensional Cartesian RTS has not 
been strictly studied. This time is closely related to 
the tunneling time of a single particle through the 
structure (its dwell time). There is extensive literature 
on the introduction of various time definitions (see, 
for example, the reference list in [19]). The topic 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

x

V

03

5

7

2

4

1

6

Fig. 1. Potential Barrier Profile V (eV) as a Function of Distance 
x (nm) in a vacuum diode (curves 0, 3, 5, 7) and a vacuum triode 
(curves 1, 2, 4, 6). The curve numbers for the diode correspond 
to the anode voltage Ua in volts. For the triode curves  2 
and 4, the grid voltage Ug = EF is specified, and their numbers 
correspond to the anode voltage. For curve 1, U = 0, Ug = Wc/e, 
while for curve 6, Ua = 4 V and Ug = 3 V. The work functions are 
EFc

 = 7 eV and Wc = 4.36 eV (copper electrodes).
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of tunneling times remains under discussion, with 
several paradoxes. Tunneling times are closely linked 
to the switching times of tunnel devices [11]. RTS 
devices such as RTDs, QCLs, and other structures 
are typically modeled using rectangular potentials 
modified by the term −eU x da /  [11]. This approach 
is a rough approximation because high voltages lead 
to a barrier shape close to a triangle on a pedestal [1]. 
Schrödinger equation (SE) calculations show that 
such a barrier is orders of magnitude more transparent 
than a rectangular barrier of the same height and base 
width. A semiclassical approximation is often used 
[16], which can be integrated exactly for a triangular 
barrier [20]. However, this method is accurate only 
up to a pre-exponential factor and is quite imprecise 
in the narrow upper part of the barrier, as it neglects 
the reflected electron wave [20]. For narrow barriers, 
the ref lected wave contributes significantly. In 
the analysis of RTS with two or more rectangular 
barriers, resonance levels are usually defined as the 
penetration of a particle through identical barriers 
to the left or right with the same energy as in the 
well [13]. However, real RTS structures differ. 
Upon reaching the cathode or anode with a given 
energy, the particle transitions to the Fermi level 
of the electrode, emitting or absorbing an energy 
quantum, and exits the structure with this energy, as 
any current in conductors is generated by electrons 
near the Fermi level. Under stationary tunneling 
(constant anode voltage), the number of electrons 
tunneling from the cathode is exponentially greater 
than the number tunneling from the anode, resulting 
in a constant emission current closing through the 
power supply. The emergence of resonance levels 
′En  leads to resonant tunneling (RT), accompanied 

by an increase in current, as the barrier becomes fully 
transparent for electrons with energy E En= ′ .  Quasi-
stationary levels arise with increasing well width. 
These energy levels are complex: E E iEn n n= ′ − ′′.  
The parameter ′′En  determines the level lifetime 
τn nE= 2 / ′′.  The smaller the lifetime, the broader 
the energy level, the wider the energy range satisfying 
the condition E En≈ ′ ,  and the greater the number 
of electrons undergoing resonant tunneling. Thus, 
determining the lifetimes (complex energies En )  
of quasi-stationary levels and their dependence on 
quantum potential configurations is crucial, which 
is the primary aim of this study. For field emission, 
the number of electrons incident per second on the 
barrier within a velocity interval v dvz z+  and energy 
range is: d v n k v dvz z zν( ) ( )+= ,

where

n k
m k Te B+ ( ) ×=
2

2

2 3π 

	 × +
− ( )

















ln exp1 .

E E k

k T
vFc

B
z � (2)

Equation (2) is derived by averaging over all 
transverse velocities of the Fermi gas electrons in the 
metal cathode and is presented for finite temperatures. 
For cold emission (T = 0), the spectrum is limited by 
the Fermi energy:

n k m E E k ve Fc z
+ ( ) − ( )( ) ( )= 2 .2 2 3/ π 

Although the actual tunneling process involves 
a multi-speed electron flux determining the total 
tunnel current density:

	 J U
em

D E U E dEa
e

c

a c
+ +( ) − ( ) −( )∫=

2
, ,

2 3
0

π
µ

µ



� (3)

this problem can be treated as single-particle 
tunneling with a specified energy E.

The electron charge is taken as q ee = − ,  so the 
positive electron flux from the cathode results in 
a positive anode current − ( )+J U a  through a unit 
cross-section. The upper limit in equation (3) is on 
the order of several electronvolts, which is consistent 
with non-relativistic quantum mechanics. For 
thermionic-field emission (at T∼2000K), equation 
(2) should be used, with the upper limit in equation 
(3) extended by a few eV due to the logarithmic decay.

For T = 0, the total current density J J J= + −−
is determined by tunneling in both directions with 

transmission coefficients D E R± ±( ) −= 1
2

,  derived 

from reflection coefficients R ± .  To determine R ±,  the 
Schrödinger equation is solved. The expression for J– is 
obtained by substituting µ µc a→ ,  D D+ −→ .

For a symmetric potential (Ua = 0), the tunneling 
coefficient T(E)T(E)T(E) is always D D+ −= .  For a 
weakly asymmetric potentials.

2. LIFETIME OF THE LEVEL BASED  
ON THE STATIONARY SCHRÖDINGER 

EQUATION SOLUTION

The stationary Schrödinger equation (SSE):

−
∂( )

+ ( )














( ) x

em
V x x

2

2
= 0ψ
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is most conveniently solved for V(x) using the wave 
impedance transformation method. For a constant 
potential Vn in the region x x xn n< < 1+ ,  the wave 
impedance is introduced as:

z E i x x kn n( ) − ( ) ′( )= / = 1 / ,ψ ψ

where:

ψ x A ik xn( ) ( )= exp

is the wave function (WF) of an electron moving in 
the direction of x electron,

k me E Vn n= −2 ( ) ./

Let z xn0 1+( )  be the impedance on the right side. 
It transforms into the input impedance on the left 
side according to the formula:

	 Z x z
z iz k x x

z iz k x x
i n n

n n n n

n n n n
( )

− −( )( )
− −( )( )

+

+
= .

0 1

0 1

tg

tg
� (4)

Setting z Z xi n0 = ( ),  we apply this formula 
iteratively for each segment until we obtain the input 
impedance at the cathode Z ic 0( )  and the reflection 
coefficient from the cathode side:

R k Z k Zic ic
+ − ( )( ) + ( )( )= 1 0 / 1 0 .0 0

Here,

k k m Ec e0 = = 2 / .

For the initial iteration at the anode, we assume:

k m E E eUa e Fc a= 2 ,− +( )/
z ka0 = 1 ./

It is worth noting that in typical tunneling through a 
barrier, k ka = 0  is taken, i.e., the motion is considered 
only up to the turning point. Such transparency is 
 D D+ −= .  However, after passing this point, the 

electron moves quasi-classically, gaining energy eU a.  
This results in lowering the Fermi level at the anode by 
eUa, necessitating the use of the adjusted value ka.

This concept can be illustrated using an infinitely 
narrow step-like barrier: V = 0 at x < 0 and V eU a= −  
at x  >  0. For such a barrier, the quasi-classical 
approximation gives full transparency, D = 1,  R = 0.  
However, under the strict solution, the reflection 
from the step is:

R k k k ka a= /0 0−( ) +( )

and D < 1.  Applying formula (4) is equivalent to 
matching the wave function and its derivative. Clearly, 
the energy levels E E iEn n n= ′ − ′′  can be defined as 
the complex roots of the equation:

R En
+ ( ) = 0.

The transparency from the anode to the cathode 
D– is determined by reverse transformation, where at 
the anode we take:

k m Ea e= 2 / ,

z ka0 = 1 /

and

R k Z d k Z dia ia
− − ( )( ) + ( )( )= 1 / 1 .0 0

The difference between D+ and D– increases with 
increasing Ua. When eU Ea Fc> ,  tunneling from 
the anode becomes impossible. After tunneling, the 
electron always transitions to the Fermi level of the 
corresponding electrode, either releasing or absorbing 
energy e E EF a c− ( ),  depending on the sign of the 
energy difference. This process is diffusive, occurring 
over a distance on the order of the electron mean free 
path, and does not affect the wave tunneling process 
itself. If tunneling occurs from a level below the 
Fermi energy, heating of the corresponding electrode 
occurs (Nottingham effect): the departing electron 
is replaced by an electron from the Fermi level. For 
U a = 0,  we obtain a symmetric structure in the form 
of a quantum well between two barriers (see Fig. 1, 
curves 0 and 1). In this case, the condition:

R E R En n
+ −( ) ( )= = 0

yields energy levels from which the particle can tunnel 
equally to the left or right. Otherwise, the condition 
R En
+ ( ) = 0  gives the levels from which the particle 

can escape to the anode, while R En
− ( ) = 0  

corresponds to levels leading to cathode transitions. 
Calculations show that the levels approximately 
coincide within their width. For example, if 
eU Ea FA> ,  all energy levels at the anode become 
negative, making transitions to positive energy levels 
on the cathode impossible. It is evident that for 
E < 0, when R E− ( ) ≡ 1,  i.e. meaning no solutions 
exist for the equation R E− ( ) = 0.  In this case, the 
cathode impedance 1/kc  becomes imaginary, and 
the cathode acts as an infinitely long, fully reflective 
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step for the anode. Positive energies at the anode 
can only exist at non-zero temperatures, i.e., under 
thermionic emission conditions. Solutions to the 
equation R E+ ( ) = 0  always exist for levels on the 
cathode side. Thus, for an asymmetric potential, two 
types of energy levels exist. Resonant tunneling is 
primarily considered for asymmetric potentials, as 
this condition ensures a continuous current.

Another possible approach to solving the stationary 
Schrödinger equation involves using transfer matrices 
[1–3] T E ( ).  The structure matrix is defined by 
piecewise-constant potential V approximations and 
multiplying the segment matrices. The characteristic 
equation for determining tunneling levels at the 
anode takes the form [1, 3]:

	 ik E
T E ik E T E

T E ik E T Ec
a

a
( ) ( ) − ( ) ( )

( ) − ( ) ( )
= .21 22

11 12
� (5)

Another method involves using the sweep method. 
In addition to finding R E± ( )  and D E± ( )  this 
approach allows for determining the wave function 
amplitudes A ik x xn n n

± ± −( )( )ψ  and the charge 
distribution in the barrier and well region under 
known incident particle f luxes from the cathode 
n k v dvz z
+ ( )  and the anode n k v dvz z

− ( ) .

This, in turn, enables the estimation of changes in 
the quantum potential V due to space charge effects 
under high currents [2]. Such estimation requires 
iterative solutions of the Poisson equation (PE) and 
the Schrödinger equation. However, these numerical 

methods are less convenient for our analysis of 
resonant level influence on electron emission.

We derive the exact solution of the Schrödinger 
equation (SE) for the model potential V x( ),  
described by two rectangular barriers of height Vc 
at the cathode and Va at the anode (see Fig. 2). To 
better match the real potential, the barrier widths 
tc and Ta are taken approximately half the size of 
the bases of the actual near-triangular barriers on a 
rectangular pedestal (Fig. 1, curves 2, 4, 6), while 
the well width tu is correspondingly increased. It is 
possible to achieve an exact correspondence between 
the width of a triangular barrier and the width of a 
rectangular barrier with equal heights by equating 
their transparencies D E D Erec tre( ) ( )= .  This 
correspondence depends on the energy. Averaging 
over the energy range, we obtain a coefficient of 
approximately trec ≈ 0.5ttre. In the quantum well, the 
SE solution takes the form:

ψ x A ik x t A ik x tw c w c( ) −( )( ) + − −( )( )+ −= .0 0exp exp

In the barrier region near the cathode, the wave 
function (WF) is:

ψ x A k x A k xc A c A( ) −( ) + ( )+ −= ,exp exp 

Similarly, in the barrier region near the anode, the 
wave function is:

ψ x A k x t ta a c w( ) − − −( )( ) ++= exp 

+ − −( )( )−A k x t ta a c wexp  .

Here, we introduced the following notations:

k m V Ec e c= 2 ,−( )
k m V Ea e a= 2 ,−( )

k m Ee0 = 2 .

The wave function at the cathode represents an 
outgoing wave:

ψ x A ik xc( ) −( )= .0exp

Similarly, at the anode:

ψ x A ik x da( ) −( )( )= .0exp

Here, A ka = 0,  d t t tc w a= + +  is the size of the 
structure. The task is to match the wave functions and 
their derivatives at the boundaries. There are eight 
unknowns, four boundaries, and thus eight conditions. 

x

V

V =

V

c

EFFc

Fa

E -eUF

Va

a

00

E2
‘

E1
‘

tw

k

tc ta

kc

~
ka

kc

ka

~

Fig. 2. Schematic potential distribution V in a single-well RTS at 
Ug = EF/e. Dashed lines indicate the energy levels at the cathode, 
anode, and two metastable levels.
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Calculating the eighth-order determinant without 
numerical methods is challenging, so we iteratively 
eliminate unknowns. The results of this elimination 
are provided in the Appendix. By defining the function 
f(E) according to formula (A2) from the Appendix, the 
characteristic equation takes the form:

	 E V
f E

f E f E
a=

1

1 1
.

2

2 2

( ) −( )
( ) −( ) − ( ) +( )

� (6)

This equation allows for the iterative search for 
complex roots En .  Assuming the function f is large 
in magnitude (corresponding to wide barriers), we 
obtain E V f Ec≈ − ( )/4.  As the well expands from a 
very narrow width, the energy level first appears near 
Va [21]. For such a level, the decay rate k~a ≈ 0 is:

tg /k t k kw a0 0 .( ) ≈ 

Assume there is such a level:

E Va1 1= 1 ,−( )δ

where d1 is small. Also, let:

δ << = 1.∆ V Vc a/ −

Calculating the function f, we obtain:

 k kc ≈ + ( )( )1 2 ,δ/ ∆

exp exp2 2 1 2 , k t ktc c c( ) ≈ ( ) + ( )( )δ/ ∆

Where
� �k m Ve a= 2 ∆ / .

As well as:

k k0 1 2 ,≈ −( ) δ/ / ∆

k kc0 1 1
2/ 1 1 1 / 2 4 . ≈ − +( ) + ( )( )δ δ/ / /∆ ∆ ∆

Let us set ka = 0,  and rewrite the introduced 
condition as

t kw
/ ∆ ∆( ) = .

Then we have

f
kt

t k

c

w

≈
( )

− + +( )
×

exp 2

4 ( 1) 11



∆ ∆δ

× + + −{ ( 1)(1 )1δ ∆ t kw


−( ) + ( ) + + +( )








δ1
2 2

2 2 ( 1) 1 ./ ∆ ∆ ∆t k t kw w
 

For the left side of equation (A2), we get

1

1
1

1

1
,0

0
1 2

+
−

≈ +
+

+( )
ik k

ik k

ia

a

/

/





δ
∆

∆

from which the correction d1 can be found, expanding 
further:

δ1 =
16 2

1 1 1

exp −( )
+( ) +( )

+




kt

t k

c

w/∆

+
−( )

+( ) +( )
×

4 2

1 1 1

δexp 



kt

t k

c

w/∆

×
+

+( )
− +( ) +( )













4
1

1
1 1 1 .

2

i
t kw

∆

∆
∆/ 

We can neglect the second-order term. To find 
the exact roots of equation (6), let us consider a well 
surrounded by infinitely wide barriers, i.e., potential 
steps of height Vc and Va. In such a well, stationary 
energy levels E Vn a<  are possible. The problem of 
an asymmetric well has been solved and studied in 
[21]. With the notation

k m En e n0 = 2 /

it has the solution

k t n
k

m V
n w

n

e c
0

0=
2

π −











−arcsin



	 −










 ( )arcsin

k

m V
g En

e a
n

0

2
=

 � (7)

which gives real energy levels. Rewrite equation (7) 
as

tg k t k tn w n n0 0= ,( )

where

t
k k

k k k
n

n c

c a n

= .0

0
2

+

−



 

Choosing the well width from the condition of the 
existence of one level:

t t
V V

m V
w

a c

e c

> =
/ 2

2
,0

π − ( )arcsin /

/

we get
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E
g E t

mn
n w

e
=

2
.

2
 ( )( )/

From this equation, we find the real values of E1 by 
the bisection method in the interval 0, 0V( ) .  For the 
existence of multiple levels, the well must be several 
times wider than t0. Then we find En, n N= 1,2,..., .  
The values of En are used as initial approximations 
E En n

0 =( )  for the iterations according to equation 
(6). As a result, we obtain all the levels from which 
a particle can escape to both the anode and the 
cathode. To increase the current, the widest possible 
well should be used, for which the electrode material 
should have the maximum electron mean free path 
(MFP). The MFP can be significantly increased by 
using cryogenic temperatures. Let us consider the 
derivation of equation (7), where the wave functions 
(WF) on the cathode and anode sides are taken as

ψ δx A k i xc a c( ) −( )( )= 1 ,exp 

ψ δx A k i x ta a a w( ) − −( ) −( )( )= 1 ,exp 

i.e., the barriers are partially transparent. Here

� �k m V Ec e c n= 2 ,− ′( )/
� �k m V Ea e a n= 2 ,− ′( )/

and small corrections are taken as

δc n c nE V E= 2 2 ,′′ − ′( )/

δa n a nE V E= 2 2 .′′ − ′( )/

In reality, they are associated with the finite width 
of the barriers and the finite lifetime of the levels. In 
the well 0 < <x tw ,  we take

ψ δ δx A k xn n( ) +( ) +( )= 1 ,0sin

where

� �E k mn n n e= 1 2 ,
2

0
2+( ) ( ) ( )δ /

and the small correction dn needs to be found. As 
a result, we obtain the characteristic equation for it:

tg k t kn n w n n0 01 = 1+( )( ) +( ) ×δ δ

×
−( ) + −( )

−( ) −( ) − +( )

 

 

k i k i

k k i i k

a a c c

c a a c n n

1 1

1 1 1
.

0
2 2

δ δ

δ δ δ

Introducing the notations

′ ′δ δ δ δ δ δan a n cn c n= , = ./ /

Primed quantities are not small. Considering (8), 
to obtain the correction, expansion up to the second 
order in dn

2  should be used. We obtain dn n nA B= / ,  
where

A
t
t

k t t
i k k

k k
n

w

n
n n w

an a cn c

a c

= 10
2+ − +

′ + ′( )
+

−
δ δ 

 

−
′ + ′( ) +

−

2 2
,0

0
2

ik k k

k k k

c a an cn n

c a n

 

 

δ δ

B
k k k

k k k
k t tn

c a an cn n

c a n
n n w= 0

2

0
2 0

2
 

 

′ ′ +

−
− +

δ δ

+
′ + ′( ) +

−












+4 0

2

0
2

2
ik k k

k k k

c a an cn n

c a n

 

 

δ δ

+
′ + ′( ) +

−

2 2
.0

2

0
2

ik k k

k k k

c a an cn n

c a n

 

 

δ δ

For the calculation of the correction, one can 
assume E En n' = ,  and then

′′ −ℑ( )E En n n/ = ,δ

while the real part also changes:

′ + ( )( )E En n n= 1 .Re δ

In Fig. 2, two levels are shown. From the cathode, 
tunneling to both levels with exit to the anode is 
possible. In this case, the cathode heats up because 
its level is above the Fermi level (Nottingham effect). 
When transitioning from the first level to the anode, 
the anode cools, while transitioning from the second 
level heats it up. Tunneling from the anode to the 
second level at T=0 is impossible. The lifetime of 
the level exponentially decreases with the narrowing 
of the barriers. The barriers narrow as the field Ug 
increases (Schottky effect), i.e., with an increase in 
well depth. At U U Eg a Fc> /+ ,  stationary levels 
are possible in the well. Narrowing of the barriers 
also occurs with increasing voltage U and decreasing 
sizes tc and ta. There is a critical voltage at which 
the barrier relative to the Fermi level disappears, 
becoming nearly triangular. Indeed, using equation 
(1), where we denote

′
−( ) +( )

−( )
W W

d d

d
c=

1 1

1
,

2

2

α δ

δ

/ /

/ ε
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assuming d  =  tg and neglecting small terms, this 
condition can be written as:

V x EFc0 = =( )
= 1 .0 0 0E W d x d x eU x dFc c g+ ′ − −( )( )( ) −δ / /

From this, we find the point x0 where this occurs. 
It is very close to the cathode, so we simplify the 
cubic equation by replacing d x− 0  with d:

x eU x W dg c0 0
2= ./ ′( ) + δ

Solving this quadratic equation iteratively, first 
assuming

x0 = d

and then refining:

x eU W dg c0
2= .δ δ+ ′( )/

The refinement is very small, so we obtain the 
critical voltage:

U W d e W d eg = 1 2 2 .′ −( ) ( ) ≈ ′ ( )/ / /δ δ

For a work function of about 4 eV at d=2 nm, this 
corresponds to a critical electric field strength at the 
cathode of 2.35 1010⋅  V/m. Thus, in RT structures 
with well widths of a few t0 and narrow barrier 
widths tc and ta, a significant increase in emission 
current is possible simply by increasing the size tw. 
However, tunneling is ballistic transport without 
energy loss, so the width tw must be significantly 
less than the electron mean free path (MFP) in the 
corresponding material. The characteristic size tw at 
room temperature is a few nanometers. To reduce the 
lifetime of levels and increase current, the barriers 
should be made narrow. Their narrowing is also 
achieved by increasing electrode voltages. It is not 
difficult to obtain exact solutions to equation (6), but 
these equations are model-based. For real potentials 
(Fig. 1), one should solve the exact equations 

(5) or R E± ( ) = 0.  The table above presents the 
results of iterative calculations of complex energies. 
Calculations based on equation (5) and the 
conditions R E± ( ) = 0  agree well.

A very simple method for determining complex 
levels is calculating the transparency of the 
structures. Figure 3 shows an example of calculating 
D+ for several double-well RT structures with 2 to 
4 metastable levels. Such structures are obtained 
with a double grid [1–3] and are more convenient 
for achieving resonance tunneling because two 
approximately equal barriers can be formed under a 
significant electrostatic potential Ua.

Table. Metastable levels (eV) in the range (0, EFc) for the potential in Fig. 1 at different anode voltages Ua (V):

Ua 1.0 2.0 3.0 4.0

′ − ′′E iE1 1
0.14467–i3.1⋅10–4 0.1445–i2.9⋅10–4 0.1399–i2.7⋅10–4 0.1405–i2.7⋅10–4

′ − ′′E iE2 2
1.815–i2.5⋅10–3 1.807–i2.6⋅10–3 1.798–i2.8⋅10–3 1.789–i2.9⋅10–3

′ − ′′E iE3 3
4.4938–i8.9⋅10–3 4.369–i9.5⋅10–3 4.328–i9.9⋅10–3 4.279–i1.2⋅10–2

′ − ′′E iE4 4
6.872–i7.2⋅10–2 6.982–i8.3⋅10–2

0.5 0.6 0.7 0.8 0.9 1.0

10
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-10
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+00
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Fig. 3. Tunneling coefficient D  =  D+ in a double-well RT 
structure as a function of the ratio t = t1 = t2 = t3 depending on 
E/EFc

 at t = tg = 1 nm (curves 1, 3) and t = 2 nm, tg = 1.5 nm, 
d = 9 nm (curve 4). Work function Wc = Wg = Wa =4.0 eV, Fermi 
energy EFc

 = EFa
 5 eV, Ua = 11 V. Ug = 13 V (1, 4); Ug = 20 V (2); 

Ug = 25 V (3)
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Notably, the peaks for D+ and D– differ slightly, 
particularly at low energies. At E EFc> ,  D ± ≈ 1  
always holds. This case corresponds to thermionic 
emission if the electrode temperatures T ± > 0.  It 
should be noted that for different barriers, peaks may 
not reach unity (incomplete resonance tunneling), 
associated with partial suppression of ref lected 
electron waves. The values ′En  are determined by 
the peak maxima, which can be done accurately. 
The lifetimes ′′En  are determined by the resonance 
widths. Typically, the levels are located near the 
upper regions of the well.

Let us consider how the position and width of the 
level affect the current contribution. Suppose there is 
one level ′ − ′′E iE1 1.  Approximating it as an equilateral 
triangle with unit height, the contribution from the 
level is

∆J em E E Ee Fc
+ − − ′( ) ′′ ( )= 4 .1 1

2 3/ π 

For levels near the Fermi level of the cathode, it 
is small. Therefore, it is important to obtain low-
lying levels with a short lifetime (large width). For a 
single triangular potential barrier at a critical field, the 
semiclassical approximation gives its transparency D as

D d m W eUe a≈ −( )exp 4 2 3 ,3/2 / 

see [20]. Here, the barrier height W is measured from 
the kinetic energy of the incoming electron, i.e., in 
our case, W = V – E.

For deep levels, the transparency of a single barrier 
is exponentially small compared to D = 1 in resonance 
tunneling. The formula works well for deep levels, but 
for E = V, its limitation becomes apparent: D = 1 at 
W = 0, while solving the Schrödinger equation gives 
D < 1. This limitation restricts the applicability of the 
Fowler–Nordheim formula to single barriers.

Nevertheless, the result can be used to estimate 
the lifetimes of deep levels by calculating D(c,a) at 
W V Ec a n= , −  and determining dc = Dc and da = Da.

3. LIFETIME OF THE LEVEL  
IN THE NONSTATIONARY APPROACH

The nonstationary Schrödinger equation (SE) is 
written as

S t x t x V t x t x , , = , , ,( ) ( ) ( ) ( )ψ ψ

It is known to be relativistically non-covariant. 
Here, the operator for a free particle’s Hamiltonian 
is denoted as

S t x i
mt

x

e

� �
�

, =
2

.
2

( ) ∂ +
∂( )

This implies that the Green’s propagator function 
(GPF), which describes the propagation of a particle 
from point x′ at time t′ to point x at time t, has the 
following form [22, 23]:

K t t x x0 , =− ′ − ′( )

=
2

sgn t t
m

i t t
e− ′( )
− ′

×
π 

		  ×
− ′( )

− ′















exp
i x x m

t t
e

2

2
,



� (8)

This expression suggests infinitely fast propagation of 
the perturbation. Indeed, GPF (8) defines the particle’s 
presence at point x at time t based on its amplitude 
ψ0 ,′ ′( )x t  at point x′ at the initial moment t′:

ψ ψ0 0 0, = , , .t x K x x t t t x dx( ) − ′ − ′( ) ′ ′( ) ′
−∞

∞

∫

If at the initial moment t0, a probability density

ψ δ0 0 0, , = ,t x x x( ) −( )

emerges at point x0 meaning the particle is localized 
there, then for any later time t t> 0,  the wavefunction 
exists throughout the entire infinite space:

ψ0 0 0 0, = , ,x t K x x t t( ) − −( )

Thus, the propagation speed of the probability 
density is infinite, though the density itself rapidly 
decreases at distant points. Here, the subscript “0” 
denotes a free particle (V=0).

Such a particle is generally described as a wave 
packet (WP) with a certain spectrum of wave 
numbers k and energies E. It is worth noting that the 
incoming particle flow described by distribution (2) 
also represents a WP.

The GPF (8) satisfies the initial condition

K t t x x x x
t t0 , =− ′ − ′( ) − ′( )→ ′ δ

and the differential equation
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SK t t x x i t t x x� �0 , = ,− ′ − ′( ) − ′( ) − ′( )δ δ

(see [22]). Solving the nonstationary SE requires 
setting appropriate initial conditions. A convenient 
approach is to use the stationary case at the initial 
moment t t= 0 , i.e., the wavefunction ψ0 x( )  and 
the potential V x0 ( ).

At t t≥ 0,  when the potential V x t,( ) starts 
changing, the wavefunction satisfies the nonstationary 
SE. The wavefunction for t0 > 0  is governed by the 
Lippmann–Schwinger-type integral equation:

ψ ψx t x i K t t x x
t

, = ,0
1

0

0( ) ( ) − − ′ − ′( ) ×−

−∞

∞

∫ ∫

		  × ′ ′( ) − ′( )  ′ ′( ) ′ ′V t x V x t x dx dt, , .0 ψ �(9)

Indeed, at t ″ 0, , we have ψ ψx t x, = 0( ) ( ). . 
Taking the time t > 0  derivative of (9) and applying 
the operator S,  we obtain the SE:

S x t V t x t xψ ψ, = , , .( ) ( ) ′ ′( )

Assume the potential

∆V t x V t x V x, = , 0( ) ( ) − ( )

is localized within a certain region. In this case, for 
small times, equation (9) can be solved rather simply. 
An example for a double-barrier resonant tunneling 
diode (RTD) is provided in [12]. This equation 
is particularly convenient for analyzing transient 
processes and tunneling times. Two cases can be 
considered: (a) ∆V x0, = 0( )  (smooth potential 
change) and (b) ∆V x0, 0( ) ≠ .  We focus on the 
second case here. Assume a well with one metastable 
level between two barriers exists at t < 0. This level 
cannot be populated, as it would decay over infinite 
time. For simplicity, consider identical barriers of 
height V.  The metastable level between identical 
barriers V is defined by the condition

th k t ktb w1 =( )( )

= =
2

,
1 1

1

α
 



E V E

E V

−( )
− /

see [13], where

� � �
�

�
k k ik

m V Ee
1 1 1

1
= ' ' =

2
+ ′

−( )

This equation determines the level’s lifetime, 
t1  =  t2  =  tb is the barrier width. A convenient 
numerical solution can be sought in the form

E V E k tb1 0
2

1
2

1= ,α( )( ) ( )/th 

V m te w0
2 2= 2 , /

expressing the arctangent via logarithmic functions. 
The quantities

α α α= = 21 1 1′ + ′′ −( ) −( )i E V E E V/ /

and

  ′ ′ + ′′k k ik= 1 1

are complex. For wide barriers, we obtain

� �′ − ′( )k m V Ee1 1= 2 ,/

� �′′ ′′ − ′( )k E m V Ee1 1 1= 2 2 ,/ /

th2
1 1 11 4 2 2 .  k t k t ik tb b b( ) ≈ − − ′( ) − ′′( )exp exp

It is easiest to estimate the level by assuming it 
arises at the barrier boundary. In this case, a′, and

′′ ≈ ′ ′′α α3 21 1E V/

To simplify further calculations, introduce the 
dimensionless parameter

δ = 4 2 2 ,1 1exp exp− ′( ) − ′′( ) k t ik tb b

and obtain the energy as

E V V V V V E1 0 0
2

0 1= 2 4 3 2 ,+( ) + + +/ / / δ∆

where

∆E
V VV

V V V

V
1

0
2

0

0
2

0

0=
4 3 4

4 3 2 2
.

/ /

/

+( )
+

+

If the well deepens by an amount DV, the energy 
at the bottom becomes negative. Assume only one 
stable level exists. If the center of the well is at x=0, 
the wavefunction inside the well takes the form of 
either an even or odd function:

For an even wavefunction:

ψ0 1= ,x A k xc( ) ( )cos

For an odd wavefunction:
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ψ0 1= ,x A k xs( ) ( )sin

herewith

ψ ψ0 02 0, 2 0,t tw w/ /( ) ≠ ′ ( ) ≠

k m Ee1 1= 2 ./

Let's mark
� �

� �
� � �

k m V E

k m V V E

z i k z i k z

e

e

0 1

1 1

0 0 1 1

= 2

= 2

∆

∆

−( )
+ −( )

= − = −

/

/

/ /

,

,

, , 11 11= /k .

Then, in the case of an odd wave function, we 
have the characteristic equation:

tg / /k t iZw i1 12 = ,( ) ρ

And for the even function:

tg / /k t i Zw i1 12 = .( ) − ρ

The value

Z
k t

k t
i =

1 0 1 1

1 0 1

  



 



ρ ρ ρ

ρ ρ

− ( )( )
− ( )

th

th

is imaginary, so the equations are real and determine 
the real energies. We take the normalization of the wave 
function (WF) from the condition of finding the particle 
in the well region x tw″ /2.  This is an approximate 
condition, as there is some probability leakage through 
the barriers. However, with sufficiently wide barriers, it 
is negligible. A strict normalization can be performed, 
but it results in cumbersome amplitude values. In our 
case, the amplitudes are:

A t t k t kc w w w
2

1 1
1

= 1 ,+ ( ) ( )( ) 
−

sin /

A t t k t ks w w w
2

1 1
1

= 1 .− ( ) ( )( ) 
−

sin /

It is clear that the even level should appear first, as its 
wave function approximately corresponds to the half-
wave of de Broglie. Thus, for t < 0, such a populated 
level exists. At the moment t = 0, the potential DV > 0 
is suddenly switched on, and the bottom of the well rises 
to zero energy. In such a well, the particle cannot exist 
indefinitely, and the state begins to decay, described by 
the integral equation (IE):

ψ ψx t x i V, = 0
1( ) ( ) − ×−

 ∆

	 × − ′ − ′( ) ′ ′( ) ′ ′∫ ∫
−0 /2

/2

0 , , .
t

tw

tw

K t t x x t x dx dtψ � (10)

This problem can be solved numerically or by 
perturbation theory. In the latter case, the first 
approximation is:

ψ ψ1 0
1, =( )
−( ) ( ) − ×x t x i V ∆

× − ′ − ′( ) ′( ) ′ ′∫ ∫
−0 /2

/2

0 0, .
t

tw

tw

K t t x x x dx dtψ

The probability of finding the particle in the well 
region now becomes:

	 P t t x dx
tw

tw

( ) ( )
−
∫= , .

/2

/2
2

ψ � (11)

It decreases over time. Solving IE (10), we 
compute (11). Obviously, with the chosen 
normalization P 0 = 1( ) .  Approximating (11) with 
the function P t t0 1=( ) −( )exp ,/τ  we determine the 
level lifetime. The corresponding result is shown in 
Fig. 4, corresponding to the value ′′ ′E E1 1/ = 0.021,  

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

0.8

1.0

P

t /�1

Fig. 4. Transition probability P(t) according to formula (12) 
for the decay of a single level. The dashed curve represents 
exponential decay P0(t) = exp(–t/t1).
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t1 = 59.5 fs. It should be noted that the decay of such 
a state generally does not follow an exponential law 
[24–35], which holds only for infinitely long-lived 
levels [36]. There exist continuous-spectrum states 
in the well that distort the exponential law. The 
continuous spectrum and interference lead to faster 
initial decay, followed by a slowdown [17, 24]. An 
even more complex case corresponds to multiple 
levels. The non-stationary approach is significantly 
more complicated than determining complex roots. 
Interestingly, for tunneling problems, calculating the 
probability density:

ρ E x E dx( ) ( )∫= ,0
2

ψ

both in the well region and in the barrier region shows 
maxima at energies corresponding to the resonance 
levels E′ (see Fig. 5). The result is normalized to the 
particle number density in both flows:

n E n E n E( ) ( ) + ( )+ −= =

= 2 .3 2 2 3Em E Ee Fc
/ /−( ) π 

This is because all incident flows from the left 
and right with resonance energies ′En  pass into the 
well, while for other energies they are significantly 

reflected. Both the tunnel current density J and the 
probability current density j are continuous along the 
entire structure, including the electrodes, reflecting 
the conservation law of particles (probability) in non-
relativistic quantum mechanics.

4. APPLICATION OF NON-STATIONARY 
SCHRÖDINGER EQUATION 

FOR DETERMINING TUNNELING TIME

Since the introduction of the concept of 
tunneling time in 1930, there has been no established 
understanding in the literature (see [19] and references 
therein). Paradoxes such as the Hartman effect, 

“superluminal” tunneling, negative tunneling time, and 
others are still discussed. IE (10) is quite convenient for 
resolving such issues and studying transient processes 
[12]. The level lifetime (residence time in the structure) 
is often associated with tunneling time. Here, instead of 
IE (9), we consider another approach based on series 
expansion for solving the non-stationary Schrödinger 
equation. Suppose that at t < 0, in the region 0 < x < d, 
we have a structure with three electrodes: Ua = 0, and 
U W eg c= − / .  Also, let the value ddd be sufficiently 
large. In this case, the potential is close to a rectangular 
shape with width d and height Wc relative to the Fermi 
level (see Figure 1, curve 0). Relative to zero, its height 
is V W Ec Fc= + .  If the grid voltage were zero, the 
potential (relative to EFc) would appear as two peaks of 
height Wc, separated by a gap with zero height. Curve 
1 in Fig. 1 demonstrates the potential at a negative grid 
voltage U Wg c= − ,  when the entire curve is elevated 
by Wc. Such a potential blocks the current. Suppose 
that at time t = 0, the potentials switch such that 
Ua > 0 and U E eg Fc= / ,  i.e., the problem becomes 
equivalent to resonant tunneling (RT). Accordingly, we 
need to consider the transient processes of tunneling 
establishment when t > 0 during the switch from curve 1 
to curves like 2, 4. For a diode structure, this switch 
corresponds to curve 0 transitioning to curves 3, 5, 7, 
but without RT. The macroscopic change in current 
during such a process is quite easy to measure, unlike 
the tunneling time of an individual particle. It should 
be noted that for t < 0, the current was absent due to 
the symmetry of the structure. Also, at these times, the 
particle density in the structure was negligible, as the 
tunneling probability through a wide barrier was nearly 
zero. Near the edges, the density decays exponentially. 
By choosing a large ddd, one can assume that particles 
were absent in the barrier region. Switching the 
potentials leads to the appearance of current. It cannot 
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Fig. 5. Normalized particle number density r in the well as a 
function of energy E for three resonance levels (eV): 0.140552, 
1.78936 eV, 4.27933 eV (see Table, Ua = 4 V)
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appear instantaneously, as particles need to traverse 
the region d, thus creating a finite transient time. We 
will solve the non-stationary Schrödinger equation by 
expanding into series in the region 0 < x < d:

Ψ t x, =( )

	 = ,
=0 =1

A t x t x
n

n n
n

n n

∞ ∞

∑ ∑( ) ( )






+ ( ) ( )






α χ β χcos sin �(12)

	 V t x t x
n

n n, = ,
=0

( ) ( ) ( )
∞

∑ν χcos � (13)

where χ πn n d= / .  This method is applicable for 
multiple electrodes, but further numerical results 
are presented for the diode. It is not possible to 
use only cosines or sines in the expansion (12), as 
this would always result in zero probability current 
density. For simplicity, we will apply the method to 
the diode structure. The amplitude A is introduced 
for normalization, meaning that when it is specified, 
we can assume a0 = 1. To perform the calculations, 
we truncate the series (12) and (13) by an index N. 
Substituting (12) and (13) into the Schrödinger 
equation and using the orthogonality of trigonometric 
functions, we obtain the coupled differential equations:

′ ( ) +∑α ω αn
m

N

nm
cc

m mt i A t( ) =
=0

+ ( ) −
∞

∑i A t x
m

nm
cs

m m m
=1

( )ω β χsin

− ( ) ( ) +




 ∑

i
V t t

m

N

nm
cc

m


=0

α α

		 + ( ) ( ) ( )






∞

∑
m

nm
cs

m mV t t x
=1

,β β χsin � (14)

′ ( ) ( ) +∑β ω αn
m

N

nm
sc

m mt i A t=
=0

+ ( ) ( ) −
∞

∑i A t x
m

nm
ss

m m m
=1

ω β χsin

	 − +




 ∑

i
V t t

m

N

nm
sc

m


=0

( ) ( )α α

	 + ( ) ( ) ( )






∞

∑
m

nm
ss

m mV t t x
=1

.β β χsin �(15)

Here, ω πn en m d= 22 2 2
 / ( )  are the frequencies, 

and the matrix elements, detailed in the Appendix. 
These equations are quite complex if the potential 
depends arbitrarily on time. In the case of an 
abrupt potential switch, it stops depending on time, 
simplifying the equations. Rewriting the matrix 
elements, the first equation can be simplified to:

′ ( ) − ( )α ω αn n nt i t =

= =
=1

f t
i

V t i A t tn nn
cc

m
nm
cs

m( ) − ( ) + ( ) ( ) +
∞

∑�
�α β

+ ( ) ( )
≈

∑i A t t
m m n

N

nm
cc

m
=0,

. α

Solving this equation using the Bernoulli method 
or the method of variation of arbitrary constants gives:

α α ωn n nt i t( ) ( ) ( ) += 0 exp

	 + ( ) ′( ) − ′( ) ′∫exp expi t f t i t dtn

t

n nω ω
0

. � (16)

Similarly, we obtain:

β βn n nt i t( ) ( ) ( ) += 0 exp ω

+ ( ) ′( ) − ′( ) ′∫exp expi t g t i t dtn

t

n nω ω
0

.

Here, the following functions are introduced:

g t
i

V t i A t tn nn
ss

m

N

nm
sc

m( ) − ( ) + ( ) ( ) +∑=
=0

�
�β α

+ ( ) ( )
≈

∞

∑i A t t
m m n

nm
ss

m
=1,

. β

The solution in time is sought using the 
discretization method: t m tm = ∆ ,  m = 1,2,...,  with 
integrals calculated using the midpoint method. If 
the initial values αn 0( ),  βn 0( ),  are known, the 
equations allow us to find αn m t∆( ),  βn m t∆( ),  using 
either explicit or implicit schemes.

The modified matrix elements here take a simple 
and clear form, for example:

A t A V tnm
cc

nm
cc

nm
ccα α( ) − ( )=

If such a barrier instantaneously changes its shape 
at t = 0 to V(x), these elements stop depending on time:

� �A A Vnm
cc

m nm
cc

nm
ccα αω= − /
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Their exact values can be found if the shape V(x) 
is simple. For large Ua, it resembles a triangle placed 
on a rectangular base (see Fig. 1, curves 3, 5, 7). At 
eUa  =  EF, the height of the base can be taken as 
W, and the height of the triangle as EF. Due to the 
Schottky effect, the barrier is actually somewhat 
lower. Calculating the integrals, we obtain:

V v vnm
cc

n m
c

n m
c

n
α δ= 1 ,0+ −+( ) +( )/

V v vnm
ss

n m
s

n n
s

n
β δ= 1 ,0+ −−( ) +( )/

V v vnm
sc

n m
s

n m
sα = ,− ++

V v vnm
ss

m n
c

m n
cβ = .− +−

Here, the values of the following integrals are 
introduced:

ν χn
c

d

nd
V x x dx=

1
,

0
∫ ( ) ( )cos

ν χn
s

d

nd
V x x dx=

1
.

0
∫ ( ) ( )sin

For the initial symmetric wide barrier (curve 0), 
the height V0 = W + EF, and the coefficients an(t) = 0 
and bn(t) = 0 at t < 0, as the probability density inside 
is practically absent. This approximation improves 
with increasing d, implying an(t) = 0, bn(t) = 0, i.e. 
within Y(x,t) = 0, t < 0. We take the initial barrier as 
rectangular. Then the integrals are easily computed, 
for example:

ν π δn nV inc n V0 = = .0 0 0( ) ( )s

When this barrier under applied voltage 
U E ea F= /  takes the form:

V x W E x dF( ) ≈ + −( )1 /

(see Fig. 1, curve 7), we obtain:

ν δ πn
c

F n FW E E onc n= ,0+( ) + ( )c

ν π πn
s

FW onc n E inc n= .c s( ) + ( )

In our case:

ν πn
s W onc n= .c ( )

We assume that at the moment of voltage 
application, some coeff icients an(0) and b(0) 

instantly change from zero. This happens due to the 
appearance of probability current density. We find 
them from the continuity condition of this current 
density.

To the left of the barrier, the spectral wave 
function has the form:

ψ x k a k ikx R k ikx, = ,( ) ( ) ( ) + ( ) ( )





+ +exp exp

and to the right:

ψ x k, =( )

= .a k ik x d ik x d− ( ) − −( )( ) − −( )( )





  exp exp

Here:

ψ ψd k d k ika k, = 0, , = 2 ,( ) ′( ) − ( )−
  

At high voltage:

′( ) ′( )ψ ψd k k, 0, << 1./ 

Upon voltage application, the electrochemical 
potential on the cathode jumps, hence:

2 < < 2 ,m eU k m E eUe a e Fc a/ / +( )

0 < < 2 .� �k m Ee Fa /

Now the coefficients an, bn in the wave function 
(13) at t > 0 become non-zero. They are dimensionless, 
so the amplitude A must be determined from the 
normalization to particle flux. The flux to the right, 
at large Ua, can be taken as zero:

j(d) = 0.

The flux to the left for the wave function:

ψ x k a k ikx R k ikx, =( ) ( ) ( ) + ( ) ( )





+ +exp exp

is given by:

j k
k a k

m
R k

e
0, = 1 .

2
2

( )
( )

− ( )







+
+



The total flux is obtained by integration:

j
m

a k R k kdk
e

kF

0 = 1 =
0

2 2
( ) ( ) − ( )






∫ + +

=
2

1 .
2 3

0

2m
R E E E dEe

EF

F
π  ∫ − ( )






 −( )+
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Calculating the flux into the barrier from the left 
at x = 0, we find the condition:

j i
me

0 = 0,0 0,0 =*( ) − ′( ) ( )

ReΨ Ψ

= 0 0 .
2

=1 =0

*− ℜ ( )










 ( )












∞ ∞

∑ ∑ A

m
i

e n
n n

m
mχ β α

For the flux on the right (from the anode), we 
find:

− −( ) ( )











×

∞

∑ A

m
i

e n

n
n n

2

=1

1 0Re χ β

× −( ) ( )












∞

∑
m

m
m

=0

*1 0 = 0.α

It is also necessary to equate the wave functions (WF) 
and their derivatives at the boundaries of the region:

Ψ 0,0 = 0 ,
=0

( ) ( )
∞

∑A
n

nα

′( ) ( )
∞

∑Ψ 0,0 = 0 ,
=1

A
n

n nχ β

Ψ 0, = 1 0 = 0,
=0

d A
n

n
n( ) −( ) ( )

∞

∑ α

′( ) −( ) ( )
∞

∑Ψ 0, = 1 0 = 0.
=1

d A
n

n
n nχ β

The last equality is set to zero because we assume 
a high voltage and measure the energy from the 
conduction band edge of the cathode. We obtain six 
additional equations to determine the infinite number 
of initial conditions an(0), an(0) bn(0). However, 
using the full set of sines in (12) is redundant because 
the cosine system is sufficient for approximating the 
wave function. We introduced sines to obtain nonzero 
fluxes and nonzero WF derivatives at the boundaries. 
It is quite reasonable to assume: an(0) = 0, n > 2, 
bn(0) = 0, n > 3. Thus, we have six unknowns, as well 
as six conditions. It is sufficient to consider nonzero 
coefficients a0(0), a1(0), b1(0), b2(0). Then:

α α1 0 2 10 = 0 , 0 = 0 2,( ) ( ) ( ) ( )β β /

and all six equations are satisfied, with:

j
A

m d
i

e
0 =

4
0 0 .

2

1 0
*( ) − ( ) ( )( )π

β α


Re

It is convenient to choose:

β1 0 00 = 0 , 0 = 1.( ) ( ) ( )iα α

Then:

j
A

m de
0 =

4
,

2

( )
π

and the wave function takes the form:

Ψ t x
j m de, =

0

4
( ) ( )

×
π

× ( ) ( ) + ( ) ( )












∞ ∞

∑ ∑
n

n n
n

n nt x t x
=0 =1

.α χ χcos sinβ � (17)

From this, we find Ψ t d,( )  and ′( )Ψ t d, .

Another method for solving equations (14) and 
(15) involves Fourier transforms:

α
β π

α ω
β ω

ω ωn

n

n

n

t

t
i d

( )
( )











( )
( )









 ( )

−∞

∞

∫=
1

2
,exp

which requires calculating integrals. This can be done 
using the residue method, but this approach requires 
separate consideration. To solve the problem, we 
need to determine the initial wave function Ψ 0,x( )  
and its derivative, which will be done below. It is 
convenient to introduce the frequency ω = E /.  
The incident wave packet (WP) from the left can be 
written as:

Ψ t i t d
E

,0 = 0, ,
0

/

( ) ( ) −( )∫ +


ψ ω ω ωexp

ψ ω
π

ω ω ω+

−∞

∞

( ) ( ) ( )∫0, =
1

2
0, .Ψ exp i t d

Here:

ω ω= 2 , = 2 .2k m k me e / /

Neglecting back tunneling, we have on the left:

Ψ t a R i t d
E

,0 = 1 ,
0

/

( ) ( ) + ( )( ) −( )∫ + +


ω ω ω ωexp

and on the right:

Ψ t d a T i t d

EF

, = .
0

/

( ) ( ) ( ) −( )∫ + +


ω ω ω ωexp

The incident WP from the left is denoted as:

Ψ+ +( ) ( ) −( )∫t a i t d
E

= .
0

/

ω ω ωexp
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Here:

ψ ω ω ψ ω ω ω+ + + + +( ) ( ) ( ) ( ) ( )0, = , , = .a d a T

Def ining Ψ x t,( )  as the solution to the 
nonstationary Schrödinger equation at time t, we 
construct the function:

Ψ Ψ Ψx t x t x, = , ,0 .( ) ( ) − ( )

It is zero outside the interval (0,t), meaning it has 
a limited support, and:

 Ψ Ψx x t i t dt
t

, =
1

2
, ,

0

ω
π

ω( ) ′( ) ′( ) ′∫ exp

Ψ Ψx x t i t dt
t

, =
1

2
, .ω

π
ω( ) ′( ) ′( ) ′

−∞
∫ exp

We can construct the time-dependent reflection and 
transmission coefficients R+(t), T+(t). Specifically, we 
take:

R t t t+ +( ) ( ) ( ) −= 0, 1,Ψ Ψ/

T t d t t+ +( ) ( ) ( )= , .Ψ Ψ/

Considering back tunneling, we def ine the 
incident WP from the right:

Ψ− −( ) ( ) −( )∫t a i t d
E

= .
0

/

ω ω ωexp

Thus, we obtain:

Ψ Ψ Ψt t R t T t t,0 = 1 ,( ) ( ) + ( )( ) + ( ) ( )+ + − −

Ψ Ψ Ψt d t T t t R t, = 1 .( ) ( ) ( ) + ( ) + ( )( )+ + − −

To find all coefficients, we also need to determine 
′( ) ′+Ψ Ψt x, ,  and ′−Ψ .  Derivatives can be found by 

differentiating the series. The current density at the 
anode is defined through the probability current 
density:

J t ej t dm m( ) − ( )= , .

For this, when normalizing the wave function to 
the probability density, we use [20]:

j t xm , =( )

=
2

[ , ,*− ( )∂ ( ) −i
m

t x t x
e

m x m


Ψ Ψ

− ( )∂ ( )Ψ Ψt x t xm x m, , ].*

For an arbitrary moment in time, we obtain:

j t x
j

, =
0

4
( ) ( )

×

× − ( ) ( ) + ( ) ( )



 ×

∞

∑Re cos sin(
=0

* *i t x t x
m

m m n mα χ χβ

× − ( ) ( ) + ( ) ( ) 
∞

∑
n

n n n nn t x t x
=1

),α χ β χsin cos

j t d
j

, =
0

4
( ) ( )

×

× − −( ) ( ) ⋅ −( ) ( )












∞ ∞

∑ ∑Re i t n t
m

m
m

n

n
n

=0

*

=1

1 1 .α β

From this equation, it follows that:

j d j t d t0, = 0, , ,( ) ( )∆ ∆

i.e., instantaneous tunneling and negative tunneling 
time are not possible. Using the spectra Ψ d,ω( )  and 
′( )Ψ d,ω ,  the result can be represented as:

j t d
me

, =
2

2( )
( )

×


π

× −( ) ( ) ′ ′( ) ′−( )( ) ′
−∞

∞

∫Re expi d d i t d dΨ Ψ* , , .ω ω ω ω ω ω

For the steady-state process, the spectral wave 
function at the anode is:

ψ x k a k T k ik x da, =( ) ( ) ( ) −( )( )+ + exp

The probability flux density for this wave function is:

dj d k v k a k T k dka, = ,
2

( ) ( ) ( ) ( )+ +

where the speed at the anode is:

v k v k eU ma a e( ) ( ) += 2 .2 /

It should be noted that this speed is greater 
than v(k) due to the acceleration of electrons 
passing through the barrier by the anode. Over the 
free path length, they scatter and transition to the 
Fermi level of the anode, with va(k) decreasing to 
v(k), causing the anode to heat up. The method 
of series used here is also convenient for solving 
the Schrödinger equation (SE) together with the 
Poisson equation (PE).
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5. RESULTS AND DISCUSSION

Figs. 6 and 7 present the results of the transient 
process calculations, showing the establishment of 
the anode current in a diode with a Fermi energy of 
7 eV and the probability density distribution Ψ x t,

2( )  
when stepwise voltages of 3, 5, and 7 V appear at 
the anode. Fig.  7 shows the probability density 
distribution for curve 1 of Fig. 6 at different moments 
in time. The oscillations in probability density result 
from the finite sums used in the calculations. As 
the number of terms in the sums increases, both 
the oscillation amplitude and period decrease. The 
SE was integrated using the series method with 40 
terms and an explicit calculation of the coefficients 
in equation (12). Expanding in other bases in (12) 
allows eliminating the oscillations. For example, 
finite elements can be used. However, the proposed 
series method is convenient when solving the SE and 
PE simultaneously, as applied in [2].

Calculations were performed using 200 time points. 
Curves 2 and 3 in Fig. 6 were constructed using 50 
time points. For copper (Fermi energy 7  eV), we 
have an electron concentration of 8.5 ⋅ 1028m–3 and 
a Fermi velocity vF = 1.57 ⋅ 106 m/s, meaning that a 
particle with this speed travels a distance d = 10 nm in 
a time τ = 6.35 fs. We assumed that at the moment the 
voltage is applied, the probability density inside the 
barrier was zero. More precisely, it is symmetrically 
distributed relative to the center, approximately 
following a hyperbolic cosine distribution, increasing 
towards the edges, but extremely small at the edges 
themselves due to the near-complete ref lection 
by the wide, nearly rectangular barrier. In this 
case, there is no inward probability f lux into the 
barrier. The results shown in Fig. 6 indicate that the 
average transport speed of the probability density is 
somewhat greater than vF, leading to the conclusion 
that the movement of the probability density is a 
collective effect caused by the interference of partial 
waves of the wave packet. An electron inside the 
barrier, or generally within a potential field, behaves 
as a quasiparticle defined by its interaction with many 
other particles. This averaged interaction determines 
the potential. A clear example is the potential of the 
image method. Such a quasiparticle is not required 
to behave like a free electron. Additionally, after 
passing the turning point for a single barrier, the 
electron moves quasi-classically and is accelerated 
by the anode. The additional velocity gained at 
Ua = 5 V is 1.33 × 106 m/s, approximately equal to 

vF. Accordingly, the transit time is halved. A similar 
problem for resonant tunneling (RT) leads to a 
significantly longer transient process time. This can 
be explained by the need to form reflections from the 
barriers for RT to occur.

Formally, the lifetimes of the levels can be 
considered as an additional contribution to the 
transient process time. In Fig. 6, it is evident that 
the probability density is very small at short times. 
This function is asymmetric and, on average, higher 
near the start of the barrier but stabilizes at longer 
times. Similar calculations of transient processes 
for switching from a wide barrier to a structure with 
narrow, unequal barriers and a quantum well show 
slower current growth. This is explained by the 
reflections from the barriers required to form resonant 
levels in the well. To achieve complete RT, the 
barrier heights must be sufficiently close. Numerical 
calculations of the transparency coefficients show not 
only full resonances but also peaks with incomplete 
RT, where the maxima D < 1. Regarding lifetimes 
τn nE= 2/ ′′,  they are significantly shorter than 
the corresponding times determined at short times 
from transient processes as a result of wave packet 
evolution. This is because the wave packet contains 
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Fig. 6. Transient processes (–J in A/cm², time in fs) during 
switching from the nearly rectangular barrier 1 to barriers 2, 3, 
and 4 in Fig. 1 (corresponding to curves 1, 2, and 3).
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a broad energy spectrum. At longer times, the non-
exponential nature of the level decay becomes evident 
(see, for example, [30–34]), with contributions from 
algebraic terms. Determining level lifetimes this way 
is feasible only for very narrow wave packets, which 
is challenging to achieve experimentally for non-
relativistic quantum particles, and even more difficult 
to observe their passage through a barrier. This raises 
problems with reflecting a spectrally narrow (i.e., 
spatially very broad) wave packet from the barrier 
[18], especially when the barrier itself changes over 
time. However, the macroscopic current density can 
be measured with high accuracy.

The quantity with the dimension of velocity:

v x t j x t x t, = , ,
2( ) ( ) ( )/ Ψ

can be interpreted as the speed of the probability 
density movement at point x at time t. This 
corresponds to the concept introduced by N. A. Umov, 
but it cannot be interpreted as the speed of an 
individual particle. For a single-speed particle flow, 
it coincides with the particle velocity in the flow. The 
increase in current is accompanied by an increase in 
the probability density of particle presence inside the 
barrier. The average instantaneous speed of the wave 

packet (WP) passing through point x over time t can 
be defined as:

	 v x t
j x t

x t
dt

t

t

, , =
1 ,

,
.

2
τ

τ
τ

( )
′( )
′( )

′
−
∫
Ψ

� (18)

If the WP is finite in time, its average speed can 
also be determined.

 Short lifetimes of quasi-stationary levels are 
essential for achieving high current densities in field 
emission. It is desirable to have as many such levels 
as possible, and sufficiently deep ones. Increasing 
the number of levels is achieved by increasing the 
width of the quantum well, while reducing lifetimes 
is achieved by using narrow-width barriers. Current 
growth is also facilitated by leveling the barrier 
heights, which can be controlled by the gate voltage 
and the change in the gate work function.
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APPENDIX

For the well, from the conditions at the cathode-
side barrier, we have:

A
A k t A k t

w
c c c c c c+
+ −−( ) + ( )

+=
2

exp exp 

+
( ) − −( )− +

   k A k t k A k t

ik
c c c c c c c cexp exp

2
,

A
A k t A k t

w
c c c c c c−
+ −−( ) + ( )

−=
2

exp exp 

−
( ) − −( )− +

   k A k t k A k t

ik
c c c c c c c cexp exp

2
.

In the case of wide barriers, neglecting 
exponentially small terms (reflections from the left 
edge of the barrier with amplitude Ac

+ ),  we find from 
the matching conditions at the cathode-side barrier:

A
A k t ik k

w
c c c a+
−

≈
( ) −( )exp  1

2
,

0/

A
A k t ik k

w
c c c a−
−
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2
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Fig. 7. Particle number density (m3) as a function of the 
coordinate x (nm) in a vacuum diode structure at different 
moments in time (fs): 0.1 (1), 0.3 (2), 0.5 (3), 1.0 (4).
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On the other hand, the matching conditions at the 
anode-side barrier give:

A
ik t A A i A A k k

w

w a a a a a+
+ − + −−( ) + + −( )



=

2
,

0 0exp  /

A
ik t A A i A A k k

w

w a a a a a−
+ − + −( ) + − −( )



=

2
.

0 0exp  /

At the cathode boundary, we have the relations:

A
A ik k

c
c c+ +( )

=
1

2
,

0 /

A
A ik k

c
c c− −( )

=
1

2
.

0 /

At the anode boundary, we have accordingly:

A
A k t ik k

a
a a a a a+ ( ) −( )

=
1

2
,

exp  /

A
A k t ik k

a
a a a a a− −( ) −( )

=
1

2
.

exp  /

For wide barriers, the amplitudes A a
−  and A A

+  are 
small. Assuming them to be zero, we obtain:

Aw
+ ≈

≈
( ) −( ) +( ) −( )A k t ik k ik k ik ta a a a a wexp exp  1 1

4
,

0 0 0/ /

A
A k t ik k ik k

w
c c c c c+ ≈

( ) −( ) −( )exp   1 1

4
,

0 0/ /
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− =

=
1 1

4
,

0 0 0A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) −( ) ( )/ /

A
A k t A ik k ik k

w
c c c c c c− ≈

( ) −( ) +( )exp   1 1

4
.

0 0/ /

Equating the coeff icients Aw
± ,  we get two 

equations:

A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) +( ) −( ) =1 10 0 0/ /

= 1 1 ,0 0A k t ik k ik kc c c c cexp   ( ) −( ) −( )/ /

A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) −( ) ( )1 1 =0 0 0/ /

= 1 1 .0 0A k t ik k ik kc c c c cexp   ( ) −( ) +( )/ /

Dividing the first by the second, we obtain the 
approximate characteristic equation:

1 1

1 1
= 2 .

0 0

0 0
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−( )
ik k ik k
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/ /

/ /
exp (( 1)A

To obtain the exact equation, all amplitudes must 
be retained. In this case, equating the coefficients gives:
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The matrix elements M are given by:

M k t M k tA c A c11 11= =exp exp  ( ) ( ) ×

×
( ) +( )+ −( ) ( )cos sink t k k k k k k ktw a c a A w0 0 01

2
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Now

A A ik kc c c
+ +( )= 1 =0 /

= 2 ,11 12M A M Aa a
+ −+( )

A A ik kc c c
− −( )= 1 =0 /

= 2 .21 22M A M Aa a
+ −+( )

Substituting A a
±  in these expressions, we obtain:

A ik k M A k t ik kc c a a a a1 = 10 11 0+( ) ( ) −( )+/ /  exp

+ −( ) −( )M A k t ik ka a a a12 01 ,exp  /



JETP,  Vol. 167,  No. 1,  2025

22	 Davidovich, Nefedov

A ik k M A k t ik kc c a a a a1 = 10 21 0−( ) ( ) −( )+/ /  exp

+ −( ) −( )M A k t ik ka a a a22 01 .exp  /

Dividing the first equation by the second, we 
obtain the characteristic equation:
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For wide barriers, small terms can be neglected, 
resulting in the simplified form:
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The matrix elements appearing in equations (14) 
and (15) are expressed as:
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These expressions involve the following integrals:
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In equation (A3), the functions s /inc x x x( ) ( )= sin  
and c /onc x x x( ) − ( )( )= 1 cos are included. These 
functions at zero should be defined as sinc 0 = 1( ) ,  
conc 0 = 0( )  ensuring proper boundary conditions. 
Moreover, the condition sinc n n2 = 0π δ( )  applies at 
the barrier edge.
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1. INTRODUCTION

Signif icant progress has been made in the 
theoretical description of nonlinear effects arising 
from the interaction of intense infrared (IR) 
laser fields with atomic systems. The quantum 
mechanical description of processes induced 
by an intense IR field involves two approaches: 
numerical methods, such as solving the time-
dependent Schrödinger equation (TDSE) and its 
simplified variations for multi-electron systems 
(density functional theory, time-dependent 
Hartree-Fock method) [1–9], and analytical 
approaches. Numerical calculations typically 
serve as “benchmarks” for verifying the accuracy 
of analytical approaches and demonstrate their 
efficiency in determining the nonlinear response of 
an atomic system to an intense external alternating 
electric field. However, the results of numerical 
integration can only be obtained for fixed laser 
parameters and lack significant predictive power. 
Specif ically, in most cases, it is necessary to 
perform numerous time-consuming computations 
to achieve the desired physical interpretation of the 

observed effect. In contrast, analytical theories are 
better suited for uncovering general fundamental 
patterns in the nonlinear interaction of an atomic 
system with an intense laser field.

Analytical approaches to describing nonlinear 
effects in the interaction of IR fields with atomic or 
molecular systems are typically based on the single-
electron approximation. Within this approximation 
(subject to certain obvious limitations), it becomes 
possible to derive expressions for the amplitudes 
and cross sections of fundamental laser-induced 
and laser-assisted atomic processes with accuracy 
not inferior to numerical results of TDSE solution 
[10–16].
A key advantage of analytical approaches over 
numerical methods is the ability to establish a 
universal parameterization dependence of the 
probabilities of the strong-field processes on the 
fundamental characteristics of the target (i.e. the 
electron-core interaction potential U(r)) and the 
laser-pulse parameters (see, e.g., [17]).
These parameterizations can be further generalized 
to multi-electron systems, enabling the study of 
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the effects of internal electronic dynamics in laser-
induced photoprocesses [18].

Among the analytical approaches, the most 
popular is the S-matrix formalism, where the exact 
wave function of the active electron in the self-
consistent potential U(r) is expanded into a formal 
series in U(r) [19, 20] (see also [21, 22]). This 
expansion leads to a Born series for the transition 
amplitude, where the terms (partial transition 
amplitudes) can be expressed as a convolution of the 
free-electron Green’s function in the laser field with 
the atomic potential. For example, for the above-
threshold ionization (ATI) process, the account 
of U(r) in the lowest order leads to the Keldysh 
result [23].

Due to the large value of the classical action of 
the electron in a strong low-frequency field, the 
partial amplitudes can be analyzed using the saddle-
point method [24], which gives rise to the quantum 
orbit approach [25, 26]. This approach provides 
an intuitive physical interpretation of strong-field 
phenomena in terms of classical trajectories, thereby 
justifying the rescattering model for fundamental 
atomic photoprocesses in an intense laser field [19, 
20, 27, 28].

Although the Born expansion of transition 
amplitudes has proven fruitful and significantly 
contributes to the description of strong-f ield 
phenomena, it cannot fully account for the 
atomic potential, whose influence can be crucial 
[9, 18, 29–32]. One approach that allows for a 
more accurate treatment of the atomic system 
dynamics in an intense low-frequency field is the 
adiabatic approximation. The general idea of this 
approximation is based on the smallness of the 
carrier frequency ω of the laser pulse compared 
to the ionization threshold Ip of the atomic target 
�ω� Ip . The lowest-order of the adiabatic 
approximation (zero-order approximation) is 
defined by the quasistationary state of the system 
in a static (DC) field with an intensity equal to 
the instantaneous value of the low-frequency laser 
field [33–37]. In [11–17], a correction to the zero-
order adiabatic approximation was derived for the 
wave function, accounting for the rescattering of 
the electron by the atomic potential. The study [38] 
refined the adiabatic approach for determining the 
atomic state in the lowest adiabatic approximation, 
by utilizing the analytical part of the wave function of 
the quasistationary atomic state in the instantaneous 

laser field. Within the adiabatic approach, both low-
energy and high-energy (rescattering plateaus) parts 
of the photoelectron spectra and high-harmonic 
generation (HHG) spectra have been calculated.

The presence of a closed analytical expression for 
the wave function of the atomic state in an intense 
IR field allows for the development of an adiabatic 
perturbation theory in additional interaction with 
a high-frequency (e.g., extreme ultraviolet – XUV) 
attosecond pulse [17, 39]. The inf luence of an 
ultrashort XUV pulse on the radiation generation 
process results in the appearance of a significant 
number of new generation channels and substantial 
modification of the IR field HHG spectra. For 
example, the enhancement of harmonic yield due 
to the resonant population of excited target states 
by the XUV pulse was studied in [40–43]. XUV-
induced enhancement of high harmonic yield was 
investigated both for attosecond pulse train [44–
47] and for an isolated attosecond XUV pulse [48, 
49]. These studies demonstrated that a XUV pulse 
(or its sequence) can affect the ionization stage in 
the three-step Corkum model [50], i.e., change the 
ionization times and thereby affect the harmonic 
yield. In [51, 52], it was shown that adding a weak 
XUV field leads to the appearance of an additional 
plateau in the HHG spectra. The physics of the 
additional XUV-induced plateau was explained 
in [53], where it was shown that the additional 
plateau results from XUV-photon absorption at 
the recombination stage. It should also be noted 
that, at sufficiently high carrier frequencies of the 
XUV pulse, electrons from the inner atomic shell 
can also participate in the HHG process, leading 
to an increase in the cutoff energy of the plateau 
[54–56]. Moreover, such XUV pulses, combined 
with an intense IR field, enable the study of Auger 
processes [57, 58] and electronic transitions from 
inner shells to the valence shell [59]. The re-
emission channel (or elastic scattering) of a XUV 
photon by the atomic system, leading to significant 
enhancement of the generated radiation yield, was 
studied in [60]. Second-order processes of XUV 
interaction in an IR-dressed atomic medium were 
also investigated: generation of a XUV pulse at the 
doubled carrier frequency [39] and the XUV pulse 
rectification effect [61].

In this paper, we generalize the perturbative 
approach proposed in [17, 39] to construct 
perturbation theory corrections for the interaction 
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with a short XUV pulse of arbitrary order, based on 
adiabatic wave functions of the atomic state in an 
intense IR field. Within the developed perturbation 
theory, XUV-induced radiation generation channels 
are investigated by analyzing classical electron 
trajectories in the field of synchronized intense IR 
and attosecond XUV pulses, and the possibility of 
interference between different channels due to their 
spectral overlap is explored. The article uses atomic 
units unless otherwise specified.

2. ADIABATIC APPROACH  
TO THE DESCRIPTION OF AN ATOM  

IN A LOW-FREQUENCY LASER FIELD

2.1. Adiabatic expression for the wave function

Let us consider the interaction of an atomic system 
with an intense infrared (IR) laser pulse characterized 
by the peak electric field strength FIR  and the carrier 
frequency ωIR . We will assume that the laser pulse 
parameters satisfy the adiabatic conditions [23]:

	 ω γIR KE | |, 10 , � (1)

where γ κωK IR IRF= /  is the Keldysh parameter, 
κ = 2 | |0E , E0  is related to the binding energy 
of the unperturbed atomic level. The conditions 
(1) can also be rewritten in terms of the average 
oscillation energy of a free electron in the laser field 
u Fp IR IR= / (4 )2 2ω :

	 ω ωIR IR pE u | |, .0 �  (2)

To describe the nonlinear interaction of an atomic 
system with a laser field that satisfies the conditions 
(2), it is most convenient to use the adiabatic 
approach [12, 13, 37]. Within this approach, the 
wave function of an atomic electron interacting with 
a low-frequency laser field can be represented as a 
sum of “slow” ( ΨIR t(0)( , )r ) and “fast” ( ΨIR

r t( )( , )r ) 
time-dependent parts [11, 12, 17]:

	 Ψ Ψ ΨIR IR IR
rt t t( , ) = ( , ) ( , ).(0) ( )r r r+ � (3)

The slow part ΨIR t(0)( , )r  represents the adiabatic 
approximation in the lowest order (“zero-order” 
approximation) and is defined by the quasistationary 
state in a DC electric field with a strength equal to the 
instantaneous value of the IR field at time t [37, 12]. 
In many practical calculations, the function ΨIR t(0)( , )r

can be accurately approximated by the initial-state 
wave function in the absence of the IR field:

	 ΨIR
iE t

t e(0) 0
0( , ) ( ).r r≈

−
ϕ � (4)

The term ΨIR
r t( )( , )r  in Eq. (3) describes the 

rescattering effects of the valence electron on the 
atomic core and represents a superposition of 
scattering states ψK s

( )+  of the electron in the atomic 
potential with laser-induced momenta K s  [17]:

	 Ψ ΦIR
r iE t

IR
rt e t( ) 0 ( )( , ) = ( , ),r r

- � (5а)

	 ΦIR
r

s
s

s
t a t( ) ( )( , ) = ( ) ( ).r rK∑ +ψ � (5b)

Each term in the sum (5b) is associated with one of 
the possible closed classical trajectories, which start 
at the tunneling time t′s and end at the return time t 
of the electron back to the atomic core. The laser-
induced momenta are defined by the expression:

	 K Ks st t= ( , ),¢ � (6)

K A A( , ) = ( )
1

( ) ,t t t
t t

dIR

t

t

IR′ −
− ′

′
∫ t t

where A IR t( )  is the vector potential associated with 
the electric field strength FIR t( )  of the laser pulse by 
the relation:

F AIR IRt t t( ) = ( ) / .−∂ ∂

The tunneling times ¢t ts ( )  as functions of the return 
times t satisfy the transcendental equation (see details 
in [14]):

	 ′ ⋅ ′K Ks s
 = 0, � (7)

where

′ ≡ ′ ′K Ks st t( , ),

	  ′ ∂ ′
∂ ′

K
K

s
s

st
= , � (8)

′ ′ ′ −
− ′

′
∫K A A( , ) = ( )

1
( ) .t t t

t t
dIR

t

t

IR t t

Equation (7) has a simple physical meaning: the 
atomic electron tunnels at the moments in time that 
provide the minimum kinetic energy of the released 
electron in the laser field. The time-dependent 
coefficients a ts ( )  in the superposition (5b) represent 
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the product of the ionization (tunneling) factor 
a ttun

s
( )( )¢  and the propagation factor a t tpr

s
( )( , )¢ :

	 a t a t a t ts
tun

s
pr

s( ) = ( ) ( , ).( ) ( )¢ ¢ �  (9)

The ionization factor is characterized by the 
tunneling exponent in the instantaneous “static” 
electric field with the strength:

 = [ ( ) ( )] ,2 1/2F K FIR s s IR st t′ − ′ ⋅ ′

see [62]. For example, in the case of a linearly 
polarized laser field, the following relation holds:

	 a t etun
s

Fat FIR ts( ) /(3| ( )|)
( ) ,′ ∝

− ′
� (10)

where Fat = 3κ  def ines the magnitude of the 
characteristic intra-atomic field. To satisfy the 
quasiclassical condition, an additional inequality 
must hold: F Fat , which ensures the smallness 
of the ionization factor and the insignificance of the 
initial-state decay effects.

The propagation factor a t tpr
s

( )( , )¢  is determined 
by the classical action S t ts( , )¢  of the free electron in 
the laser field over the time interval from ¢ts  to t:

	 a t t
e

t t

pr
s

iE t ts iS t ts

s

( )
0( ) ( , )

3/2
( , ) =

( )
,′

− ′

− ′ − ′

� (11a)

S t ts

ts

t

IR( , ) =
1
2

( )′ −[
′
∫ A t

	 −
− ′

′ ′
′
∫

1
( ) .

2

t t
d d

s ts

t

IRA t t t � (11b)

It is important to note that the rescattered part 
ΦIR

r t( )( , )r  of the atomic electron wave function in the 
IR field, relative to the unperturbed function j0( )r , 
has a smallness bIR

βIR K
IR

at

Fat FIRF
F

e= 1.3/2 /(3 )
γ

-


Essentially, the result (3) represents an expansion of 
the atomic electron state in terms of bIR up to the 
first order. In the following, we will maintain this 
accuracy, as the inclusion of higher-order terms in 
the expansion of bIR  (i.e., a more precise account of 
rescattering effects) does not lead to any significant 
manifestations in the amplitudes and cross sections 
of processes in a strong IR laser field.

2.2 Amplitude of radiation generation

The amplitude of photon generation by an atom 
in an intense laser field is determined by the dipole 
matrix element [63, 64]:

	 D r r r( ) = ( , ) ( , ) ,Ω Ψ Ψ Ω∫ 〈 〉

IR IR
i tt t e dt � (12)

where W is the frequency of the generated photon, 
ΨIR t( , )r  is the dual wave function to the state 
ΨIR t( , )r , def ined from the state ΨIR t( , )r  by 
complex conjugation, time reversal t t→ − , and 
the replacement of all t-odd parameters l for –l 
[65, 66]. In a low-frequency laser field, the dipole 
matrix element (12) for W > |E0| can be approximately 
expressed through Ψ(0)( , )r t  and ΨIR

r t( )( , )r  [17, 63]:

	 D r r( ) = | | ( , ) .0
0 ( )Ω Ψ Ω∫ 〈 〉

−
ϕ e t e dt

iE t
IR
r i t � (13)

The harmonic yield, summed over polarizations 
and integrated over directions, is determined by the 
square of the modulus of D(W):

Y
c

=
( )

4
,

4 2

2 3

Ω ΩD

π

where c is the speed of light.
In the adiabatic approximation, the time integral 

in (13) is evaluated using the saddle-point method, 
and D(W) can be represented as a sum of partial 
amplitudes Dj(W) [14, 17]:

	 D(W)D D( ) = 
j

jå ( ),(W),� (14а)

	 Dj(W)D d Kj j
tun

j j

i t ja a e( ) = ( ) ,( )
iWtj,� (14b)

where aj
tun( ) , a j  are the tunneling and propagation 

factors, respectively, and d K( )j  is the dipole matrix 
element for the transition from the continuum state 
with momentum K j  to the bound state j0( )r :

d K r r rK( ) = ( ) | | ( ) .0
( )

j
j

〈 〉+ϕ ψ

The factors aj
tun( ) , a j  are defined by the relations:

a a tj
tun tun

j
( ) ( )( ),≡ ′

a
i

t
t t

a t tj

j IR j
j

j j

pr
j j=

2

( )

( , ).
2

( )≠

K F
K

⋅ +
− ′

′2pi
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The summation in (14a) is performed over all 
closed classical electron trajectories, defined by the 
start time ¢t j  and end time t j of the electron’s motion. 
The times ¢t j  and t j  are the roots of the system of 
transcendental equations [14, 17]:

	 ′ ⋅ ′ +K K Kj j j E = 0, = 2( ),2
02(W + E0),� (15)

where the induced momenta  ′ ≡ ′ ′K Kj j jt t( , ),  
K Kj j jt t≡ ′( , )  are defined in Eqs. (8) and (6), 
respectively.

3. TIME-DEPENDENT PERTURBATION 
THEORY FOR AN ATOMIC SYSTEM  

IN AN INTENSE IR FIELD

Let us consider an atomic system interacting with 
an intense IR field and a perturbative XUV pulse. The 
account of the XUV interaction with the IR-dressed 
atomic system can be treated within the perturbation 
theory based on the adiabatic wave functions of the 
atomic electron in the IR field [17]. We will consider 
the interaction with the XUV pulse in the dipole 
approximation, so that the potential V tXU V ( , )r  of 
the interaction between the atomic electron and the 
XUV pulse has the form:

V t V t e V t eXU V
i t i tXU V XU V( , ) = ( , ) ( , ) ,r r r+
−

−+ω ω � (16)

V t
F

f tXU V
XU V XU V+ ⋅( , ) =

2
( ) ( ),r e r

V t V t− +( , ) = ( , ),*r r

where FXU V  is the peak field strength, ωXU V  is the 
carrier frequency, eXU V  is the polarization vector, 
and f tXU V ( )  is the XUV pulse envelope.

Note that for ωXU V E>| |0 , the small perturbation 
parameter for the XUV interaction is defined as [67]

	 βXU V
XU V

XU V XU V

XU V

at

F E F
F

= = 4 1.
2

0
2

2

κ

ω ω
 � (17)

Therefore, even in the case of XUV radiation strength 
comparable to Fat, the interaction V XU V  can be 
treated perturbatively [68].

The state Ψ( , )r t  of the atomic electron in the field 
of synchronized IR and XUV pulses can be written as:

Ψ Ψ( , ) = ( , )r rt tIR +

	 + ′ ′ ′ ′ ′ ′ ′ ′∫∫( , ; , ) ( , ) ( , ) ,r r r r rt t V t t d dtXU V IRΨ � (18)

where ( , ; ', )r rt t ¢ is the time-dependent (retarded) 
Green’s function of the atomic electron in the two-
component field. For the function ( , ; ', )r rt t ¢ ,  the 
Dyson equation holds:

  ( , ; , ) = ( , ; , ) ( , ; , )r r r r r rt t t t t tIR IR′ ′ ′ ′ + ′′ ′′ ×∫∫
	 × ′′ ′′ ′′ ′′ ′ ′ ′′ ′′V t t t d dtXU V ( , ) ( , ; , ) ,r r r r � (19)

where IR t t( , ; ', )r r ¢  is the time-dependent (retarded) 
Green’s function of the atomic electron in the 
IR field. Using the relations (18) and (19), we can 
represent the wave function Ψ( , )r t  as a perturbation 
series in V XU V :

	 Ψ Ψ Ψ( , ) = ( , ) ( , ),0
=1

r r rt t t
n

n+
∞

∑ � (20)

where Ψ Ψ0( , ) ( , )r rt tIRº  is the atomic state in 
the absence of the XUV pulse (see Eq. (3)), and 
Ψn(r,t) ~ bn

XUV are the n-order corrections, satisfying 
the following recursive relation:

Ψn IRt t t+ ∫∫ ′ ′ ×1( , ) = ( , ; , )r r r

	 × ′ ′ ′ ′ ′ ′V t t d dtXU V n( , ) ( , ) .r r rΨ � (21)

The accuracy of the adiabatic approximation 
allows for the approximate evaluation of the time 
integrals in (21). The main contribution to the value 
of the corresponding integrals are given primarily by 
the weakly overlapping neighborhoods of the points 
¢t t=  and ¢ ¢t t ts= ( ) ,  where ¢t ts ( )  are the saddle points 

of the phase of the rapidly oscillating factor of the 
integrand in (21). This phase is primarily determined 
by the classical action of the electron in the IR field 
and the carrier frequency of the XUV pulse. The 
asymptotic expression for the Green’s function 
IR t t( , ; ', )r r ¢  in the vicinity of these singular points 
was obtained in [17]:

IR t t( , ; ', )r r ′ ≈

     ≈
′ ′ ≈ ′

′ ′+ +

G t t t t

G t t

at

ol

( , ; , ), ,

(0, ;0, ) ( )[ ( ' )] ,( )
'

( ) *

r r

r rK Kv ψ ψ tt t≠ ′






 ,

�(22)

Where G t tat ( , ; ', )r r ¢  is the time-dependent atomic 
Green’s function of the electron, G t tolv (0, ;0, )¢  is the 
Volkov Green’s function of the electron in the IR 
field for r r= ' = 0 , and the momenta K K≡ ′( , )t t  
and K K' '( , )≡ ′t t  are defined by Eq. (6) and (8), 
respectively.
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The explicit expression for the nth-order 
correction Ψn t( , )r can be obtained by sequentially 
calculating the lower-order corrections, using the 
relations (22) and (21) and approximately evaluating 
the time integrals. The nth-order correction can be 
decomposed into a slow part Ψn

s( ) and a fast part Ψn
r( ) :

	 Ψ Ψ Ψn n
s

n
rt t t( , ) = ( , ) ( , ).( ) ( )r r r′ ′ + ′ � (23)

To determine the slow part Ψn
s( ) , we represent it 

as a superposition:

	 Ψn
s iE t nt e t( ) ( )( , ) ( , ),r r≈ ∑ −

ν

ν
νϕ � (24)

where E E XU Vν νω= 0 +  are time-dependent 
coeff icients, and the slow (in time) functions 
ϕν

( )( , )n tr  require further definition. The slow time 
dependence of the functions ϕν

( )( , )n tr , as well as 
the envelope f tXU V ( ) , will be understood under the 
following conditions:

	 ¶
¶
ϕ

ω ϕν
ν

( )
( ) ,

n

XU V
n

t
 � (25a)

	 ¶
¶

f t
t

f tXU V
XU V XU V

( )
( ) . ω � (25b)

It should be emphasized that in order to isolate 
the slowly varying part of the wave function, one 
should neglect the contribution from the saddle 
point neighborhoods ¢t ts ( )  in the time integral in 
(21) and consider only the vicinity of the endpoint 
′ ≈t t . Substituting (24) into (21) and using the 

asymptotic form of the Green’s function for ′ →t t  
(see Eq. (22)), we obtain:

ν

ν
ν∑ ∫∫

− + ′ ′ ×e t G t t
iE t n

atϕ( 1)( , ) = ( , ; , )r r r

	 × ′ ′ ′ ′ ′ ′
′

− ′ ′
′∑V t e t d dtXU V

iE t n( , ) ( , ) .( )r r r
ν

ν
νϕ � (26)

Next, approximating the slow functions ϕν
( )( , )n t¢ ¢r  

on the right-hand side of Eq. (26) by their values at 
¢t t=  and using the relation between the stationary 

and time-dependent atomic Green’s functions:

	 G e G t t dtE
iE t t

at( , ) = ( , ; , ) ,( )r r r r′ ′ ′∫ − ′ � (27)

we obtain:

ν

ν
ν∑ − +e t

iE t nϕ( 1)( , ) =r

= |1
1

( )

′

− ′+
′+ + ′∑ 〉+

ν

ν
ν νϕe G V

iE t
E

n

	 + 〉
′

− ′−
′− − ′∑

ν

ν
ν νϕe G V

iE t
E

n1
1

( )| . � (28)

Note that if the energy of the Green’s function 
coincides with the energy of the ground state, then, 
according to perturbation theory, the Green’s 
function is replaced by the reduced Green’s function 

¢G E0
 [69, 70]:

	 ′ ′ −
′
−















→

G G
E EE

E E
E0

0

0
*

0

0
= ( , )

( ) ( )
.lim r r

r rj j � (29)

Given the weak dependence of the functions ϕν¢
( )n  

and V±  on time [see (25)], we equate the coefficients 
of the “fast-oscillating” exponentials with identical 
exponents in (32) and obtain the equation for the 
functions ϕν

( 1)n+ :

ϕ
ϕ ϕ

ϕ
ν

ν ν ν ν ν
( 1) 1

( )
1

( )

0 1
( )

=
| | , 0,

|

n
E

n
E

n

E
n

G V G V

G V

+ + − − +

+ −

〉+ 〉 ≠

′ 〉+ ′GG VE
n

0 1
( )| , = 0.− + 〉









ϕ ν
�(30)

The iterative method for solving Eq. (30) assumes 
the following expression for the zero iteration:

	 ϕ ϕν νδ
(0)

0 ,0( , ) = ( ) .r rt � (31)

Thus, using the relations (24) and (30), one can 
find the nth-order correction for the slow part of the 
wave function, which formally coincides with the 
expression for the nth-order perturbation theory in 
a monochromatic field [70] (for a monochromatic 
field: f tXU V ( ) 1º , i.e., V±  do not depend on time). 
We write the wave function Ψn

s( )  in the nth order of 
perturbation theory using the integral operator Pn

 :

	 Ψn
s

nt P E t( )
0 0( , ) = ( , ) | ,r  ϕ ñ � (32)

which represents the convolution of the atomic 
Green’s function with all possible n-combinations of 
the operators V+  and/or V- . We present the explicit 
form of the operators Pn

 for the first three orders of 
perturbation theory ( n3 ):

P E t e I
iE t� �

0 0
0( , ) = ,

-

P E t e G V e G V
iE t

E
iE t

E


1 0
1

1
1

1
( , ) = ,

−
+

− −
− −+

P E t e G V G V
iE t

E E


2 0
2

2 1
( , ) =

−
+ + +

+ ′ +
−

− +e G V G V
iE t

E E
0

0 1
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+ ′ +
−

+ − −e G V G V
iE t

E E
0

0 1

+
− −

− − − −e G V G V
iE t

E E
2

2 1
,

P E t e G V G V G V
iE t

E E E


3 0
3

3 2 1
( , ) =

−
+ + +

+ +
−

− + +e G V G V G V
iE t

E E E
1

1 2 1

+ ′ +
−

+ − +e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
−

+ + − −e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
− −

− − − +e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
− −

− + − −e G V G V G V
iE t

E E E
1

1 0 1

+ +
− −

− + − − − −e G V G V G V
iE t

E E E
1

1 2 1

+
− −

− − − − − −e G V G V G V
iE t

E E E
3

3 2 1
,

where I  is the identity operator. It is evident that the 
slow part of the wave function is the sum of partial 
terms Ψn

s t( )( , )r :

	 Ψ Ψ( )

=0

( )

=0
0 0( , ) = ( , ) = ( , ) ( ).s

n
n
s

n
nt t P E tr r r

∞ ∞

∑ ∑  ϕ �(33)

The similarity between the perturbation series in 
the XUV interaction of the atomic wave function in 
an intense IR field and the well-known perturbation 
result for the quasistationary atomic state in a 
monochromatic laser field, obtained within the 
quasistationary quasienergy state (QQES) method 
[70], is noteworthy. The series (33) formally 
coincides with the QQES result after replacing the 
exact quasienergy e by the ground state energy E0  
and the field strength FXU V  by the instantaneous 
amplitude of the pulse field XU V XU V XU Vt F f t( ) = ( ). 
Thus, if the functional dependence of the QQES wave 
function ΨXU V

QQES
XU Vt F( )( , ; , )r ε  on the quasienergy 

and field strength is known, the same dependence 
defines the wave function Ψ( )( , )s tr :

	 Ψ Ψ( ) ( )
0( , ) = ( , ; , ( )).s

XU V
QQES

XU Vt t E tr r  � (34)

In contrast to the slow part, the time dependence 
of the fast part Ψn

r t( )( , )r  is determined by the rapidly 
oscillating exponential factor e iS- ,  defined by 
the classical action S of the electron in the IR field 
along the closed trajectories (see Eqs. (5b), (9), and 
(11a)). It should be noted that, within the adiabatic 
approximation, the appearance of any products of 
two or more Volkov Green’s functions exceeds the 

accuracy of the method. Therefore, in any order of 
perturbation theory for the XUV interaction, the 
expression for Ψn

r t( )( , )r  contains only one Volkov 
Green’s function. From relation (21), it follows that 
Ψn

r t( )( , )r  is defined as the convolution result of either 
the slow part Ψn t( , )r  with the Green’s function G IR , 
approximated by the Volkov Green’s function (see 
Eq. (22), or the fast part Ψn t( , )r  with the Green’s 
function G IR , approximated by the atomic Green’s 
function (see Eq. (22)):

Ψn
r t+1

( ) ( , ) =r

= (0, ;0, ) | ( ) | ( ) ( )'
( ) ( ) ( )∫ ′ 〈 ′ ′ 〉 ′++ +G t t V t t dtol XU V n

s
v ψ ψK K rΨ

+ ′ ′ ′ ′ ′ ′ ′ ′∫∫G t t V t t d dtat XU V n
r( , ; , ) ( , ) ( , ) ,( )r r r r rΨ � (35)

where the first integral implies an approximate 
evaluation using the saddle-point method, while 
the second integral should be evaluated considering 
only the contribution from the vicinity of ′ ≈t t . 
Accordingly, Ψn

r
+1

( ) can be written as the sum of two 
terms:

	 Ψ Ψ Ψn
r

n
r

n
r

+ + ++1
( )

1
( ,1)

1
( ,2)= , � (36)

where the expressions for для Ψn
r
+1

( ,1) , Ψn
r
+1

( ,2)  are 
discussed below.

We will use the approximate expression (27) for 
the Green’s function Ψn

s( )  in the first integral of (39) 
and then perform the saddle-point integration over 
¢t . As a result, we obtain an expression for Ψn

r
+1

( ,1) :

Ψn
r

t

t G t t+
′

+∑ ∑′ ′ ×1
( ,1) ( )( , ) = ( ) ( , )r r

K
ν

νψ






×〈 ′ 〉+ 〈 ′ 〉



′

+
+ − ′

+
− +ψ ϕ ψ ϕν ν 

 

K K
( )

1
( ) ( )

1
( )| ( ) | | ( ) |V t V tn n ,,  (37)

where  ¢ ¢ ¢K K= ( , )t t ,   K K= ( , )t t ¢ ,  the summation is 
carried out over all allowed values of v with the same 
parity as n +1  in the interval | | 1n n + , and the 
saddle points  t t t' '( )º , defined by the equation:

	  ¢K 2 = 2 .En � (38)

In (37), the following notation is used, defined as:

G t t
e

t t

iS t t iE t

ν

ν

π
( , ) =

2 ( )

( , )

3/2




 

′ −
− ′

×
− ′ − ′

	 × ′ ⋅ ′ − − ′




−� � �K FIR t E t t( ) 2 / ( ) .

1/2

n � (39)

The accuracy of the approximate expression for 
the Green’s function in (22) implies that only those 
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saddle points v should be considered in the sum (37) 
that ensure the solution of Eq. (38) in real numbers.

From expression (37), it follows that the correction 
Ψn

r
+1

( ,1)  to the fast part of the wave function describes 
a rescattering state, formed within the three-step 
scenario:

First stage: as a result of the absorption or 
emission of n XUV photons, the atomic system forms 
states ϕν

( )n .
Second stage: a stimulated single-photon 

transition (with absorption or emission of a photon) 
from one of the states jn(n) to a continuum state with 
asymptotic momentum K~′ occurs at the moment t~′.

Third stage: while in the continuum, the electron 
interacts with the intense IR field and forms, at 
the moment t, the state ψ

K
r( )( )+ , acquiring energy 

while moving along a closed classical trajectory. 
The propagation of the electron wave packet in the 
continuum is described by the multiplier G t tn( , )¢ .

As follows from Eqs. (5b) and (37), the fast part 
of the wave function is determined by the rapidly 
oscillating factor e iS t t− ′( , ) , which defines the IR-
controlled propagation of the electron in the 
continuum, and the continuum state function ψK

( )+ .  
The same components determine the correction 
Ψn

r( ,2) , so, without loss of generality, we represent 
Ψn

r( ,2)  as:

	 Ψn
r

s
s
n

s
a t( ,2) ( ) ( )= ( ) | ,∑ + 〉 ψK � (40)

where a t es
n iS t t s

( ) ( , )( ) ∝ − ′  is a certain integral 
operator, and the summation is performed over 
all real ionization moments t s

¢ ,  induced by the IR 
or XUV field. In the zero approximation for the 
XUV interaction: t ts s

′ ≡ ′  (see relation (7)), and 
a a t Is s
 

(0)
( )º  (see relation (9)). It is worth noting 

that the operator a ts
n



( )( ) can be defined by two terms 
(denoted below by the indices a and b), describing 
two different scenarios of the electron interaction 
with the IR and XUV pulses:

a) The atomic electron tunnels into the IR-
modified continuum and, while propagating along 
closed classical trajectories in the IR field, absorbs v 
and emits n–v of XUV photons (parity of n and v is 
the same).

b) The atomic electron transitions into the IR-
modified continuum with energy E ¢n  by absorbing 
¢n  of XUV photons, where, during propagation 

along the closed classical trajectories in the IR field, 
it absorbs and emits additional XUV photons.

According to the described mechanisms, we 
represent the function Ψn

r( ,2)  as a sum:

	 Ψ Ψ Ψn
r

n
r

n
r( ,2) ( ,2 ) ( ,2 )= .a b+ � (41)

The mathematical expression for the operator 
a ts

n


( )
( ),  corresponding to the realization of Scenario 

(a), can be easily obtained from (35) (see the second 
integral term on the right-hand side), assuming that 
the “zero iteration” Ψ Ψ0

( ) ( )=r
IR
r  for the fast part of 

the wave function is defined in (5). By sequentially 
calculating the time integrals in (35) and considering 
the contribution from the vicinity of the point ¢t t= , 
we obtain the general expression for Ψn

r t( ,2 )( , )a r :

	 Ψn
r

s
s n

s

s
t a t P t( ,2 )

2
( )( , ) = ( )

2
, ( ),a r

K
rK∑












+

 ψ � (42)

where the summation includes all solutions of Eq. (7). 
It is worth noting that, similar to the previously 
considered case of the functions Ψ( )( , )s tr , the 
summation of the perturbation series in n, taking 
into account the explicit form of (46), leads to a 
result formally coinciding with the expression for the 
quasienergy scattering state ΨK r( )( , ; , ( ))+ t tXU Vε   of 
the atomic electron in a monochromatic XUV field 
[70] with the quasienergy e = / 22K s , the asymptotic 
momentum K K= s , and the XUV field strength, 
equal to the instantaneous value XU V t( ) :

n

n
s

s
P t∑











+



K
rK

2
( )

2
, ( ) =ψ

	 = , ;
2

, ( ) ( , ),( )
2

( )Ψ ΨK Kr
K

r
s

s
XU V

s
t t t+ +












≡ � (43)

and therefore,

  Ψ Ψ Ψ( ,2 ) ( ,2 ) ( )( , ) = ( , ) = ( ) ( , ).r

n
n
r

s
s

s
t t a t ta ar r rK∑ ∑ + �(44)

The correction Ψn
r( ,2 )b  to the fast part of the 

wave function, responsible for the realization of 
Scenario (b), arises in the second and higher orders 
of perturbation theory. As the “zero iteration” for 
obtaining this correction, we use the term Ψ1

( ,1)r  
(Ψ Ψ0

( )
1
( ,1)=r r ), corresponding to the absorption of a 

XUV photon (see the first term in the square brackets 
in (37)):
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  Ψ0
( )

'

( )
1 '

( )
0( , ) = ( ) ( , ) | ( ) | ,r

t

t G t t V tr r
K K



 

 ∑ + +
+′ 〈 ′ 〉ψ ψ ϕ �(45)

where t'  is determined from Eq. (38) with n = 1.  
Substituting (45) into the second term in (35) and 
evaluating the time integral in the vicinity of ′ ≈t t , 
we obtain the desired second-order correction:

Ψ2
( ,2 )

'

1

2
( )( , ) =

2
, ( )r

t

t P tb r
K

r
K

�
�

� �
∑











×+ψ

	 × ′ 〈 ′ 〉′
+

+G t t V t1
( )

0( , ) | ( ) | . 



ψ ϕ
K

� (46)

It is easy to give a transparent physical meaning to 
relation (46): the electron, being in the bound state, 
absorbs a XUV photon and passes to a continuum 
state with asymptotic momentum K '  (that 
corresponds to the matrix element 〈 ′ 〉′

+
+ψ ϕ





K
( )

0| ( ) |V t  
in (46)). The electron propagates in the IR-dressed 
continuum along a closed trajectory (see the 
multiplier G t t1( , ') ). As a result, it forms a continuum 
state at time t  through a single-photon channel of 
interaction with XUV radiation (i.e., by absorbing or 
emitting a XUV photon).

In the third order of perturbation theory, the 
calculations are carried out similarly, and the 
corresponding correction takes the form:

Ψ3
( ,2 )

( =1)
2

2
( )( , ) =

2
, ( )r

t

t P tb r
K

r
K

�
�

� �

′

+∑










×

ν
ψ

× ′ 〈 ′ 〉++
+G t t V t1 '

( )
0( , ) | ( ) | 



ψ ϕ
K

+










×

′

+∑
�

�
� �

t

P t
( =2)

1

2
( )

2
, ( )

ν

K
r

K
ψ

	 × ′ 〈 ′ ′ 〉′
+

+ +G t t V t G V tE2
( )

1 0( , ) | ( ) ( ) | ,  



ψ ϕ
K

� (47)

where the times ¢t  for the first (second) sum are 
found from Eq. (38) for ν = 1 (ν = 2) respectively. 
The interpretation of the f irst sum in (47) is 
analogous to that provided for relation (46), except 
that at the final stage, the continuum state is formed 
through the two-photon interaction with the XUV 
radiation. The partial terms in the second sum 
reflect the following physical mechanism: the bound 
electron, having absorbed two photons, passes into 
a continuum state, where it propagates along a 
closed trajectory driven by the IR field and forms a 
continuum state through a single-photon channel of 
interaction with XUV radiation. It should be noted 
that, although the determination of higher-order 
corrections presents no significant difficulties, they 

are not considered in this work due to the complexity 
of the final expressions.

4. GENERATION OF RADIATION BY AN 
ATOM IN SYNCHRONIZED IR AND XUV 

PULSES

4.1. Generation channels

We will use the obtained expressions for the 
wave function to determine the radiation generation 
amplitude by an atom in the field of synchronized, 
linearly polarized IR and XUV pulses:

	 F F F( ) = ( ) ( ),t t tIR XU V+ − t � (48)

where t is the time delay between the pulses, defined 
as the time interval between the peaks of their 
envelopes. The amplitude of radiation generation is 
given by Eq. (12) with the substitution:

Ψ Ψ Ψ ΨIR IRt t t t( , ) ( , ), ( , ) ( , ),r r r r® ® 

where Ψ( , )r t is dual wave function, defined from 
Ψ( , )r t  by the same procedure as ΨIR t( , )r  (see 
discussion below Eq. (12)).

As shown in the previous section, the wave 
function Ψ( , )r t  is represented as the sum of “slow” 
( Ψ( )( , )s tr ) and “fast” ( Ψ( )( , )r tr ) components. 
Accordingly, the radiation generation amplitude can 
be written as:

D(W) = D(s)(W) + D(r)(W) +

+ D
~ (r)(W) + D̂(r)(W),� (49a)

( ) ( ) ( )( ) = ( , ) | | ( , ) ,s s s i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉 r r r � (49b)

( ) ( ) ( )( ) = ( , ) | | ( , ) ,r s r i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉 r r r � (49c)

 ( ) ( ) ( )( ) = ( , ) | | ( , ) ,r r s i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉r r r � (49d

� �( ) ( ) ( )( ) = ( , ) | | ( , ) ,
r r r i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉r r r � (49e)

where each term is discussed in detail below.
The “slow” term D(s)(W) describes harmonic 

generation of the XUV field by the atomic system. 
Considering that Ψ( )( , )s tr  is def ined by the 
perturbation series (see Eqs.  (33) and (34)), it is 
evident that D(s)(W) can be expressed in terms of 
nonlinear susceptibilities cn at the frequencies of the 
generated harmonics:
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	 ( )( ) = ( ) ( ),s i

n
n XU V XU V

n
ne F fΩ ΩΩτ χ ωå � (50)

	 fn(W)f f t e dtn n XU V
n i t( ) =

1

2
( ) .

−∞

∞

∫ iWtdt.� (51)

It is worth noting that, due to dipole selection 
rules for centrally symmetric systems, the nonlinear 
susceptibilities χ ωn XU V( )  for even number n vanish. 
However, if we more accurately account for the 
IR-field effects in the zero-order approximation 
ΨIR t(0)( , )r , it can be shown that the susceptibilities 
χ ωn XU V( )  should be replaced by generalized 
nonlinear susceptibilities of the atomic system in a 
static electric field with a strength corresponding to 
the IR pulse at the delay time τ:

	 χ ω χ ω τn XU V n
DC

XU V DC IRF( ) ( ; = ( )).® ( )  � (52)

In this case, the prohibition on the generation of 
even harmonics is lifted, and the spectrum of the 
generated radiation exhibits peaks corresponding to 
the frequencies N XU Vω , where N is an integer (see, 
for example, [39]). Let us consider the “fast” term 
D(r)(W) in Eq. (49). Taking into account that the fast 
part of the wave function in the synchronized IR and 
XUV pulses is the sum of two terms (see Eq. (36)), 
we write D(r)(W) as:

	 D(r)(W) = D(r,1)(W) + D(r,2)(W),� (53)

where D(r,i)(W)(i  =  1,2) are determined by the 
corresponding corrections for the fast part of the 
wave function. Using Eqs. (32) and (37), we obtain 
D(r,1)(W) in the form:

D(r,1)(W) ( ,1) ( ,1)( ) = ( ) ,r r i tt e dt ò eiWtdt,� (54a)

( ,1)

=1 '

( ) ( )( ) = ( ') | | ,r

t

st M t G
ν

ν ν ψ
∞

+∑∑ 〈 〉





Ψ r

K
� (54b)

| = [ ( , ) ] ,( )
0 0

*� �Ψ s P E t〉 −∑
ν

ν ϕ � (54c)

where G G t tn n≡ ′( , ) is defined in (39), ¢t  are roots of 
Eq. (38), and M tn( )¢  is the sum of matrix elements 
describing the v-photon XUV-induced excitation of 
the atomic system from the initial state j0  to the 
continuum state ψ

K '
( )+ , considering the re-emission 

channels. The explicit form of M tn( )¢  can be 
determined within the perturbation theory using the 
recurrence relation (30):

M t V1 '
( )

0( ') = | |





〈 〉+
+ψ ϕ

K

+〈 ′ 〉++
+ − + +ψ ϕω�
� � � �

K '
( )

0 0 0| | ,V G V G VE E XU V

M t V G VE XU V2 '
( )

0 0( ') = | |� � � ��〈 〉++
+ + +ψ ϕωK

M t V G V G VE XU V E XU V3 '
( )

0 2 0 0( ') = | | ,� � � � ��〈 〉++
+ + + + +ψ ϕω ωK

where  V V t± ±≡ ( , ')r  (note that for the case of a linearly 
polarized XUV pulse,  V V+ −= ). The third factor in 
(54b) (the matrix element 〈 〉+



Ψ( ) ( )| |s r
K

ψ ) determines 
the amplitude of XUV-assisted recombination into 
the atomic state at the moment t (see expression (34)).

The function ( ,1)( )r t  rapidly changes with 
variations in the time t due to the presence of the 
rapidly oscillating factor e iS t t− ′( , )  in G nn .  Given 
that the time interval between ionization and 
recombination (i.e., the time of electron propagation 
in the continuum driven by the IR field) is on the order 
of the IR field period ( | ' |� �t t TIR- ∼ ), ionization and 
recombination cannot occur throughout the duration 
XU V  of the attosecond XUV pulse (XU V IRT ). 
This circumstance allows us to omit all terms in the 
sum over v in (54c) except for n = 0 , and to write 
the recombination amplitude 〈 〉+



Ψ( ) ( )| |s r
K

ψ in the 
lowest-order approximation in FXU V  (i.e., assuming 
FXU V = 0  for the state Ψ( )s ):

	 〈 〉 ≈ 〈 〉+ +


 

Ψ( ) ( ) 0
0

( )| | | | .s iE t
er r

K K
ψ ϕ ψ � (55)

Estimation of the integral (54а) by the stationary 
phase method leads to the result:

	 D(r,1)(W) ( ,1) ( ,1)( ) = ( ) ,r

t

r i tt e 





å eiWt~,� (56)

where the summation is performed over all times that 
satisfy the equation:

	




 

K
K K

2

02
= , = ( , ) + ′E t t . � (57)

When solving this equation, one should take into 
account the implicit dependence of   ¢ ¢t t t= ( )  
according to Eq.  (38). Based on the obtained 
analytical relations, it is easy to give a physical 
interpretation of the radiation generation mechanism 
described by D(r,1)(W): the atomic electron absorbs n 
XUV photons and passes into the continuum, where 
it propagates along a closed trajectory driven by of 
the intense IR field. At the moment of return to the 
atomic core, the energy gained by the electron is 
emitted as a photon with the frequency W through 
recombination into the ground state. This generation 

W
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mechanism is called the “XUV-initiated HHG 
channel” [44, 46, 71–73].

We represent the dipole moment D(r,2)(W), 
determined by the wave function Ψ( ,2)r , as the sum:

	 D(r,2)(W) = D(r,2a)(W) + D(r,2b)(W),� (58)

where the partial dipole moments D(r,2a)(W) and 
D(r,2b)(W) correspond to the corrections Ψ( ,2 )r a  and 
Ψ( ,2 )r b of the fast part of the wave function (see the 
discussion of Eq. (41)). Taking into account (42), we 
write D(r,2a)(W) as:

	 D(r,2a)(W) ( ,2 ) ( ,2 )( ) = ( ) ,r r i tt ea a ò eiWt,� (59a)

	 ( ,2 ) ( ) ( )( ) = ( ) | | ,r

s
s

s

s
t a ta ∑ 〈 〉+Ψ Ψr K � (59b)

where ΨK s

( )+  is defined by relation (43). Considering 
the definition of the dual function Ψ( )s , constructed 
from Ψ( )s  (see relation (34)), we express the matrix 
element in (59b) as:

     〈 〉 ≈+ −∑Ψ Ψ( ) ( )| | ( ) ,s

s n
n
rec

XU V
n in XU V t

A f t er K
( ) ω �(60)

where  A Fn
rec

XU V
n( ) µ i s  the  ampl i tude  of 

photorecombination with the absorption ( )n > 0  
or emission ( n < 0 ) of n XUV photons. Since the 
function a ts ( )  is rapidly oscillating, the integral in 
(59a) can be evaluated using the stationary phase 
method. As a result, for the partial amplitude 
( ,2 )( )r a (W), we obtain:

D(r,2a)(W)( ,2 )

,

( ) = ( )r

n s
s s n

reca t Aa  ∑ ×( )

	 × −
−

f t eXU V
n

s
i n XU V ts( ) ,
( )

τ
ωΩ � (61)

where the recombination times ts are found from the 
stationary phase equation:

	 K 2

0
( , ( ))

2
= ,

t t t
E ns s

XU V

′
+ −Ω ω � (62)

and the corresponding ionization times ¢t ts( )  satisfy 
Eq. (7) when substituting t ts= . In the following, we 
will number possible solution pairs of the system of 
equations (7) and (62) with a single index s: ( , )t ts s¢ .  
The analytical relation (61) allows us to give a 
simple quasiclassical interpretation of the radiation 
generation mechanism described by the term D(r,2a)

(W): at the moment ¢ts , the bound electron tunnels 
and propagates along a closed trajectory until 

the moment of recombination ts. Recombination 
occurs with the emission of a photon with frequency 
W, simultaneously with the absorption of n XUV 
photons. Moreover, the envelope of the XUV 
pulse acts as a “temporal separator”, cutting off 
recombination moments for which the difference 
| |ts - t  exceeds the duration of the XUV pulse. This 
radiation generation mechanism defines the XUV-
assisted HHG channel [52, 53].

Now let us show that the remaining terms 
D(r,2b)(W), D~(r)(W) and  D̂(r)(W) are negligibly 
small. The calculation of the partial dipole 
moment D(r,2b)(W), using relations (46), (47), and 
(33), shows that it is determined by terms that 
were discarded during the analysis of D(r,1)(W). 
In particular, the dipole matrix element of the 
transition between Ψ2

( ,2 )r b  and Ψ( )s  has a second 
order in FXU V  and defines a linear ( µ FXU V ) 
correction to the dipole moment in the one-photon 
XUV-initiated generation channel, through the 
XUV-interaction at the recombination step (i.e., it 
includes, along with the the XUV-initiated channel, 
also the one-photon XUV-assisted recombination 
channel). Similarly, it can be shown that Ψ3

( ,2 )r b

gives a correction µ FXU V
2  to the one-photon 

XUV-initiated channel due to the two-photon 
interaction in the XUV-assisted channel, as well 
as a correction µ FXU V  to the two-photon XUV-
initiated channel via the one-photon XUV-assisted 
mechanism. These corrections should be discarded 
due to the significant difference in the time scales 
between the dynamics of the atomic electron’s 
interaction with the IR and attosecond XUV pulses: 
the characteristic time scale between sequential 
processes of ionization and recombination is 
comparable to the IR-field period. Therefore, the 
ionization and recombination stages cannot occur 
within the duration of a single attosecond XUV 
pulse.

To estimate the contribution of the dipole 
moment D~(r)(W), defined by expression (49d), note 
that it describes the time-inverted process relative 
to the previously considered generation channels 
for the term D(r)(W). This directly follows from the 
definition of the dual wave function. For example, the 
generation of radiation in the XUV-assisted channel 
for D~(r)(W) occurs under the following scenario: the 
bound electron emits radiation at the frequency W, 
with the simultaneous absorption of n XUV photons. 
As the result, the electron goes into a virtual state 
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with a larger negative energy and returns to the 
initial state, interacting with the intense IR field. 
Since all radiation formation stages occur at negative 
energy, within the quasiclassical approximation, 
this mechanism is strongly suppressed, and its 
contribution is negligibly small (see, for example, the 
discussion in [63]). Using similar reasoning for the 
XUV-initiated generation channel, we conclude that 
it can also be neglected.

Finally, the term D̂(r)(W) must also be discarded in 
our consideration, as it is determined by the product 
of two fast parts of the wave function, and its inclusion 
exceeds the accuracy established in this analysis. Thus, 
we have shown that radiation generation by an atomic 
system, interacting with intense IR radiation and an 
attosecond XUV pulse, whose duration is much shorter 
than the IR field period, can occur within the framework 
of three channels: 1) XUV harmonic generation, defined 
by the corresponding atomic nonlinear susceptibilities; 
2) the XUV-initiated generation channel; 3) the XUV-
assisted generation channel.

4.2 Contribution of different radiation 
generation channels

Let us consider the general properties of the 
radiation generation channels, such as the position 
and width of the spectral region [Wmin;Wmax] for 
a given channel. These properties depend on the 
characteristics of the atomic target (the energy of 
the initial bound state) and the parameters of the 
laser field interacting with the atomic system. The 
contribution of different generation channels and 
their spectral overlap is of particular interest.

The frequency interval [Wmin;Wmax] can be 
determined from the requirement for the existence 
of real solutions to the saddle-point equations for 
the classical ionization and recombination times. To 
find them, we parametrize the electric field of the IR 
pulse through the vector potential A IR t( ) :

	 F
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IRt

t
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( )
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� (63a)
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pt

where IR IRT= 5 is the pulse duration, TIR IR= 2π ω/ .  
In all numerical calculations, we assume the initial 
bound state energy E0 = 13.6-  eV, corresponding to 
the ground state of the hydrogen atom.

4.2.1 XUV-assisted channel

For the XUV-assisted generation channel, the 
ionization times st′ and recombination times st satisfy 
the system of equations (7) and (62):

′ ⋅ ′ ′ + −K K Ks s s s XU Vt t E n = 0, ( , ) = 2( ).2
0Ω ω � (64)

As seen from Eq. (64), the solution of this system 
for an arbitrary n can be obtained from the solution 
for n = 0  by a corresponding frequency shift of the 
generated radiation: Ω Ω→ + n XU Vω .  Therefore, 
below we analyze the case n = 0 , which corresponds 
to harmonic generation in the absence of the XUV 
field. The system (64) has real solutions for W > | |E0  
and Ω < 2 | |= | |2

0 0 0max ,K / + +E u Epα  where 
u Fp IR IR= (4 )2 2/ ω ,  a0 is a numerical factor depending 
on the pulse envelope shape. For example, for a 
long monochromatic pulse ( f tIR ( ) 1º ), we obtain 
a0 3.17» .

Fig. 1 shows the dependence of the frequency Ω of 
the generated radiation on the recombination times tj. 
The color represents the absolute value of the tunneling 
factor aj

tun( ) , which enters the expression (14b) for the 
partial HHG amplitude for the IR field. It is seen from 
the figure that for fixed parameters of the laser pulse, 
the number of solutions of system (64) increases with 
decreasing Ω, which leads to the formation of a complex 
interference structure in the plateau region [17]. In the 
vicinity of the global maximum for W (i.e., the cutoff of 
the IR-induced HHG plateau), only two solutions exist, 
determining the well-known interference oscillations of 
the HHG yield near the cutoff region [74, 75].

4.2.2 XUV-initiated channel

For the XUV-initiated channel (consisting of an 
n-photon transition of the electron from the ground 
state to the continuum, its laser-driven propagation, 
and subsequent recombination), the ionization and 
recombination times are determined by the following 
system of equations:

	
 ′

+
K 2

02
= ,E XU Vνω � (65a)

	
K 2

02
= ,E + W,� (65b)
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where   ¢ ¢ ¢K K= ( , )t t ,    K K= ( , )t t ¢ .

Equation (65a) has real solutions under the 
following necessary condition:

	 νω αXU V pE E umax | |
2

=| | .0

2

0 0+
′









+

K � (66)

To determine the boundaries of the spectral region 
[Wmin;Wmax] of classically allowed frequencies 
of the generated radiation, note that the system 
of equations (65) is invariant with respect to the 
replacement ( , ) ( , ) 

′ ↔K KEν Ω ,  where W~ = W + E0. 
The maximum values  ¢K 2 2/  and K 2 2/  are identical 
due to the obvious symmetry in the dependence of 
K ( , )t t ¢  and ¢ ¢K ( , )t t  on the times t, ¢t  (see Eqs. (6) 
and (8)). Therefore, in the plane of the variables 
W
~ and Ev, the desired region of real solutions 

(or classically allowed energies W~ and Ev is symmetric 
with respect to the line Ω = Eν . Moreover, since the 
momenta K and ¢K  are proportional to FIR IR/ω ,  
the region of real solutions in the coordinates W~, 
Ev scales by the magnitude up. From the above, it 
follows that the boundary of classically allowed 
energies can be expressed using a symmetric function 
g x y g y x( , ) = ( , )  of the two arguments x = W~/up and 
y E up= n /  in the form of the following equation:

g
u

E
up p

Ω
, = 0.ν
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






Fig. 2 shows the region of classically allowed energies 
W
~ and Ev, obtained from the numerical analysis of the 
system of equations (65). The desired region is well 
approximated by two straight lines [76]:
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where

b0 0 0= ( ) / ( ),F t F tIR IR¢

¢t0  and t0  are ionization and recombination times, 
corresponding to the global maximum of K 2 / 2  (for 
the monochromatic field b0 = 0.324 ).

The dependence of the solutions of the system 
of equations (65) on the frequency of the generated 
radiation W is shown in Fig. 3. Each pair of solutions 
( ', ) t t  is represented by a point, the color of which 
corresponds to a specific value of ωXU V . As can 
be seen from the presented figure, as well as from 
the above estimate (66), the number of real roots 
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Fig. 1. Dependence of the recombination time on the frequency 
of the generated radiation for an IR pulse with a carrier 
frequency w = 1 eV and a peak intensity 2 ⋅ 1014 W/cm². The color 
represents the value of the tunneling factor (10), calculated for 
the ionization and recombination times satisfying the system of 
equations (64) up = 26.89 eV. |E0| = 13.65 eV.

Fig. 2. Region of existence for solutions of the saddle-point 
equations (65). The dark gray area represents the parameter 
region obtained from the numerical solution, while the red 
dashed line shows the linear law (67).
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of the system (65) decreases with the increase of 
ωXU V , while the region of possible values for the 
ionization and recombination times shrinks (see 
the regions bounded by closed curves in Fig. 3). 
We remind that in the theory being developed, the 
interaction of the XUV pulse with the atomic system 
is determined by the specific moments of ionization 
and recombination (see Section 3), which define the 

closed trajectory of the free electron in the IR field. 
Therefore, at certain time delays, the considered 
generation channel can be suppressed due to the lack 
of overlap between the solution region of the system 
(65) and the time interval of interaction with the 
XUV pulse. For example, in Fig. 3c, it is shown that 
for an XUV pulse with a time delay t = 0.5- T,  the 
region of acceptable values for ¢t  does not intersect 
with the time interval of the XUV pulse duration.

Dependence of the generated radiation frequency on 
the recombination times for all the discussed generation 
channels is shown in Fig. 3. The regions corresponding 
to elastic scattering of the XUV photon by the atomic 
system (Rayleigh scattering) and the second harmonic 
generation are indicated by the horizontal dashed lines 
in the figure (solid bold horizontal lines correspond to 
Ω = ωXU V  and Ω = 2ωXU V ). At IR-pulse intensities 
of I  2 1014×  W/cm2, we observe a spectral overlap 
between the harmonic generation channel in the 
IR field (black bold lines in Fig. 3) and the elastic 
scattering channel of the XUV photon, leading to 
the specific oscillations in the harmonic generation 
spectrum [60]. As the IR pulse intensity increases, 
overlap with the XUV harmonic generation channels 
occurs (see Fig. 3(c), where overlap with the second 
XUV harmonic generation channel is observed at 
I = 4 1014× W/cm2). We note, that for the occurrence 
of interference between different radiation generation 
channels, necessary conditions are spectral overlap of 
the channels and comparable generation probabilities 
within the desired channels. The XUV-initiated 
channels (green and orange lines) overlap spectrally 
only with the harmonic generation channel in the single 
IR pulse. Moreover, as seen in Fig. 3, as the number 
of photons in the XUV-initiated channel increases, 
the spectral overlap region shrinks, which is obviously 
related to the reduced energy gain by the electron during 
its propagation in the IR-field after absorbing n  XUV 
photons (see Fig. 2). Thus, the observation of XUV-
initiated generation channels with n > 1 is difficult due 
to suppression by the more intense HHG channel in 
the absence of the XUV pulse and is possible only with 
a significant increase in the XUV-field intensity. For 
n = 1 , the XUV-initiated channel can be distinguished 
under the orthogonal geometry of the IR and XUV 
pulses [77]. In contrast, the XUV-assisted channels 
(thin gray lines in Fig. 3) contribute to the generation 
of higher-frequency radiation, forming sequential 
plateau-like structures in the HHG spectra [53]. 
Typically, the XUV-assisted channels interfere with the 
harmonic generation channels of the XUV radiation 
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[39]. Note that it is possible to select conditions for 
spectral overlap between the harmonic generation 
channel in the single IR pulse and the XUV-assisted 
and XUV-initiated channels [see Fig. 4(c)].

5. CONCLUSION

In this work, an adiabatic approach has been 
developed for analyzing the interaction effects 
of an IR-dressed atomic system with a short 
(attosecond) XUV pulse. The nonlinear effects 
due to XUV interaction result in the emergence 
of additional XUV-induced radiation generation 
channels. Depending on the nature of the XUV 
pulse’s influence on the atom, these channels can be 
classified into three types. The first one is the XUV-
induced modification of nonlinear susceptibilities 
of the atomic system. For initially non-polarized 
targets, the odd-order susceptibilities (e.g., atomic 

polarizability, describing Rayleigh scattering of the 
XUV photon [60], or the third-order susceptibility, 
responsible for third XUV harmonic generation) do 
not vanish in the absence of the IR field. Thus, at 
moderate field intensities, they can be approximated 
by the susceptibilities of the free atom. In contrast, 
even-order susceptibilities (e.g., those describing 
the XUV rectification effect [61] or the second XUV 
harmonic generation [39]) vanish when the IR field 
is switched off, as they are caused by the IR-induced 
symmetry breaking of the atomic state. The first type 
of channels has been thoroughly studied in the works 
cited above.

The main focus of this study is on the second 
and third types of channels  – the XUV-induced 
ionization channels, involving the absorption of 
XUV photons during the first stage of the three-
step rescattering mechanism, and the XUV-assisted 
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Fig. 4. Spectrograms of generation channels for different peak intensities of the IR pulse: (a) I = 2 ⋅ 1014 W/cm2, (b) 3 ⋅ 1014 W/cm2 and 
(c) 4 ⋅ 1014 W/cm2. Black lines show the HHG channel in the absence of the XUV field. Gray lines represent the XUV-assisted channel 
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of one (two) XUV photons. The solid horizontal lines indicate the values of W = NwXUV (N = 1,2), while the dashed horizontal lines 
show the boundaries of the spectral regions for the first and second XUV harmonics. The XUV photon energy is wXUV = 80 eV, and 
the initial-state energy, carrier frequency of the IR field, and XUV pulse envelope parameters are the same as in Fig. 1.
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recombination channels, where XUV photons are 
absorbed at the moment the electron returns to 
the atomic core. Analysis of the contributions of 
partial amplitudes associated with various closed 
classical trajectories of the electron in the IR field, 
in accordance with the described XUV-initiated 
and XUV-assisted channels, revealed that for 
moderate IR pulse intensities, the spectral region 
of XUV-initiated channels overlaps only with the 
harmonic spectrum of the IR field in the absence of 
the XUV pulse, while the probability of interference 
with XUV harmonic generation channels is 
negligibly small. In contrast, XUV photon 
absorption during recombination (XUV-assisted 
channel) significantly expands the spectrum of the 
generated radiation, enabling the interference of 
different generation channels.

It is worth noting that for short XUV pulses, the 
energy range of the generation channels strongly 
depends on the time delay between the XUV and 
IR pulses. For example, in the case of high XUV 
photon energies, there are delay intervals where the 
XUV-initiated generation channel is suppressed. It is 
important to emphasize that interference phenomena, 
caused by the spectral overlap of different 
XUV-induced generation channels with the IR-field 
HHG channel, are key to a deeper understanding 
of atomic photoprocesses occurring in the field of 
synchronized XUV and IR pulses. These phenomena 
can also form the basis for optical methods to 
extract the temporal profile of the IR pulse from the 
measured generation spectra [39, 77, 78].
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1. INTRODUCTION

Currently, General Relativity (GR) accurately 
explains nearly the entire body of astronomical data. 
However, from the very first cosmological solutions 
[1], Einstein’s equations must necessarily include the 
energy-momentum tensor on the right-hand side. One 
approach is that the entire array of modern astrophysical 
data is well described by GR equations, and theories of 
gravity extending GR in various ways [2, 3, 4, 5, 6] are 
developed specifically to explain the physical nature of 
the right-hand side and its source.

One promising direction for extending GR has 
been scalar-tensor theories of gravity, where, as 
the name suggests, physical fields are included 
alongside geometric terms and curvature invariants. 
To address the issue of higher-order differential 
equations, theories have been constructed where 
higher degrees mutually cancel out, with the 
most general example of this approach being 
the Horndeski model [7, 8]. Despite significant 
constraints on the Horndeski model from 
gravitational-wave astronomy data [9, 10], interest 
in it (and theories derived from it that pass the 

GW170817 test) remains strong. This model has 
also been used to create nonsingular cosmology 
models, where the initial singularity is replaced by a 

“bounce” of the scale factor [11, 12]. This approach 
appears promising, and within the Horndeski 
framework, models known as the “Fab Four” 
were proposed, where the corrections themselves, 
without additional tuning parameters like the 
cosmological constant (Λ), ensure the accelerated 
expansion of the Universe [13, 14]. Nonsingular 
cosmological solutions within the Fab Four model, 
as an example of a scalar-tensor theory with a 
simpler structure than the general Horndeski 
theory, have also been discussed earlier [15].

The idea of adding quantum-field corrections 
to gravity models [16] allows, for example, the 
limitation of nonlocality size in gravity theories 
at the quantum limit [17]. This approach was 
also applied to the Fab Four model [18], and the 
additional inclusion of quantum-field corrections 
ensures that the speed of gravitational wave 
propagation now matches the experimental results 
of gravitational-wave astronomy. All of this 
highlights the potential of scalar-tensor models. 
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Therefore, we consider a nonminimal effective 
model of scalar-tensor gravity with third- and 
fourth-order field terms, formed by summing one-
loop interactions [19] in the form:

S g R G=
2
2

2 2∫ − +








 + ∂ ∂ −





 κ

α κ φ φµν
µ νφ β

	 − ∂ ∂ − −






1
2

1
3!

1
4!

,3 4 4g g d xµν
µ νφ λφ φ φ � (1)

where κ π2 = 32 G ,  G is the Newtonian constant, f is 
the new scalar field, R is the scalar curvature, a and 
b are dimensionless constants, l is the cubic scalar 
coupling with mass dimension, g is the dimensionless 
fourth-order scalar coupling, and G µν  is the Einstein 

tensor G R g Rµν µν µν=
1
2

−






.  Despite its “extended” 

nature, this model remains significantly simpler 
than the standard version of the Horndeski or 
DHOST theory, increasing interest in its potential 
to explain dark energy and early Universe processes. 
To further analyze the applicability of this model 
to early Universe evolution, it is necessary to study 
its predictions for bounce and genesis realization 
[20]. This paper is dedicated to the first step in this 
direction – investigating the conditions for bounce 
existence. It is important to note that the absence 
of an initial singularity in the cosmological model 
significantly increases its appeal. For example, 
consider the search for parameter spaces where 
a “bounce” occurs [21] in second-order curvature 
correction gravity – the Gauss-Bonnet model [22, 
23], one of the candidates for the semiclassical limit 
of string gravity [24]. Moreover, the bounce already 
appears with the simple addition of a scalar field, as 
in the Brans-Dicke model [25]. Thus, the presence of 
a nonsingular asymptotic solution in the considered 
theory serves as an additional argument for its 
relevance. As the first step in examining the strengths 
and weaknesses of the theory (1), we investigate this 
issue. Since additional constraints on the theory’s 
parameters were previously proposed to pass 
astronomical tests (discussed at the end of Section 3) 
[19], it is of interest to compare these constraints 
with those imposed by the bounce requirement.

This paper is structured as follows. Section 2 
derives the field equations for the theory proposed 
in [19]; Section 3 explores the parameter space 
constraints imposed by the bounce requirement; and 
Section 4 discusses the results and conclusions.

2. FIELD EQUATIONS

The Klein-Gordon equations are obtained by 
varying the action (1) with respect to the scalar field. 
Following [26], we have:

− − + +
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2 3λφ φ φg 

	 + − ∇ ∇2 2 = 0.2α κ µν
µ νφ β φR G � (2)

Varying with respect to the metric tensor and 
introducing the effective gravitational constant 
G eff ( )f ,  which depends only on the scalar field, gives:
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As a result, Einstein’s equation takes the form:
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where Tµν  is the effective energy-momentum tensor:

	 T
g

g L

g
m

µν µν
δ

δ
=

2 ( )
,

-

-

- � (5)

Here Lm is the matter Lagrangian.

3. COSMOLOGICAL SOLUTION 
WITH A “BOUNCE”

Following [22, 23], we consider an isotropic 
(Friedmann-like) cosmological solution of the form:

	 ds dt a t dx dy dz2 2 2 2 2 2= ( )( ),− + + � (6)

where both the scale factor a, and the scalar field f 
depend only on the time coordinate t.
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To study the behavior at the bounce point, we 
examine the system (2)–(4). At the bounce point, the 
scale factor must be positive and finite, i.e., a const= > 0. 
To ensure the scale factor reaches a minimum at the 
bounce point and to avoid a cosmological singularity 
a = 0  at any other point, it is necessary that a = 0  and 
a > 0 . With this, Einstein’s equations at the bounce 
point can be rewritten as:

	 3
4

=
1

12
1
48

,2 3 4
φ φ φ- -λ g � (7)

− +
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The Klein-Gordon-Fock equation (2) takes the 
form:

	 

a
a

g=
12
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.2 3

α
λ

φ
φ φ φ− −

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If we consider the case where the energy-
momentum tensor is represented by the scalar field, 
its absence would imply the absence of a nontrivial 
cosmological solution: f = 0 = 0Þ a .  Since this 
would lead to the singularity we aim to avoid, we 
introduce the additional conditions:

f = 0,  f = > 0const  and f > 0.

From equation (8) and (9), we obtain an equation 
for the scalar field:

φ = 4 .-
λ
g

From equations (8) and (9), we derive an 
expression for the second derivative of the scalar field:

φ =
36

1
8

1
1

12 96

2

2

2

2

2 2 2

−
+

+ +











λ
α

ακ
λ

α κ α λ

g

g


.

The final system of inequalities (after substituting 
into (9) with equations (7) and (8)) is:
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From inequality (10), we obtain that l and g 
must have opposite signs. It is also necessary for the 
stability of the model that g > 0 . Otherwise, the 
scalar potential would be unbounded from below, 
rendering the model unstable. From inequality (11), 
it follows that l < 0 , then a > 0 .The final inequality 
(13) is automatically satisfied under conditions (10)–
(12). We can also consider the case a < 0 . From (13), 
we obtain:

1
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1

12 96
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2
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2

2

2 2 2

ακ
λ

α κ α λ
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+ +
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−g
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11728
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2
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αλ

g

This implies that the expression inside the 
parentheses is positive. Thus, condition (11) also 
holds if l > 0  and g < 0 . However, this condition 
contradicts the necessary stability condition of the 
model. Therefore, these conditions are not suitable 
for the given problem.

4. CONCLUSION AND FINDINGS

In the non-minimal effective model of scalar-
tensor gravity with third- and fourth-order field terms 
formed by summing one-loop interactions [19], the 
realization of a “bounce” solution is possible. The 
necessary conditions for the realization of the bounce 
solution are as follows: parameters l < 0 , g > 0  and 
a > 0 . A similar model was previously studied in 
[27], where a = 0 , the scalar field f  was absent, but 
the cosmological constant L was present, ensuring 
the same effect. The bounce solution is realized 
under the conditions Λ = 0  (although the case 
when l = = 0g  is not possible in our model), ρ = 0  
(similarly, in our case, the volume density is zero), 
a0 > 0  (in our case, the scale factor a > 0 ) and b < 0  
(which does not contradict our conditions). Thus, 
our results partially coincide with those previously 
obtained for a simpler version of the discussed model, 
except for the zero value of the cosmological constant 
and the parameter α (which was initially zero in the 
simpler version of the theory).
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Thus, in the discussed scalar-tensor gravity 
model, instead of an initial singularity, a bounce is 
possible even in the simplest configuration, provided 
the initial constraints are met. This means that the 
model, with a simpler structure than most scalar-
tensor models based on Horndeski’s theory, not only 
solves the initial singularity problem but also brings 
us closer to the development of quantum gravity 
while offering the potential for the realization of both 
bounce and genesis scenarios.
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1. INTRODUCTION

Thanks to its ability to simulate different kinds of 
matter such as perfect fluid, dark energy etc. spinor 
field is being used by many authors not only to 
describe the late time acceleration of the expansion, 
but also to study the evolution of the Universe at 
different stages [1, 2, 3, 4, 5, 6, 7, 8].

It was found that the spinor field is very sensitive 
to spacetime geometry. Depending on the concrete 
type of metric the spinor field may possess different 
type of nontrivial non-diagonal components of the 
energy-momentum tensor. As a result the spinor 
field imposes various kinds of restrictions on both 
the spacetime geometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see 
whether its specific behavior can shed any new light 
in the study of objects like black hole and wormhole. 
Such studies were carried out within the scope of 
spherically symmetric [10, 11] and cylindrically 
symmetric spacetime [12, 13].

Since the present-day universe is surprisingly 
isotropic and the presence of nontrivial non-
diagonal components of the spinor f ield leads 
to the severe restrictions on the spinor field, we 

have studied role of a spinor field in Friedmann–
Lemaitre–Robertson–Walker (FLRW) model as 
well. But in those cases the space-time was given 
in Cartesian coordinates. In order to see influence 
of the coordinate transformations on spinor field 
some works were done by us earlier [14, 15]. In this 
paper we will further develop those studies and see 
how the spinor field behaves if the isotropic and 
homogeneous cosmological FLRW model given by 
spherical coordinates.

2. BASIC EQUATION

The action we choose in the form

	 S g
R

L dp=
2

,∫ − +










κ s Ω � (1)

where κ π= 8 G  is Einstein’s gravitational constant, 
R  is the scalar curvature and L ps  is the spinor field 
Lagrangian given by [16]

   L
i

m F Kps =
2

[ ] ( ).ψγ ψ ψγ ψ ψψ λµ
µ µ

µ∇ −∇ − − �(2)

To maintain the Lorentz invariance of the spinor 
field equations the nonlinear term F K( )  in (2) is 
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constructed as some arbitrary functions of invariants 
generated from the real bilinear forms. On account of 
Fierz equality in (2) we set K K I J b I b J= ( , ) = ,1 2+  
where b1  and b2  takes the value 0  or 1  which leads to 
the following expressions for K I J I J I J= { , , , }+ − .  
Here I S= 2  and J P= 2  are the invariants of 
bilinear spinor forms with S = ψψ  and P i= 5ψγ ψ  
being the scalar and pseudo-scalar, respectively. In 
(2) λ  is the self-coupling constant. Note that λ  can 
be both positive and negative, while λ = 0  leads to 
linear case. Here m  is the spinor mass.

The covariant derivatives of spinor field takes the 
form [16]

	 ∇ ∂ − ∇ ∂ +µ µ µ µ µ µψ ψ ψ ψ ψ ψ= , = ,Ω Ω � (3)

where Ωµ  is the spinor affine connections, defined 
as [16]

	 Ω Γµ ρσ µ τ
ρ

µτ
ρ σ τγ γ=

1
4

.( )
( )g e eb
b∂ −( ) � (4)

In (4) Γµα
β  is the Christoffel symbol and the Dirac 

matrices in curve space–time γ  are connected to the 
flat space–time Dirac matrices γ  in the following 
way

	 γ γ γ γβ β
α α= , = ,( )

( )e eb
b a

a � (5)

where e a( )
α  and e b

β
( )  are the tetrad vectors such that

	 g x e x e xa b
abµν µ ν η( ) = ( ) ( ) , � (6)

and fulfil following relations

	 e e e ea
a

a
b

a
b

( )
( )

( )
( )= , = .α

β β
α α

αδ δ � (7)

Here ηab iag= (1, 1, 1, 1)d - - -  is the Minkowski 
spacetime. The γ  matrices obey the following anti-
commutation rules

	 γ γ γ γ γ γ γ γµ ν ν µ µν
µ ν ν µ µν+ += 2 , = 2 .g g � (8)

Varying the Lagrangian (2) with respect to ψ  and 
ψ , respectively, we obtain the following spinor field 
equations

	 i m D iGγ ψ ψ ψ γ ψµ
µ∇ − − − 5 = 0, � (9)

	 i m D iG∇ + + +µ
µψγ ψ ψ ψγ5 = 0, � (10)

where D F b S G F b PK K= 2 , = 2 .1 2λ λ
The energy momentum tensor of the spinor field 

is defined in the following way [16]

Tµ
ρ =

=
4

( )
i

g ρν µ ν ν µ µ ν ν µψγ ψ ψγ ψ ψγ ψ ψγ ψ∇ + ∇ −∇ −∇ −

� -δµ
ρL,  (11)

which in view of (3) we rewrite as

Tµ
ρ = �

=
4

( )
i

g ρν µ ν ν µ µ ν ν µψγ ψ ψγ ψ ψγ ψ ψγ ψ∂ + ∂ −∂ −∂ − �

− + + + −
i

g L
4

( ) .ρν
µ ν ν µ ν µ µ ν µ

ρψ γ γ γ γ ψ δΩ Ω Ω Ω �(12)

Note that the non-diagonal components of 
the EMT arises thanks to the second term in (12). 
Moreover, let us emphasize that in view of the spinor 
field equations (9)–(10) the spinor field Lagrangian 
(2) can be expressed as

	 L KF F F dF dKK K= 2 , = / .λ −( ) � (13)

We exploit this form of Lagrangian in solving 
Einstein equations, as they should be consistent 
with the Dirac one, as (13) is valid only when spinor 
fields obey Dirac equations (9)–(10). Let us also 
note that in case F K=  the Lagrangian vanishes 
which is very much expected as in this case spinor 
field becomes linear. We are interested in nonlinear 
spinor field as only it can generate different kinds of 
source fields.

The isotropic and homogeneous cosmological 
model proposed by Friedmann, Lemaitre, Robertson 
and Walker independently is the most popular and 
thought to be realistic one among the cosmologists. 
Let us consider the FLRW model in spherical 
coordinates in its stanard form [17]:

ds dt a t
dr

kr
r d r d2 2 2

2

2
2 2 2 2 2= ( )

1
,−

−
+ +

















ϑ ϑ φsin �(14)

with k taking the values +1, 0 and –1 which 
corresponds to a close, f lat and open universe, 
respectively. Though the value of k defines the type 
of geometry of space-time, in reality it is defined 
by the contents that filled universe. As we see later, 
independ to the value of k the universe filled with 
dark energy is always open, whereas for perfect fluid 
the value of k really matters. In this case depending 
on the value of k we obtain close, f lat or open 
universe.
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In view of (6) the tetrad we will choose in the form

e e
a

kr
0
(0)

1
(1)

2
= 1, =

1
,

-

e ar e ar2
(2)

3
(3)= , = .sinϑ

Then from (5) we find the following γ  matrices

γ γ γ γ0 0 1
2

1= , =
1

,
- kr
a

γ
γ

γ
γ

ϑ
2

2
3

3

= , = .
ar ar sin

Further from γ γµ µν
ν= g  one finds the γµ  as well.

The Christoffel symbols, Ricci tensor and scalar 
curvature and the Einstein tensor corresponding to the 
metric (14) are well known and can be found in [17].

Then from (4) we find the following expressions 
for spinor affine connection

	 W0 = 0,� (15)

Ω1
2

1 0=
1

2 1
,

- kr
aγ γ � (16)

Ω2
2 0 2 2 1=

1
2

1
2

1 ,ra krγ γ γ γ+ − � (17)

Ω3
3 0 2 3 1=

1
2

1
2

1ar krsin sinϑγ γ ϑγ γ+ − + �

+
1
2

.3 2cosϑγ γ � (18)

Let us consider the case when the spinor field 
depends on t  only, then in view of (15)–(18) the 
spinor field equations can be written as





ψ ψ γ γ ψ
ϑ
γ γ ψ+ +

−
+ +

3
2

1
2

2
0 1 0 2a

a
kr

ar ar
cot �

+ +( ) +i m D Gγ ψ γ γ ψ0 5 0 = 0,  � (19)





ψ ψ ψγ γ
ϑ
ψγ γ+ −

−
− −

3
2

1
2

2
0 1 0 2a

a
kr

ar ar
cot �

− +( ) +i m D Gψγ ψγ γ0 5 0 = 0, �  (20)

Introducing ϕ ψ= 3/2a  we rewrite the equation 
(19)–(20)

ϕ γ γ ϕ
ϑ
γ γ ϕ+

−
+ +

1
2

2
0 1 0 2kr

ar ar
cot �

	 + +( ) +i m D Gγ ϕ γ γ ϕ0 5 0 = 0, � (21)

ϕ ϕγ γ
ϑ
ϕγ γ-

-
- -

1
2

2
0 1 0 2kr

ar ar
cot �

	 − +( ) +i m D Gϕγ ϕγ γ0 5 0 = 0, � (22)

The equation (21) can be presented in the matrix 
form

	 ϕ ϕ= ,A � (23)

or

	









ϕ
ϕ
ϕ
ϕ

1

2

3

4

1 1

1 1
*

=

0

0













− −

−

iD G B

iD B −−

















G

G B iD

B G iD

1 1

1
*

1

1

2

3

4

0

0

ϕ
ϕ
ϕ
ϕ









, � (24)

where

D m D B
kr

ar
i

ar1 1

2

= , =
1

2
,+( ) −

−
+

cotϑ

B
kr

ar
i

ar1
*

2

=
1

2
.-

-
-

cotϑ

It can be shown that

det A D G B B= .1
2 2

1 1
* 2

+ −( )
We can choose the nonlinearity in such a way that 

the corresponding determinant is nontrivial. In that 
case the solution (23) can be formally written as [18]

	 ϕ τ τ( ) = ( ) ,
1

1t T xp A d
t

t

e −











∫ � (25)

where T t= ( )1ϕ  is the solution at t t= 1 . Given the 
fact that the universe is expanding and the spinor field 
invariants are the inverse functions of scale factor, in 
case of a nonzero spinor mass one can assume

ϕ ϕ ϕ ϕ ϕ( ) = , , , ,1 1
0 1

2
0 1

3
0 1

4
0 1t ol e e e e

imt imt imt imt
c

− −( )
whereas for a massless spinor field

ϕ ϕ ϕ ϕ ϕ( ) = , , ,1 1
0

2
0

3
0

4
0t olc ( )

with ϕi
0  being constants.

The non-trivial components of the energy 
momentum tensor of the spinor field in this case read

	 T mS F0
0 = ,+ λ � (26)
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	 T T T KF FK1
1

2
2

3
3= = = 2 ,− −( )λ � (27)

	 T
a

kr
A3

1

2

0=
4 1

,
cosϑ

-
� (28)

	 T
r kr

A1
0

2

3=
4 1

,
cotϑ

-
�  (29)

	 T kr A2
0 2 3=

3
4

1 ,- - � (30)

	 T kr A A3
0 2 2 1=

3
4

1
1
2

.- -sin cosϑ ϑ � (31)

From (28)–(31) we conclude that the energy-
momentum tensor of the spinor f ield contains 
nontrivial non-diagonal components. The non-
diagonal components

•	 do not depend on the spinor field nonlinearity;
•	 occur due to the spinor affine connections;
•	 appear depending on space-time geometry as well 

as the system of coordinates;
•	 impose restrictions on spinor field and/or space-

time geometry;
•	 do not depend on the value of k  which defines 

the type of curvature.
It should be emphasized that for a FLRW model 

given in Cartesian coordinate the EMT have only 
diagonal components with all the non-diagonal one 
being identically zero [19]. So in this case the non-
diagonal components arise as a result of coordinate 
transformation. Note also that all cosmological 
spacetime defined by diagonal matrices of Bianchi 
type VI, VI0, V, III, I, LRS BI-  and FLRW, 
possess same diagonal components of EMT, but has 
nontrivial non-diagonal elements that differ from 
each other in different cases [9]. Moreover, non-
diagonal metrics such as Bianchi type II, VIII  and 
IX  also have nontrivial non-diagonal components 
of EMT. Consequently, we see that the appearance 
of non-diagonal components of the energy-
momentum tensor occurs either due to coordinate 
transformations or due to the geometry of space-time.

As one sees, the components of the EMT of the 
spinor field contains some spinor field invariants. 
To define those invariants let us write the system of 
equations for the invariants of the spinor field. It can 
be obtained from the spinor field equation (19)–(20):

	 S G A0 0
02 = 0,+ � (32)

	 P m D A0 0
02 = 0,− +( ) � (33)

A G S m D P0
0

0 02 2+ + +( ) +

	 +
−

+2
1

= 0,
2

0
1

0
2kr

ar
A

ar
A

cotϑ � (34)

	 A
kr

ar
A0

1
2

0
02

1
= 0,+

− � (35)

	 A
ar

A0
2

0
0 = 0,+

cotϑ � (36)

that gives the following relation between the 
invariants:

P S A A A C C0
2

0
2

0
0 2

0
1 2

0
2 2

0 0= , = .− +( ) −( ) −( ) const �(37)

In (32)–(37) the quantities with a subscript "0"  
are related to the normal ones as follows: X Xa0

3= .  
From (37) we can conclude that since C 0  is an 
arbitrary constant, the each term of (37) should be 
constant as well.

In order to solve the Einstein equations we have 
to know how the components of the EMT are related 
to the metric functions. In order to know that let us 
find the invariant K  in general. We consider the 4 
cases separately.

In case of K I= , G = 0 . In this case from (32) 
we find

	 S
C

a
K

C

a
s s= , = .
3

2

6
Þ �  (38)

If K J= , then in case of a massless spinor field 
from (33) we find

	 P
C

a
K

C

a

p p= , = .
3

2

6
Þ � (39)

Let us consider the case when K I J= + . In this 
case b b1 2= = 1 . Then on account of expression for 
D  and G  from (32) and (33) for the massless spinor 
field we find

	 S a F PAK0
3 04 = 0,+ λ � (40)

	 P a F SAK0
3 04 = 0,- λ � (41)

which yields

	 K I J S P
C

a
= = = .2 2 1

2

6
+ + � (42)

Finally in case when K I J= - , i.e. b b1 2= = 1-  
from (32) and (33) for the massless spinor field we find

	 S a F PAK0
3 04 = 0,+ λ � (43)
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	 P a F SAK0
3 04 = 0,+ λ � (44)

which yields

	 K I J S P
C

a
= = = .2 2 2

2

6
- - � (45)

Thus we see that the invariant K  is a function of 
metric function a , namely, K onst a= . 6c -  and it is 
what we need to solve the Einstein equation. In what 
follows we solve the Einstein equation.

Let us recall that the Einstein tensor G µ
ν  

corresponding to the metric (14) possesses only 
nontrivial diagonal components. Hence the general 
Einstein system of equations

	 G G Tµ
ν

µ
νπ= 8 ,- � (46)

leads to the following non-diagonal expressions

	 0 = , .Tµ
ν µ ν¹ � (47)

In view of (28)–(31) from (47) one dully finds that

	 A A A kr A0 3 1 2 2= 0, = 0, = (3 2) 1 .- ϑ �(48)

Note that since the FLRW model given by the 
Cartesian coordinate the non-diagonal components 
of EMT are identically zero, hence relation such as 
(48) does not exist.

In view of A 0 = 0 , A 3 = 0  from the system (32)–
(36) we find

	 S C P C A C A CS P0 0 0
1

0
1

0
2

0
2= , = , = , = , �(49)

with C S , C P , C 0
1  and C 0

2  being some arbitrary 
constants. Thus we see that K onst a= . 6c - . Note that 
the equation (34) in this case in redundant and (48) 
gives relations between the constants C 0

1  and C 0
2 .

We are now ready to consider the diagonal 
components of the Einstein system of equations 
which for the metric (14) takes the form

	 2 = 8 ,
2

2 2 1
1 a

a
a

a

k

a
G T+ +











≠ � (50)

	 3 = 8 .
2

2 2 0
0a

a

k

a
G T+











≠ � (51)

On account of (51) we rewrite (50) in the form

	
a
a

G
T T

G
p=

4
3

3 =
4

3
3 ,0

0
1
1− −( ) − +( )π π

ε � (52)

8pG

8pG

where ε  and p  are the the energy density and and 
pressure, respectively:

	 ε λ= = ,0
0T mS F+ � (53)

	 p T KF FK= = 2 .1
1− −( )λ � (54)

On account of (26) and (27) from (52) we find

	 a
G

mS F KF aK=
4

3
2 6 .− − +( )π
λ λ � (55)

Note that the equations (52) or (55) do not 
contain k  that defines the type of space-time 
curvature. In order to take this very important 
quantity into account we have to exploit (51) as the 
initial condition for a . The equation (51) we rewrite 
in the form

a G a k= 8 3 =2± ( ) −π ε

	 = 8 3 ,2± ( ) +( ) −π λG mS F a k � (56)

Now we can solve (55) with the initial condition 
given by (56). It comes out that these equations are 
consistent when one takes the negative sign in (56). 
Alternatively, one can solve (56), but for the system 
to be consistent he has to check whether the result 
satisfies (55).

As we have already established, S , K , hence 
F K( )  are the functions of a . Consequently, given 
the spinor field nonlinearity the foregoing equation 
can be solved either analytically or numerically.

The equation (55) can be solved analytically. The 
first integral of (55) takes the form

	 a f a da C c= ( ) ,∫ + � (57)

where we define

f a
G

mS F KF aK( ) =
8

3
2 6− − +( )π
λ λ

and C c  is a constant which should be defined from 
(56). The solution to the equation (57) can be given 
in quadrature

	 ∫
∫ +

da

f a da C
t

c( )
= . � (58)

1.	 In what follows we solve the system (50)–(51) 
numerically. In doing so we rewrite it in the following 
way:

	 a Ha= , � (59)
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	 H H
k

a
G KF FK=

3
2

1
2

4 2 ,2
2

− − − −( )π λ � (60)

	 H
G

mS F
k

a

2
2

=
8

3
,

π
λ+( )− � (61)

where H  is the Hubble constant.
As one sees, in the foregoing system the first two 

are differential equations, whereas the third one is a 
constraint, which we use as the initial condition for 
H :

	 H G mS F k a= 8 3 .2± +( ) −π λ � (62)

Since the expression under the square-root must 
be non-negative, it imposes some restrictions on the 
choice of initial value of a  as well. Note that initial 
value of H  depends on spinor mass m , coupling 
parameter λ  and the value of k .

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (59) and 
(60), numerically. The third equation of the system 
(61) we exploit as initial condition for H t( )  in the 
form (62). We do it for both massive and massless 
spinor field. Beside this, we consider close, flat and 
open universe choosing different values for k . As it 
was mentioned earlier, the coupling constant λ  can 
be positive or negative. Let us recall that

	 K
K

a
K= , = .0

6 0 const � (63)

The foregoing relation holds for K I J I J= { , , }±  
for a massless spinor field, whereas for K I S= = 2  
it is true for both massive and massless spinor field. 
Hence we assume that K I S= = 2 . We consider 
different kind of spinor field nonlinearities F K( )  
(equivalently, F S( ) ), that describes various types of 
sources from perfect fluid to dark energy.

3.1 Barotropic equation of state

Let us consider the case when the Universe is 
filled with perfect f luid or dark energy given by 
quintessence, Λ -term or phantom matter. It can 
be implemented by the barotropic equation of state 
(EoS), which gives a linear dependence between the 
pressure and energy density and was exploited by 
many authors [20, 21, 22, 23]. The corresponding 
EoS takes the form

	 p W= ,ε � (64)

where the EoS parameter W is a constant. Depending 
on the value of W, the Eq. (64) can give rise to both 
perfect fluid, such as dust, radiation etc. and dark 

Fig. 1. Evolution of the FLRW Universe (scale factor a(t)) in 
presence of a radiation given by a massless spinor field. The blue 
solid, red dash-dot and black long dash lines stand for close, flat 
and open (k = +1, 0, –1) universe, respectively

Fig. 2. Evolution of the corresponding Hubble parameter H(t) 
and corrsponds to differnt values of k as in Fig. 1



52	 Saha

JETP,  Vol. 167,  No. 1,  2025

energy such as quintessence, cosmological term, 
phantom matter etc. For W Î [0,1] , it describes 
a perfect f luid. The value W = 1-  represents a 
typical cosmological constant (Λ -term) [24, 25, 26], 
whereas W ∈ − −[ 1, 1 / 3]  gives rise to a quintessence, 
while for W < 1-  it ascribes a phantom matter.

It was shown in [9, 27] that inserting (26)–(27) 
into (64) the matter or energy corresponding to Eq. 
(64) can be simulated by the nonlinear term given by

	 F S S mSW( ) = , = .,1λ λ+ − const � (65)

in the spinor field Lagrangian (2).
Let us now solve (59)–(61) numerically for the 

nonlinear term given by (65). We consider both 
massive and massless spinor field. The values of W  
are taken to be 1 / 2 , -1 / 2  and -1  describing the 
radiation, quintessence and cosmological constant, 
respectively. For simplicity we set S0 = 1 , G = 1 , 
λ = 0.5  here and in the cases to follow. We also set 
m = 0  for a massless and m = 1  for a massive spinor 
field.

In Fig. 1 we have illustrated the evolution of the 
Universe filled with radiation, given by a massless 
spinor field, while Fig. 2 shows the evolution of 
the Hubble parameter corresponding to the case in 
question. Figs. 3 and 4 describes the evolution of the 
Universe filled with radiation and the corresponding 
Hubble parameter in case of a massive spinor field. In 
the figures blue solid line stands for a closed universe 
given by k = 1 , red dash-dot line stands for a flat 
universe with k = 0  and black long dash line stands 
for an open universe with k = 1.-

Fig. 3. Evolution of the FRW Universe (scale factor a(t)) in 
presence of a radiation given by a massive spinor field. The 
blue solid, red dash-dot and black long dash lines stand for 
k = +1, 0, –1, respectively

Fig. 5. Evolution of the FRW Universe (scale factor a(t)) in 
presence of a modified Chaplygin gas given by a massless spinor 
field. As one sees, independent to the value of k in this case the 
universe expand rapidly

Fig. 4. Evolution of the corresponding Hubble parameter H(t)
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We have also considered the case with the 
spinor field nonlinearity describing a quintessence 
( = 1 / 2)W -  and cosmological constant ( = 1)W - . 
Both massive and massless spinor fields are taken into 
account. Since in both cases the energy density is less 
than the critical density, independent to the value of 
k  we have only open type of universe. The behavior 
of the evolution is qualitatively same as that of in 
case of a modified Chapligin gas. The corresponding 
figures will be similar to those in Figs. 5 and 6, only 
the rate of expansion being much slower.

3.2 Chaplygin gas

In order to combine two different physical 
concepts such as dark matter and dark energy, and 
thus reduce the two physical parameters in one, a 
rather exotic equation of state was proposed in [28] 
which was further generalized in the works [29, 30]. 
Generalized Chaplygin gas model is given by the EoS

	 p Ah hc c= ,- εα � (66)

where A  is a positive constant and 0 < 1.α £

It was shown that such kind of dark energy can 
be modeled by the massless spinor field with the 
nonlinearity [9] inserting (26)–(27) into (66)

	 F S A S( ) = .1 1/(1 )
+( )+ +
λ α α

� (67)

We have solved (59)–(61) numerically for the 
nonlinear term given by (67). We consider only 
massless spinor field setting m = 0 . The parameters 
S G0,  and λ  were taken as in previous case. We have 
also set A = 1 2/  and α = 1 3./

As in case of quintessence and cosmological 
constant, the evolution of the universe filled with 
Chaplygin gas and corresponding behavior of the 
Hubble parameter are qualitatively same as in case 
of a modified Chaplygin gas which are illustrated in 
Figs. 5 and 6. The expansion rate in this case is higher 
than the previous case but slower than in the case to 
follow.

3.3 Modified Chaplygin gas

Though the dark energy and the dark matter act in 
a completely different way, many researchers suppose 
that they are different manifestations of a single entity. 
Following such an idea a modified Chaplygin gas was 
introduced in [31] and was further developed in [32]. 
Corresponding EoS takes the form

	 p W A= ,ε εα- � (68)

with W  being a constant, A > 0  and 0 1£ £α .

Fig. 7. Evolution of the FRW Universe (scale factor a(t) in 
presence of a modified quintessence given by a massless spinor 
field. In case of k = +1 there occurs a periodic solution, whereas 
for k = 0 or k = –1, we have Big Crunch like solutions

Fig. 6. Evolution of the corresponding Hubble parameter H(t)
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Inserting (26)–(27) into (68) the modif ied 
Chaplygin gas can be generated by a massless spinor 
field with the nonlinearity given by [9]

	 F S
A

W
S W( ) =

1
.(1 )(1 )

1/(1 )

+
+













+ +
+

λ α
α

� (69)

In fact, mathematically it is a combination of 
quintessence and Chaplygin gas. We have solved 
(59)–(61) numerically for the nonlinear term given 
by (69). Since we consider only massless spinor field, 
we set m = 0 . For simplicity we set S G A0, , , ,λ  and α  
as in previous cases. Beside that we set W = 1 / 2.-

In Figs. 5 and 6 we have illustrated the evolution 
of the universe and corresponding Hubble parameter 
when the Universe is filled with nonlinear spinor field 
simulating a modified Chaplygin gas.

3.4 Modified quintessence

A modified Quintessence was proposed in order 
to avoid eternal acceleration of the universe. In some 
cases it gives cyclic universe that pops up from a Big 
Bang singularity, expands to some maximum value 
and then decreases and finally ends in Big Crunch. 
In some cases it might be periodic without singularity. 
A spinor description of a modified quintessence was 
proposed in [23]

	 p W Wr= ( ), ( 1,0),ε ε− ∈ −c � (70)

with εcr  being some critical energy density. The 
model gives rise to cyclic or oscillatory universe. 
Setting εcr = 0  one obtains ordinary quintessence. 
As one sees from (70), the pressure is negative as long 
as ε ε> cr . Since with the expansion of the universe 
the energy density decreases, at some moment of 

Fig. 8. Evolution of the corresponding Hubble parameter H(t)

Fig. 9. Evolution of the FRW Universe (scale factor q(t)) in 
presence of a modified quintessence given by a massive spinor 
field. Unlike massless spinor field, in this case there is no periodic 
solutions for the given value of problem parameters

Fig. 10. Evolution of the corresponding Hubble parameter H(t)
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time ε  becomes less than εcr , i.e., ε ε< cr . This 
leads to the positive pressure and the contraction 
of the universe. It can be shown that a modified 
quintessence can be modeled by a spinor field 
nonlinearity inserting (26)–(27) into (70)

	 F S S
W

W
W

r( ) =
1

.1λ ε+ +
+ c � (71)

We solve the system (59)–(61) for the values of 
parameters as in case of quintessence. For critical 
density we set εcr = 1 .

In Figs. 7 and 8 we have illustrated the evolution 
of the universe and corresponding Hubble parameter 
when the universe is filled with nonlinear massless 
spinor field simulating a modified quintessence. The 
corresponding cases with massive spinor field are 
illustrated in Figs. 9 and 10

In the figures, evolution of Hubble parameter 
H is drawn for a much smaller time interval than 
the scale factor a. It is just for technical reason. 
For example, if in Figs. 3 and 4 we use interval 30 
for both a and H, as we see from Fig.  4 Hubble 
parameter after crossing mark 5 it becomes almost 
zero, thus giving rise to a visually ugly picture. 
Whereas, setting interval 5 for both, we have a on 
rising phase for all three values of k [cf. Fig. 3]. 
These two figures correspond to the same values of 
problem parameter, only for good visual pictures 
we have drawn them for different intervals. The 
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric 
FLRW model we have studied the role of a 
nonlinear spinor f ield in the evolution of the 
universe. It is found that in this case the spinor 
field possesses nontrivial non-diagonal components 
of the EMT. Since the Einstein tensor in this case 
is diagonal, this fact imposes some restrictions on 
the components of spinor field: A 0 = 0 , A 3 = 0  
and A A1 2µ . Corresponding equations are solved. 
It is shown that if the spinor field nonlinearity 
repesents ordinay matter such as radiation, the 
factor k  plays decisive role giving rise to close, flat 
or open universe depending on its positive, trivial 
or negative values. It is also shown that in this case 
spinor mass influences the result quantatively. If the 
spinor feild nonlinearity generates a dark energy we 
have only rapidly expanding universe independent 

to the value of k. Finally in case of a modified 
quintessence the model gives rise to as oscillating 
universe. Depending on the value of k and spinor 
mass m there might be periodic solutions or the one 
that ends in Big Crunch.
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1. INTRODUCTION

Since the advent of General Relativity (GR), 
attempts have been made to construct models of 
elementary particles in curved spacetime. Notable 
contributors to such models include G. B.  Jeffery 
(1921), P. A. M.  Dirac (1962), W.  Israel (1970), 
C. A. López (1984), O. Gron (1984), A. Burinskii 
(1974–2023), and others. Unfortunately, none of the 
proposed models have found practical application in 
classical and quantum field theory calculations.

Another longstanding problem, which has engaged 
many researchers and is the focus of this paper, is the 
issue of the infinite self-energy of a charged particle 
in classical and quantum electrodynamics. Efforts to 
eliminate the linear divergence of self-energy in classical 
electrodynamics were made by H. Poincaré, M. Born, 
L. Infeld, P. A. M. Dirac, J. Wheeler, R. Feynman, and 
others. In quantum field theory, the renormalization 
procedure for fermion masses was developed to address 
the logarithmic divergence of self-energy.

Such efforts continue today. For example, in [1, 
2], quantum electrodynamics demonstrates that the 
self-energy of a point charge converges when the 
nonlinearity of the theory is considered in any finite 
order of the Euler–Heisenberg Lagrangian expansion 
in powers of the electric field.

In this paper, using the electron as an example, we 
propose two quantum models of charged elementary 
particles with zero self-energy. By employing the 

quantum geometry of the Reissner–Nordström (RN) 
metric and neglecting extremely small gravitational 
coefficients, all practical calculations in classical and 
quantum electrodynamics can be conducted within 
the paradigm of elementary particles as point masses 
with electric charges.

Our approach is based on the phenomenological 
description of quantum black holes for modified 
Schwarzschild (Sq) and Reissner–Nordström (RNq) 
geometries [3, 4]. In this framework, black holes contain 
quantum cores described by coherent states of gravitons. 
The coherent-state-averaged solutions of the massless 
Klein–Gordon equation for longitudinal gravitons are 
equated, with certain coefficients, to classical potentials. 
Short wavelengths are eliminated by a graviton energy 
cut-off, introducing a maximum graviton energy:

	 k
c

RU V
S

= .
 � (1)

For convenience, as in [3, 4], we introduce the 
parameter RS. The primary quantity in this theory 
is the maximum graviton energy kUV. The presence 
of a quantum core gives rise to quantum “hairs.” 
Quantum black holes thus possess quantum hairs.

In a future quantum theory of gravity, the 
graviton energy cut-off kUV will be replaced by strict 
integration, and the absence of short wavelengths in 
graviton coherent states will naturally result from the 
application of a more advanced quantum theory.
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In our previous work [5], we extended the 
approach of [3, 4] to modified M and Kerr–Newman 
(KNq) geometries, describing regular uncharged and 
charged quantum rotating collapsars. As with the 
RNq geometry, this term includes either black holes 
with quantum cores and event horizons or rotating 
quantum cores without event horizons.

In [5], for charged rotating collapsars with mass 
M, charge Q, and angular momentum J, we obtained 
full regularization of the KNq quantum metrics at 
the following parameter value:

	 R R
Q

Mc
S S

reg= =
8

2

2

≠ �  (2)

This regularization yielded finite values for key 
GR quantities, such as the mass function m rKNq ( ),  
R rq
µν θ, ,( )  the Kretschmann scalar K rq ,θ( ),  and 

others.
For R RS S

reg= , the total energy of the quantum 
charged rotating collapsar equals E Mc= 2 , meaning 
its self-energy is zero. Due to the presence of a 
quantum core, the electromagnetic forces responsible 
for the collapsar’s self-energy are counterbalanced by 
gravitational forces.

Similar results are obtained for the RNq quantum 
metric [4].

In Section 2, we propose two quantum electron 
models with zero self-energy based on RNq and 
KNq quantum geometries. Section 3 compares these 
models, favoring the RNq-based electron model. The 
conclusion summarizes the key findings of this paper.

The Appendix provides the procedure for 
calculating the energy of a charged rotating black 
hole with a quantum core (see [5]).

2. QUANTUM MODELS OF THE ELECTRON

Based on regular quantum models of charged 
rotating and non-rotating black holes [4, 5], we 
propose two quantum models of the electron with 
modified KNq and RNq metrics.

2.1 Modified Kerr–Newman geometry

For the electron model, we will use the Cürses-
Cürsey metric [6] 1):

1) Below we will use units with the velocity of light c = 1. When 
calculating the numerical values of the theory parameters, we 
will use the value c = 3 ⋅ 1010 cm/s.

p

ds
r m r

dtKNq
KNq
e

2
2

2= 1
2

−
( )










+

ρ

+
( )

−
4 2

2

a r m r
dtde KNq

e
sin θ

ρ
ϕ

	 - - -
ρ

ρ θ
θ

ρ
ϕ

2
2 2 2

2

2
2,

∆
Σ

dr d dsin � (3)

where m rKNq
e ( )  is the mass function,

	 ρ θ2 2 2 2= ,r ae+ cos � (4)

	 D∅= 2 ,2 2r r m r aKNq
e

e− ( )+ � (5)

	 Σ ∆= ,2 2 2 2 2r a ae e+( ) − sin θ � (6)

	 a
J

m me
e

e e
= =

2
.

 � (7)

In equation (7), me  is the electron mass, and 
Je = 2/  is the electron spin.

In general, for a black hole with mass M, charge 
Q, and angular momentum J, the mass functions 
m r( )  for both classical and quantum Kerr (K) and 
Kerr–Newman (KN) metrics do not depend on the 
spin parameter a J M= /  and are therefore equal 
to the mass functions for the classical and quantum 
Schwarzschild and Reissner–Nordström metrics.

For the electron, the quantum mass function is

m r m rKNq
e

RNq
e( ) ( )= =

=
2

2
1

2

G m Si
k

c
r

G e
r

k
c

re
U V
e
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e
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
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R
e

S
e

S
e≠


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


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− −


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


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. � (8)

where Si x
x

x
dx

x

( ) ∫=
'

'
'

0

sin  is the sine integral function. 

According to equation (2),

	 R
e

m c
S
e

e

=
8

= 1.11 10 .
2

2
13≠

⋅ − cm � (9)

According to equation (1), the maximum (cut-off) 
energy of gravitons is

k
c

R
U V
e

S
e

= = 178 .


MeV

p

p

p
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The asymptotics of the quantum mass function (8) 
are

	 m G mKNq
e

r
e→∞

= , � (10)

	 m
G m r

R
KNq
e

r

e

S
e→












→

0

3

=
1

18
0.

≠
� (11)

According to equation (10), the quantum KN 
metric becomes asymptotically flat as r → ∞ .

For the classical KN metric, the mass function 
mKN

cl = 0  at r e me e= / 22 , i.e. at r re= , the classical 
metric is flat in this limit [7]. For the quantum Kq 
and KNq metrics, the spacetime curvature persists 
throughout the entire interval r ∈ ∞( )0,  [5].

2.2 Modified Reissner–Nordström Geometry

The quantum RNq metric [4] can be obtained 
from equation (3) by setting ae = 0 :

ds
m r

r
dtRNq

RNq
e

2 2= 1
2

−
( )






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	 −

−
( )

− +( )1

1
2

,2 2 2 2 2
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r

dr r d d
RNq
e

θ ϕsin θ � (12)

where m rRNq
e ( )  is given in equation (8).

The quantum RNq metric is asymptotically flat 
as r → ∞  (see equation (10)). The g g00 11= 1 /-  
component at r ® 0  is

g
G m

c R

r
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e

S
e

S
e00 2

2

= 1
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e

� (13)

meaning that the metric (12) becomes flat at r = 0 .

2.3 Characteristics of electron models

Let’s present some characteristic values for the 
electron:

m ee = 9.1 10  ,   = 2.31 10  ,28 2 19⋅ ⋅ ⋅− −g erg sm
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We see that for the electron, β β1 2 1+  ,  
R RS

e
H
e
 1. This means that in the models of electron 

with the RNq and KNq quantum metrics, the event 
horizons are absent [8]. The proposed electron models 
represent either rotating (KNq) or non-rotating (RNq) 
collapsars without event horizons and with quantum 
cores defined by coherent states of gravitons with a 
maximum energy of kU V

e = 178  Me V.

2.4 Electromagnetic potentials

For the classical Reissner–Nordström and Kerr–
Newman metrics with mass M and charge Q, the 
mass function consists of two terms:

m r m r m r G M
G Q

r
cl cl

M

cl

Q
( ) ( )( ) + ( )( ) −= =

2
.

2

�(14)

The “charge” part of the mass function

m r G Q rcl

Q
( )( ) −= 22

ensures that the “charge” components of 
the Einstein tensor, divided by 8pG, match the 
corresponding components of the electromagnetic 
f ield energy-momentum tensor derived from 
Maxwell’s equations:

p
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G

G
TQ

em

µ
ν

µ
ν

π

( )
( )8

= .

For the classical KN geometry, the electromagnetic 
potentials Am are chosen as follows [9]:

	 A
Qr

aµ
ρ

θ= 1,0,0, .
2

2−( )sin � (15)

Electromagnetic fields at r → ∞manifest as a 
superposition of the Coulomb field and the magnetic 
dipole field m  =  Qa. The gyromagnetic ratio m
/ /J Q m= ,  which coincides with the gyromagnetic 
ratio for a Dirac electron. The complex internal 
electromagnetic structure of the classical KN metric 
source is discussed, for example, in [10].

For the classical Reissner–Nordström (RN) 
metric, when a = 0( )  in equation (15), only the 
scalar Coulomb potential remains A Q r0 = / .

For the regular quantum electron metrics 
(considering the relation between me  and e2  from 
equation (9)), the “charge” part of the mass function 
can be retained as in the classical RN and KN 
metrics. In this case, the mass function (8) becomes:

m r m rRNq
e

KNq
e( ) ( )= =

	 =
2 4

G m
r

R

r R

r R

G
e

S
e

S
e

S
e≠ ≠

Si
/

/












+

( )
















−

cos ee
r

2

2
. � (16)

Thus, the electromagnetic properties of the 
proposed electron models coincide with the 
electromagnetic properties of the sources of the 
classical Reissner–Nordström and Kerr–Newman 
metrics.

2.5 Electron’s self-energy

In the study [5], we established that for

R R Q MS S
reg= = 82≠

the energy of a rotating charged quantum black 
hole equals E M=  (see also the Appendix). A 
similar equality holds for the RNq quantum metric 
at any value of RS . For electron models in natural 
units:

R e m cS
e

e= 8 = 1.11 10 .2 2 13≠ ⋅ − cm

The equality E me=  means that the electron’s 
self-energy Eem  is zero.

p p

p

p

3. DISCUSSION

We have examined two quantum models of the 
electron based on modified Reissner–Nordström 
(RNq) and Kerr–Newman (KNq) metrics. Can we 
currently favor one model over the other? To answer 
this question, let us compare some characteristics of 
the considered models under the condition

R R
e
mS S

e

e
= =

8
.

2≠

Table: Comparison of electron model characteristics in 
Reissner–Nordström (RNq) and Kerr–Newman (KNq) 
quantum geometries

Electron model characteristic RNq KNq
1 Ee = me, Eem = 0 + +
2 Weak energy condition + –

3 | J | =  
2

, Dirac gyromagnetic ratio m
| J |

 =  e
me

– +

4 Absence of event horizons + +

5
Finiteness of the GRT quantities, such 
as the mass function, Ricci tensor, 
Kretschmann scalar, etc.

+ +

6 Compatibility with the Maxwell equations + +

7 Stationary bound states in the fields 
of regular black holes + –

In the table, the symbols “+” and “–” indicate 
the presence or absence of key characteristics in the 
considered models.

Let us briefly discuss points 1–7 of the table.
Point 1. For both models:

E m c Ee e em= , = 0.2

We found an important aspect: gravity in the 
charged quantum Kerr–Newman (rotating) and 
Reissner–Nordström (non-rotating) metrics with 
R RS S

e=  compensates for the electromagnetic 
component in the expressions for the total energy of 
the quantum black hole.

In classical electrodynamics, the self-energy of 
a charged particle E e rem

cl = 22  diverges linearly as 
r ® 0 . In quantum field theory, the self-energy of a 
charged particle is determined by an infinite series in 
perturbation theory with logarithmic divergence terms.

Point 2. For the RNq quantum geometry, the 
energy density ρε r( ),  radial pressure p r1( ) , and 
stresses p r p r2 3=( ) ( )  take the following form [4]:

ρ
π

ε r p r
m

R

e

S
e

( ) − ( )
( )

×= =1
2 3

p
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×
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R
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e S
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p r p r
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At r ® 0 , we have ρε r K( ) → 24 , p r Ki ( ) → − 24, 

where i = 1,2,3  and  K m Re S
e= ( )≠2 3

. Thus, for the 

RNq quantum geometry near r = 0 , the weak energy 
condition ρε ³ 0 , ρε + ≥pi 0 , i = 1,2,3  is satisfied.

Specifically, equations (17) and (18) show that at 
r = 0  ρε = 24K , ρε + pi = 0 , i = 1,2,3 .

For the RNq quantum geometry at r = 0 , the 
energy dominance condition ρε ³ pi , i = 1,2,3  
also holds. In our case: ρε = .pi

For the Kerr–Newman quantum geometry, the 
asymptotics of the energy density ρ µε r,( )  at r ® 0  
follow from equation (7) in [5] (here and below, 
µ θ= )cos :

	
ρ µ

µ

µ
µ

ρ µ µ

ε

ε

r
K r

a

r K

e
, =

12
1

, 0,

, = 84 , = 0.

2

4

2

( ) − 






 ≠

( )
� (19)

At m∝≠ ±0, 1  the energy density near r = 0  is 
negative. In this case, none of the energy conditions 
are satisfied.

Point 3. In the KNq quantum model, it is possible 
to introduce the spin modulus J = 2 , satisfying 
the Dirac gyromagnetic ratio. However, introducing 
the quantum spin operator S = 2( )s  is complicated 
when the classical definition of angular momentum is 

p2

p2

used in the Kerr–Newman geometry. Above,, si are 
two-dimensional Pauli matrices.

In the RNq quantum geometry, the angular 
momentum J is zero. In the RNq electron quantum 
model, the spin operator S and the gyromagnetic ratio 
e me  are pure quantum properties defined externally.

Point 4. In both these models, event horizons are 
absent.

Point 5. In both models, general relativity (GR) 
quantities such as the mass function, Ricci tensor, 
Kretschmann scalar, and others remain finite.

Point 6. The RNq and KNq quantum geometries 
are consistent with Maxwell’s equations (see Section 
2.4 of this study). However, the electromagnetic 
structure of the RNq model is significantly simpler 
than that of the KNq model. In the RNq quantum 
model, the source of the electromagnetic field is a 
point electric charge e located at the system’s center 
r = 0( ) . At large distances, the electromagnetic field 

behaves as a Coulomb field.
In contrast, the source of the electromagnetic field 

in the KNq quantum model is a system of surface 
currents and electric charges distributed over a disk of 
radius a J m ce e e=  with the center at r = 0  [10]. For 
r → ∞ , the electromagnetic field is a superposition of 
the Coulomb field and a magnetic dipole m = ea.

Point 7. In the RNq quantum geometry, 
the metric (12) becomes asymptotically f lat as 
r → ∞ . Importantly, for both R RS S

e=  and r ® 0 , 
the metric (12) is also flat (see Equation (13)). In this 
case, the problem of determining the eigenfunctions 
and eigenvalues of the Dirac equation for motion 
of fermions in the RNq fields can be solved by 
using single-valued boundary conditions from the 
analogous problem for the fermion motion in the 
Coulomb field in flat Minkowski space.

In the Kerr–Newman quantum geometry, the 
situation is different. At r ® 0  и  R RS S

e= , the 
metric (3) remains non-flat and takes the following 
form:

ds dt dr a dKNq e
2 2 2 2 2 2 2= - - -cos cosθ θ θ

	 -a de
2 2 2.sin θ ϕ � (20)

In [11, 12], it was shown that in this case, the Dirac 
equation has two quadratically integrable solutions, 
making it impossible to formulate a well-defined 
eigenvalue problem for fermions in the classical or 
quantum KN spacetime.
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To establish a well-defined quantum mechanical 
problem, one must perform a self-adjoint extension 
of the Hamiltonian, which usually results in new 
boundary conditions near r = 0  (see, for example, 
[13, 14]).

4. CONCLUSION

We proposed two quantum electron models with 
zero self-energy based on the Reissner–Nordström 
[4] and Kerr–Newman [5] quantum geometries. A 
critical parameter for regularizing key GR quantities 
is the choice of R e m cS

e
e= 8 1.11 102 2 13≠  ⋅ − cm,  

where  the  cut-of f  energy  of  gravi tons 
k c RU V

e
S
e= 178 »  Me V.

The proposed models solve the long-standing 
problem of linear divergence in the self-energy of 
a charged particle in classical electrodynamics. In 
the considered models, gravity compensates for 
the electromagnetic component in the total energy 
expressions for the electron.

It can be hypothesized that with more advanced 
quantum gravity theories, the problem of infinite 
self-energy of charged fermions in quantum field 
theory will be resolved similarly.

Notably, when using the RNq quantum electron 
model, all classical and quantum electrodynamics 
effects can be calculated within the standard 
paradigm of an elementary particle with point 
mass me  and electric charge e < 0 . This is due 
to the extremely small values of the parameters 

G m ce / 0.7 102 55
 ⋅ −  cm and G e c2 4 68/ 1.9 10 ⋅ −

cm2 in Equation (16) for the mass function m rRNq
e ( ) .

As a result of neglecting the coefficients G m

c
e

2
 and 

G e

c

2

4
 the RNq geometry becomes the flat Minkowski 

space-time. In this case, we return to the domain of 

classical and quantum electrodynamics for charged 
leptons within the Standard Model.
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APPENDIX: ENERGY OF A CHARGED 
ROTATING BLACK HOLE WITH A 

QUANTUM CORE [5]

For the KN quantum metric, the total energy, 
defined by the volume integral of the energy density 
T r0

0 ,≡ ( )ρ θε , is given by:

E T gdV
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For the K and KN metrics:

− +
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g r a
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d m
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When the condition

R R
Q

Mc
S S

reg= =
8

2

2

≠

is satisfied, the total energy of the quantum charged 
rotating collapsar equals zero: E Mc= 2 .

Under this condition, the key general relativity 
(GR) quantities, such as the mass function m r( ), the 
Ricci tensor R rµν θ,( ) , and the Kretschmann scalar 
K r,θ( ) , become regular and finite throughout the 
entire spacetime.
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1. INTRODUCTION

Neutron scattering is a powerful non-destructive 
method for studying magnetic structures, polymers, 
and biological objects due to the unique properties 
of neutrons: the presence of an intrinsic magnetic 
moment, high penetrating ability, and isotopic 
sensitivity. The properties of neutron and X-ray 
radiation differ signif icantly, making them 
complementary methods. For example, polarized 
neutron beams are a unique tool for studying 
magnetic materials within the bulk of a substance, 
which is inaccessible to X-rays due to their low 
penetrating ability.

The width of the neutron beam determines 
the spatial resolution and the scale of the studied 
objects. The typical beam width in neutron 
experiments ranges from 0.1 to 10 mm. To study local 
microstructures on the scale of tens of micrometers, 
very narrow neutron beams are required. For this 
purpose, various focusing devices are being developed 
(parabolic mirror neutron guides, refractive lenses, 
curved monochromator crystals, etc.) [1], capable of 
compressing the neutron beam to 50 μm. Achieving 
a smaller beam width is hindered by limitations 
imposed by the physical properties of the materials 
used and the technology of their processing. Another 

problem with these devices is their inability to 
effectively isolate a “pure” microbeam. For example, 
parabolic mirror neutron guides form a highly 
structured beam in space, refractive lenses focus 
only 20–30% of the initial beam, and capillary lenses 
generate significant background noise.

In [2], the profile of a microbeam after passing 
through an aperture formed by neutron-absorbing 
crystal blades Gd Ga O2 5 12  (or GGG) was calculated. 
The resulting microbeam had a central part about 
100 μm wide and wings ranging from 10 to 20 μm. 
The study also demonstrated a method for obtaining 
a microbeam through total reflection of neutrons 
from a silicon substrate. This method has undeniable 
advantages: high intensity (~1000 neutrons/s), low 
background (~2 neutrons/min), and compatibility 
with time-of-f light techniques. However, the 
practically achievable microbeam width at a neutron 
wavelength of 4.0 Å and an 8 mm wide silicon 
substrate still remains around 30 μm.

The record holders for the minimum width of 
neutron microbeams are triple-layer waveguides 
(Fig.  1). Their operating principle is as follows. 
A collimated neutron beam with an angular 
divergence δαi  falls in a vacuum (medium 0) onto 
the surface of the waveguide at a small grazing 
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angle ai . The neutrons then tunnel through a thin 
upper layer (medium 1) with a thickness of a = 5

–20 nm and enter the middle layer (medium 2) 
with d=100–200 nm. They are almost completely 
ref lected from the relatively thick lower layer 
(medium 3), deposited on a thick substrate (e.g., 
glass). Some of the neutrons tunnel back through 
the upper layer and exit the waveguide as a reflected 
beam a af i= . Another portion of the neutrons 
reflects from the upper thin layer 1 and returns to 
the middle layer 2. As a result of multiple reflections, 
the neutrons propagate along the middle layer 
as if through a channel and exit from its end as a 
microbeam with an angular divergence δαf . The 
main contribution to the angular divergence δαf  of 
the microbeam comes from Fraunhofer diffraction 
δαF  at the narrow slit d formed by the waveguide 
channel δα λF dµ / , where λ is the neutron 
wavelength.

Layered neutron waveguides have been well studied 
to date. In [3], an unpolarized neutron microbeam was 
obtained from the end of a triple-layer waveguide, while 
in [4], a polarized beam was achieved. The contribution 
of Fraunhofer diffraction δαF  to the angular divergence 
of the neutron microbeam was experimentally 
determined in [5, 6, 7]. In [2, 8], a polarized neutron 
microbeam from a waveguide was used for spatial 
scanning of a 190 μm diameter microwire made of 
amorphous magnetic material. At a distance of 1 mm 
from the waveguide exit, with a neutron wavelength of 
4.0 Å, a waveguide channel width of 150 nm, and an 
angular divergence 0.15 , the calculated microbeam 
width at the sample location was 2.6 μm. With a 
microbeam intensity of approximately 1 neutron/s, 
statistically significant data were obtained within about 
10 hours. The experimental setup is described in detail 
in [2]. The advantages of planar waveguides include 
the record-low width of the neutron microbeam and a 
relatively simple method for separating the microbeam 
from the background. Their obvious disadvantages 
are low intensity and relatively high beam divergence. 
However, the commissioning of more powerful neutron 
sources (SNS, ESS, PIK, IBR‑3) may make the use of 
layered waveguides more accessible.

In planar waveguides, two phenomena are 
observed simultaneously – resonant enhancement of 
neutron standing waves and neutron channeling. The 
theory of neutron resonances in layered waveguides 
is described in [9]. Let us introduce the following 
notations:

k z i0 =
2

,
π
λ

αsin

k k k kz z z z1 0
2

1 2 0
2

2= , = ,- -ρ ρ

k x i0 =
2

.
π
λ

αcos

Here, ρ1  is the neutron scattering length density 
(SLD) for the upper layer 1, and ρ2  is the SLD 
for the waveguide layer 2. The general form of the 
neutron wave function is given by:

Y( , ) = ( ),0 0k z A ik zz zexp

where A  is the amplitude of the wave function. 
Then, we obtain the condition Y 2 2

= A .  Inside 
the middle layer, the wave function takes the form:

Y( ) = ( ) ( ) ,2 23 2z A ik z R ik zz zexp exp− +[ ]

where R23  is the amplitude of the reflected neutron 
wave function from the lower layer 3. The amplitude 
A is determined from the self-consistent equation for 
the neutron wave function in layer 2, if the origin z=0 
is aligned with the boundary between layers 1 and 2:

	 A T ik d R R ik d Az z= ( ) ( 2 ) ,02 2 21 23 2exp exp+ � (1)

where T02  is the amplitude of the transmitted 
neutron wave function from vacuum (medium 0) into 
medium 2, and R21  is the amplitude of the reflected 
neutron wave function in medium 2 from layer 1. 
From the self-consistent equation (1), we find:

	 Y 2 2 02

21 23 2
= =

1 (2 )
.A

T

R R ik dz- exp
� (2)

Fig. 1. Principle of operation of a planar neutron waveguide
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The quantity A
2  in equation (2) exhibits resonant 

maxima under the periodic conditions for the phase 
of the neutron wave function:

	 Φ( ) = 2 ( ) ( ) = 2 ,0 2 21 23k k d R R nz z + +arg arg π �(3)

where n = 0, 1, 2,  is the resonance order. If the 
neutron wavelength is fixed, the grazing angle of 
the incident beam has resonances depending on the 
angle ain . If the time-of-flight method is used, the 
grazing angle is fixed, and the final neutron spectrum 
exhibits resonances depending on the wavelength λn . 
In [10], it was experimentally shown using a time-of-
flight reflectometer that the spectral width of neutron 
resonances increases with the divergence δαi  of the 
incident beam.

The parameter A
2  represents the neutron density 

enhancement coefficient inside the middle layer, and 
for various resonators, it can reach values of the 
order of 101–103. Layered resonators are used to 
amplify the weak interaction of neutrons with matter 
[11]. Neutron resonances appear as weak minima in 
the coefficients of neutron specular reflection and 
as corresponding resonance-enhanced maxima of 
secondary characteristic radiation or specific neutron 
scattering. During neutron interactions with certain 
elements and isotopes, secondary characteristic 
radiation, such as gamma rays [12] and alpha 
particles [13], is generated due to nuclear reactions. 
The experimental setup and the method of neutron 
ref lectometry with the detection of secondary 
radiation are described in detail in [14–17].

Specific neutron scattering within the resonator 
can also include neutrons that experience spin-flip 
interactions with magnetically non-collinear layered 
structures [18, 19, 20], incoherent scattering from 
hydrogen [21], and off-specular scattering from 
interlayer roughness [22, 23] and domain structures 
[24, 25]. The high sensitivity of neutron resonance 
positions to changes in the SLD of the resonant 
layer has been utilized to detect small variations in 
hydrogen concentration within the resonator [26, 
27]. These resonators can be applied as sensors in 
hydrogen storage systems.

Another type of specific neutron scattering is 
neutron channeling. A neutron beam propagating 
along the middle layer can exit through the 
waveguide surface as a collimated beam of standard 
width or from the channel end as a narrow divergent 
microbeam (see Fig. 1). The intensities of both 

neutron beams exhibit resonance maxima depending 
on energy. In [28], the idea of using planar neutron 
waveguides to determine weak magnetization of 
films on the order of 102 G was proposed. This idea 
was experimentally implemented in [29] and [30]. 
In the three-layer waveguide, the outer layers were 
non-magnetic, while the investigated ferrimagnetic 
films TbCo5  [29] and TbCo11  [30] acted as the 
middle waveguide layer. The magnetization value 
is determined directly from the difference in the 
resonance positions, which varies by about n=0 
for the incident beam polarizations “+” and “–”. 
Moreover, registering the microbeam allows effective 
separation of the useful signal from the background, 
originating from the specularly reflected, refracted, 
and bypassing beams. In this study, we examine a 
waveguide where the outer layers are magnetic and 
the middle layer is non-magnetic (see Fig. 2). In 
such waveguides, the neutron density enhancement 
coefficient within the waveguide channel depends 
on the neutron spin projection “+” or “–” relative 
to the magnetization vector direction. In [31], the 
idea was proposed to control the chain reaction of 
uranium fission within the non-magnetic waveguide 
layer by magnetizing the outer layers using an applied 
magnetic field. This approach alters the parameter 
xe , which characterizes the exponential attenuation 
of the neutron density, known as the channeling 
length.

In [32], it was theoretically demonstrated that 
during neutron propagation along the waveguide 
channel, the neutron wavef ield attenuates as 
exp −( )x xe/ , where x is the distance under the 
unilluminated surface of the waveguide. The 
expression for the neutron channeling length was 
derived as:

	 x
k d

k R Re
x

z
=

| |
.

2 21 23ln
� (4)

If the lower layer is sufficiently thick, we can 
assume R23 = 1 . If the neutron reflection amplitude 
from the upper layer is close to unity R21 1» , the 
neutron transmission coefficient through the upper 
layer becomes a small parameter:

T T R= = 120 21-

Thus, we can write an approximate expression:

ln lnR R T T21 23 1 .≈ −( ) ≈
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In this case, we obtain a simplified expression for 
the neutron channeling length:

	 x
k d

k Te
x

z
»

2
. � (5)

The neutron channeling length can be determined 
experimentally. A strip of neutron-absorbing material 
is applied near the exit edge of the waveguide, 
creating an unilluminated region of length x. Then, 
by varying the absorber’s position and changing the 
length of the unilluminated region x, the intensity 
I(x) of the microbeam emerging from the waveguide 
end is measured. For normalization, the microbeam 
intensity without the absorber I (x = 0) is recorded.

According to the channeling theory [32], the 
intensity of the neutron microbeam from the 
waveguide channel end attenuates exponentially with 
increasing length of the unilluminated waveguide 
surface:

	 I x I x x xe( ) / ( = 0) = / .exp −( ) � (6)

From the experimental dependence of the 
microbeam intensity (6), the neutron channeling 
length xe can be determined. For various waveguides, 
this value typically ranges between 0.5 and 5.0 mm.

Various materials are used as neutron absorbers: 
Gd O2 3 powder, Cd plates, or boral (an aluminum-
boron carbide composite) bars. Fig. 3 shows the 

experimental setup with a sliding boral block. Due 
to the block’s curvature, an air gap of approximately 
with h≈10μm forms between the block and the 
waveguide surface. As a result, part of the waveguide 
surface under the absorber, with a length Dx of about 
1.5 mm, remains illuminated by the incident neutron 
beam. In the experiment, the intensity I L( )of the 
neutron microbeam is recorded as a function of the 
distance L from the waveguide exit edge to the front 
edge of the absorber. The coordinate L = Dx + x 
includes both the illuminated length Dx and the 
unilluminated length x of the waveguide surface 
under the absorber. By transforming the coordinates, 
the dependence of the microbeam intensity on 
the unilluminated surface length x  =  L  – Dx is 
determined. The intensity I x( )  of the microbeam 
with the fully illuminated waveguide surface I x = 0( )  
is used for normalization. The value Dx not need to 
be known in advance; it is determined automatically 
during the data processing, described in detail in 
Section 3.

The experimental setup and various methods 
for measuring the neutron channeling length are 
presented in [33]. Two neutron absorbers were 
compared: a sliding boral block and Gd O2 3  powder. 
The advantage of the powder lies in its low background 
in the microbeam and simpler data processing, as 
there is no air gap between the surface and the powder. 
However, the drawbacks of the powder include: 
1) significant time consumption when changing the 
absorber width; 2) practical infeasibility for neutron 
channeling lengths shorter than 1 mm;

The advantages of the sliding boral block are: 
1)  precise position control using a micrometer 
screw; 2) faster repositioning compared to the 
powder absorber; 3) suitability for determining short 
channeling lengths less than 1 mm. The drawbacks of 
the sliding boral block are higher background levels 

glass

z, nm

Fig. 2. Neutron scattering length density (SLD) of the waveguide 
with magnetic outer layers as a function of the coordinate z 
perpendicular to the layers. The notation Py(+) corresponds to 
the polarization “+” and a film magnetization of 7.2 kG, Py (—) 
corresponds to the polarization “–” and a film magnetization 
of 7.2 kG, while Py represents the unpolarized beam and the 
demagnetized sample.

Fig. 3. Experimental setup for determining the neutron 
channeling length using a sliding absorber bar.



JETP,  Vol. 167,  No. 1,  2025

68	 Kozhevnikov, Khaydukov

in the microbeam compared to the powder absorber 
and more complex data processing.

The same study [33] experimentally demonstrated 
that the exponential attenuation parameter of neutron 
density in the reflection geometry is smaller than the 
channeling length in the microbeam geometry from 
the waveguide end.

The phenomenon of neutron channeling in three-
layer waveguides was first observed in the reflection 
geometry in [34]. The first experimental measurement 
of the neutron channeling length in the microbeam 
geometry was performed in [35] using an absorbing 
powder on the surface. In [36], experiments were 
conducted with a Cd plate on the sample surface. A 
comprehensive review of studies on planar neutron 
waveguides is provided in [37], showing that the 
channeling length (5) depends on the resonance 
order n = 0, 1, 2 and the waveguide parameters – 
upper layer thickness a, channel width d, and the 
depth of the potential well defined by the scattering 
length density (SLD) contrast ∆ρ ρ ρ= 1 2- .

The following relationships were derived for the 
resonance order n = 0:

ln ln lnx a x d xe e eµ µ µ, , ∆ρ

and the first three resonance orders n = 0, 1, 2:

x ne ∝ +( )1 / 1

Experiments with the sliding boral block 
determined the neutron channeling length as 
a function of resonance order and upper layer 
thickness [38], waveguide channel width [39], and 
potential well depth for various waveguides [40]. 
The experimental results confirmed theoretical 
predictions.

In this study, we experimentally determine the 
neutron channeling length in a waveguide with 
magnetic outer layers, where the potential well depth 
varies depending on the neutron beam polarization.

2. CALCULATIONS

Calculations were performed for the Py(20 nm)/
Cu(140 nm)/Py(50 nm)//glass waveguide. Permalloy 
(Py) is a magnetic Fe(20.6 at.%)Ni(79.4 at.%) alloy 
with a narrow hysteresis loop. Figure 2 shows the 
neutron scattering length density (SLD) profile 
of the waveguide as a function of the coordinate z 
perpendicular to the layers. The designations Py(+) 

and Py(–) correspond to the SLD of saturated 
permalloy for neutron spins “UP” and “DO,” 
respectively, while Py represents the SLD for the fully 
demagnetized state of permalloy. As seen in the figure, 
the SLD of permalloy changes depending on the 
neutron spin direction. The permalloy magnetization 
used for calculations is 7.2 kG, and the neutron 
wavelength is 4.26 Å. Fig. 4 presents the calculated 
squared modulus of the neutron wavefunction 
Y 2  as a function of the incident beam’s grazing 

angle ai  and the coordinate z perpendicular to 
the layers. Fig. 4a shows “+” polarization, Fig. 4b 
shows calculations for the unpolarized NM beam, 
while Fig. 4c shows “–” polarization. Resonances 
of orders n = 0, 1, 2 ,… are visible, with the most 
intense ones located within the total reflection region 
below the horizontal dashed line. The neutron 
density enhancement coefficient reaches 30 for the 
UP polarization and the n = 0 resonance. Notably, 
the two-dimensional neutron density maps differ 
depending on the neutron beam polarization. As 
the waveguide potential well depth decreases, the 
resonance positions shift to lower incident angles, 
the distance between resonances decreases, and the 
resonance peak intensities also decrease.

Fig. 5a shows the neutron specular ref lection 
coefficients for the UP polarization (thin line), 
the unpolarized NM beam (dashed line), and the 
DO polarization (thick line) as a function of the 
incident beam’s grazing angle. It is evident that the 
total reflection region shifts toward smaller grazing 
angles for the NM and DO polarizations compared 
to the UP polarization. Additionally, minima in the 
reflection coefficients appear in the total reflection 
region, corresponding to resonance conditions 
n = 0, 1, 2 .

In Fig. 5b, the square modulus of the neutron 
wavefunction Y 2  (in relative units), integrated over 
the coordinate z within the waveguide channel, is 
shown as a function of the incident beam’s grazing 
angle. Resonance peaks n = 0, 1, 2 corresponding 
to the resonance order are clearly visible. If the peak 
value for the n = 0 resonance with UP polarization 
is normalized to 1.0, the corresponding peak for the 
unpolarized beam is 0.8, while for DO polarization 
it is 0.4. Thus, the square modulus of the neutron 
wavefunction Y 2  depends significantly on the 
potential well depth of the waveguide.

Fig. 6 shows the neutron channeling length n = 0  
resonance as a function of the waveguide’s potential 
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well depth, calculated for a neutron wavelength 
of 4.26 Å using Equation (5). The dots represent 
the calculated data, while the solid line represents 
an exponential fit. It is evident that the neutron 
channeling length increases exponentially with 
increasing waveguide potential well depth. Thus, 
preliminary calculations predict an exponential 
growth of both the square modulus of the neutron 
wavefunction and the neutron channeling length as 
the waveguide potential well depth increases.

3. EXPERIMENT

The experiments were conducted on the NREX 
polarized neutron reflectometer (FRM II reactor, 
Garching, Germany) [41]. The sample plane was 
positioned horizontally, allowing the boral block 
absorber to rest freely on the waveguide surface. The 

dimensions of the Py(20 nm)/Cu(140 nm)/Py(50 
nm)//glass sample substrate were 30 30 5 3´ ´  mm ,  
while the absorber block dimensions were 
1 1 38 3´ ´ mm .  The neutron wavelength was 
4.26 Å.  In polarized beam mode, the wavelength 
resolution was 1.5%, and the incident beam 
divergence was 0.006.  The angular resolution of the 
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z, nm

z, nm
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x e
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b
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c Fig. 5. Calculations: (a) Neutron specular reflection coefficient 
for UP polarization (thin line), DO polarization (thick line), 
and unpolarized NM beam (dashed line) as a function of the 
incident beam’s grazing angle. (b) Square modulus of the 
neutron wavefunction for UP and DO polarizations and for 
the unpolarized NM beam as a function of the incident beam’s 
grazing angle.

Fig. 6. Calculated neutron channeling length as a function of 
the waveguide potential well depth for different incident beam 
polarizations.

Fig. 4. Calculated squared modulus of the neutron wavefunction 
as a function of the grazing angle of the incident beam and the 
coordinate perpendicular to the layers for different initial beam 
polarizations: (a) UP; (b) Unpolarized NM beam; (c) DO. 
Neutron wavelength: 4.26 Å.
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3He two-dimensional position-sensitive detector was 
0.072 .

The polarization eff iciency of the single 
supermirror polarizer was 97%, and it was used in 
the transmission geometry. An external magnetic 
field of 1.0 kOe was applied parallel to the sample 
plane to magnetize the permalloy films to saturation. 
The first aperture width was 0.25 mm, with a distance 
of 2200 mm from the first aperture to the sample 
and 2400 mm from the sample to the detector. The 
detector’s spatial resolution was 3.0 mm. A second 
aperture, 0.7 mm wide, was placed 200 mm before 
the sample to reduce background noise.

The demagnetized state of the sample was achieved 
by applying an external magnetic field of +3 Oe 
along the film plane. This field value was determined 
from the hysteresis loop measured using the degree of 
polarization of the specularly reflected beam. During 
the determination of the neutron channeling length 
in the demagnetized waveguide, the unpolarized 
beam mode was used, with the polarizer removed 
from the beam path. The first aperture width was 
0.35 mm, the neutron wavelength resolution was 
2.0%, and the incident beam divergence was 0.009 .

Fig. 7a presents the neutron specular reflection 
coefficients for “+” polarization (light points) 
and “–” polarization (dark points) as a function of 
the incident beam’s grazing angle. The solid lines 
show the fit results with the following parameters: 
layer thicknesses (nm), nuclear SLD (Å‑2), and 
magnetization of the layers (kG).

PyO nm /(2.3 ,7.67 10 )6 2⋅ − −Å

/ (19.5 , 8.83 10 ,7.0 )6 2Py nm kG /⋅ − −Å

/ (132.0 , 6.58 10 )6 2Cu nm /⋅ − −Å

/ (48.0 , 8.56 10 ,7.2 )6 2Py nm kG //⋅ − −Å

//glass (2.63 10 ).6 2⋅ − −Å

The fit results indicate that the magnetization 
of the upper permalloy layer is 7.0 kG, while 
the magnetization of the lower layer is 7.2 kG. 
Fig.  7b shows the specular ref lection coefficient 
for the unpolarized neutron beam reflected from 
the demagnetized sample. The f it with zero 
magnetization of the permalloy layers accurately 
describes the experimental data.

Fig. 8a displays the neutron microbeam intensity 
without an absorber on the waveguide surface as a 
function of the incident beam’s grazing angle for 
the initial polarizations “+” (light symbols) and “–” 
(dark symbols) with the fully illuminated waveguide 
surface. The resonance peaks are labeled with the 
corresponding resonance orders n = 0, 1, 2 .

It can be seen that the microbeam intensity peak 
at the n = 0  resonance (background-subtracted) 
for the initial “–” polarization is approximately 
twice lower than the peak intensity for the “+” 
polarization. Higher-order resonances ( n = 1, 2, 3 ) 
are clearly visible for the “+” polarization. For the 

“–” polarization, only a small peak at the n = 1  
resonance is observed, significantly shifted to lower 
incident angles compared to the n = 1resonance for 
the “+” polarization. The intensity of higher-order 
resonances for the “–” polarization is low, making 
the corresponding peaks barely visible.

Fig. 7. Neutron specular reflection coefficients as a function of 
the incident beam’s grazing angle (dots – experiment, lines – 
fit): (a) polarized beams UP and DO; (b) unpolarized beam NM.

ai, degrees

ai, degrees
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Fig. 8b shows the neutron microbeam 
intensity without an absorber on the surface of the 
demagnetized sample as a function of the incident 
angle of the unpolarized neutron beam. The peak 
corresponding to the n = 0  resonance is clearly 
visible. For normalization, the microbeam intensity 
I x = 0( )  is measured with the absorber placed 
at the very edge of the waveguide exit, when the 
waveguide surface is fully illuminated by the incident 
neutron beam. In this case, the main part of the 
specularly reflected beam is blocked by the absorber, 
reducing the background level near the microbeam 
by approximately 50%. This position corresponds 
to an absorber offset of L = 1 0. mm  relative to the 
waveguide exit edge.

Fig. 9 presents the neutron microbeam intensity 
as a function of the grazing angle of the incident 
UP-polarized beam for different absorber positions 
relative to the waveguide exit edge: 1.0, 1.5, 2.5, 
3.5, and 4.0 mm. These data were obtained and 

published in our previous work [38]. As the absorber 
moves away from the waveguide edge, the neutron 
microbeam intensity decreases systematically.Further 
studies were conducted on the demagnetized sample. 
Fig. 10 shows the intensity of the neutron microbeam 
as a function of the grazing angle of the incident 
unpolarized neutron beam (NM) for the absorber 
block positioned relative to the waveguide’s output 
edge at 1.0, 2.3, and 2.7 mm. It can be observed that 
the microbeam intensity decreases as the distance 
from the waveguide’s output edge to the absorber’s 
front edge increases.

Fig. 11 presents the neutron microbeam intensity 
as a function of the grazing angle of the incident 
polarized DO beam for different absorber positions 
relative to the waveguide’s output edge: 1.0, 1.7, 
1.9, 2.2, and 2.4 mm. As seen, the microbeam 

Fig. 8. Neutron microbeam intensity as a function of the incident 
beam’s grazing angle: (a) incident beam polarization UP (light 
symbols) and DO (dark symbols); (b) unpolarized beam.

Fig. 9. Microbeam intensity for UP polarization as a function 
of the incident beam’s grazing angle at different distances L 
between the front edge of the absorber on the surface and the 
output edge of the waveguide: (a) 1.0 mm; (b) 1.5 mm; (c) 2.5 
mm; (d) 3.5 mm; (e) 4.0 mm. The dashed line indicates the 
background level. Data obtained from [38].
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the origin (x = 0) on the horizontal axis. Subsequently, 
all remaining points along the L coordinate (light 
symbols) are shifted by a single value L along the 
horizontal axis so that the line through all x L L= '-
coordinate points (dark symbols and lower scale) 
passes through the origin x = 0 . The shift value 
L'  depends on the accuracy of the initial absorber 
block positioning relative to the waveguide’s output 
edge and the size of the air gap between the absorber 
and the waveguide surface. Consequently, the line 
ln[ ( ) ( = 0)] =I x I x x xe/ /- intersects the 0.37 level 
on the vertical axis at the point corresponding to 
the experimental neutron channeling length. The 
uncertainty in the neutron channeling length is 
determined by the extreme trajectories passing 
through the experimental points, considering the 
statistical error of the microbeam intensity. It is 
noteworthy that the longest neutron channeling 
length is observed for the UP-polarized incident 

intensity decreases with increasing distance from the 
waveguide output to the front edge of the absorber 
block.

Fig. 12 displays the normalized neutron 
microbeam intensity I L I x( ) ( = 0)/  on a natural 
logarithmic scale as a function of the distance L 
from the waveguide’s output edge to the absorber 
block’s front edge (upper scale and light symbols) 
for the incident polarized UP beam (a), the 
unpolarized NM beam and demagnetized sample 
(b), and the polarized DO beam (c). The condition 
I L I x( = 1 ) = ( = 0)mm  is taken into account.

It can be observed that the experimental points for 
L > 1  mm align along a straight line intersecting the 
1.00 level at L. Vertical error bars represent statistical 
uncertainties in the neutron microbeam intensity. 
The data processing is performed as follows: the 
normalized intensity point at L = 1 mm is placed at 

Fig. 10. Microbeam intensity in the unpolarized mode as 
a function of the incident beam’s grazing angle at different 
distances L between the front edge of the absorber on the surface 
and the output edge of the waveguide: (a) 1.0 mm; (b) 2.3 mm; (c) 
2.7 mm. The dashed line indicates the background level.

ai, degrees

I, n/s

a

b

c

ai, degrees ai, degrees

I, n/s

a

b

d

c

e

Fig. 11. Microbeam intensity for DO polarization as a function of 
the incident beam’s grazing angle at different distances L between 
the front edge of the absorber on the surface and the output edge 
of the waveguide: (a) 1.0 mm; (b) 1.7 mm; (c) 1.9 mm; (d) 2.2 mm; 
(e) 2.4 mm. The dashed line indicates the background level.
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beam (Fig. 12a). The channeling length decreases 
for the unpolarized NM beam and the demagnetized 
sample (Fig. 12b). The shortest channeling length is 
observed for the DO polarization (Fig. 12c).

The illuminated surface area under the absorber 
Dx in Fig. 3 corresponds to the point L'  when the 
absorber block just begins to partially cover the 
waveguide surface from the incident beam. From the 
equality Dx = L′, the air gap under the block can be 
estimated as h xi» α ∆ .

Fig. 13 shows the experimental neutron 
channeling length as a function of the waveguide’s 
scattering length density (SLD) depth ∆ρ ρ ρ= 1 2- .  
The points represent the experimental data, while 
the line represents the least-squares exponential fit. 
It is evident that the experimental data follow an 
exponential dependence, qualitatively confirming 

the preliminary channeling theory calculations. 
The quantitative comparison between theory and 
experiment depends on the precise determination 
of the actual structural parameters (oxide layer 
thickness, layer thicknesses, SLD, and layer 
magnetization). However, minor deviations of the 
experimentally obtained structure parameters from 
nominal values should not affect the overall trend 
of the neutron channeling length’s dependence on 
the waveguide potential well depth. The channeling 
theory was previously validated experimentally [35]. 
The calculated neutron channeling length, with 
refined Fe/Cu/Fe//glass waveguide parameters, 
matched the experimentally obtained value within 
statistical error limits.

4. DISCUSSION OF RESULTS

The examined magnetic waveguide Py/Cu/Py 
can be utilized in two directions. First, as a polarizer 
for generating a polarized neutron microbeam in 
experiments studying magnetic microstructures. 
From the intensity ratio of the UP and DO 
microbeam polarizations for the resonance of order 
n = 0  (see Fig. 8a), it follows that the waveguide’s 
polarization eff iciency is 0.3. The review [37] 
provides a detailed discussion of various polarizing 
and non-polarizing magnetic waveguides. For 
example, the Fe(20 nm)/Cu(140 nm)/Fe(50 nm)//
glass waveguide has a polarization efficiency of 0.6 
for the n = 0 resonance. The polarization efficiency 
of the magnetic waveguide Fe(20 nm)/Co(150 nm)/
Fe(50 nm)//Si reaches 1.0.

Magnetic waveguides have a significant drawback. 
Due to the high divergence of the microbeam, the 
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Fig. 12. Normalized microbeam intensity on a natural logarithmic 
scale as a function of the distance L from the output edge of the 
waveguide to the front edge of the absorber block (upper scale and 
light symbols) and the length of the non-illuminated surface area 
of the waveguide x (lower scale and dark symbols) for different 
polarization values: (a) UP, (b) NM, (c) DO.

Fig. 13. Neutron channeling length as a function of the 
waveguide’s SLD depth for different incident beam polarizations. 
Points represent experimental data, and the line represents the 
least squares exponential fit.
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sample under study must be located approximately 
1 mm from the waveguide’s exit. In such an 
experimental setup, it is challenging to separate 
the magnetic field on the waveguide from the field 
on the sample. The most practical solution is a 
combination of a polarized neutron reflectometer 
and a non-magnetic waveguide [42]. In this 
configuration, high polarization of the microbeam is 
achieved conventionally, and the magnetic field on 
the sample does not affect the operation of the non-
magnetic waveguide. This non-magnetic waveguide 
setup was used in the experiment with the magnetic 
microwire [2, 8]. Thus, non-magnetic waveguides 
have an advantage over magnetic ones in experiments 
studying magnetic microstructures using polarized 
neutron microbeams.

The second application of magnetic neutron 
waveguides is for controlling the chain reaction of 
uranium fission. The idea proposed in [31] suggests that 
by remagnetizing the external magnetic layers with an 
applied magnetic field, the neutron density in the middle 
non-magnetic layer can be altered. If uranium is placed 
inside the non-magnetic layer, the uranium fission 
reaction can be controlled using an external magnetic 
field. Suitable candidates for this method include the 
Py/Cu/Py and Fe/Cu/Fe magnetic waveguides. The 
preferred choice is the Fe/Cu/Fe waveguide, which 
has twice the polarization efficiency. However, in this 
study, we investigated the Py/Cu/Py waveguide. For the 
DO polarization of the incident beam, the waveguide 
retains a shallow potential well of the scattering length 
density (SLD), enabling experimental measurement 
of the neutron channelling length for this polarization. 
Clearly, non-magnetic waveguides are not suitable for 
controlling the chain reaction, as they do not respond 
to the magnetic field.

5. CONCLUSION

This study investigated the Py/Cu/Py//glass 
neutron waveguide with external magnetic layers. The 
magnitude of the SLD of the magnetic layer depends 
on the sign of the incident neutron beam polarization. 
Preliminary calculations based on the theory of 
resonances in layered nanostructures showed that 
the square of the neutron wave function modulus 
inside the waveguide increases with the depth of the 
SLD potential well. Calculations using the theory of 
neutron channelling in planar waveguides predicted 
an exponential growth of the neutron channelling 
length with increasing SLD potential well depth.

The neutron channelling length was experimentally 
determined for the UP and DO polarization of the 
incident neutron beam for a sample magnetized to 
saturation and for the unpolarized incident beam 
for a fully demagnetized sample (non-magnetic or 
NM mode). The results showed that the neutron 
channelling length increases exponentially with 
the depth of the SLD potential well. Thus, the 
experimental results confirm the predictions of the 
neutron channelling theory in layered nanostructures.
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1. INTRODUCTION

Laser processing is one of the most promising 
and in-demand methods for modifying the physical 
properties of materials. The use of short laser pulses 
allows achieving high heating and cooling rates of the 
near-surface layer of the material [1]. It turns out that 
the behavior of solids during rapid processes changes 
significantly. This can lead to a fundamental alteration 
of properties, enabling the creation of materials with 
new mechanical, electrical, and optical characteristics. 
Pulsed lasers serve as a convenient tool for experimental 
research in the development of new materials and the 
study of their properties [2]. The results obtained using 
them provide broad opportunities for an in-depth 
understanding of such phenomena as phase transitions, 
recrystallization, formation of structural defects, 
amorphization, etc. [4, 3].

A particular interest lies in the use of laser pulses 
with a duration of about 10 ns and an energy density 
of several J/cm², leading to the melting of the 
surface layer of a substance within the duration of 
the pulse. The cooling of this layer occurs over a 

time comparable to the pulse duration [5, 6], and 
the cooling rate when using nanosecond pulses can 
reach 10⁸ K/s [7]. In the case of a pure metal, such 
a cooling rate is insufficient to form an amorphous 
layer (for example, pure vanadium and tantalum 
vitrify at a quenching rate of approximately 10¹² 
K/s [8]; there is reason to believe that vitrification 
of monatomic metals is feasible in principle [9]). 
However, it is evident that its defect structure 
will undergo significant changes. Consequently, 
macroscopic elastic characteristics may also 
change, as the mechanical properties of crystals are 
largely determined by their defect structure. This 
experimental scheme was implemented in the present 
work. The object of study was chosen to be pure 
monocrystalline aluminum, subjected to nanosecond 
pulses of an ultraviolet laser, which induced melting 
of the surface layer and its subsequent rapid cooling 
(quenching).

The initial motivation for this work was as 
follows. Granato’s well-known interstitialcy 
theory argues that metal melting results from the 
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avalanche-like generation of interstitial atoms in 
a dumbbell configuration (interstitial dumbbells), 
leading to a significant reduction in shear modulus 
and destabilization of the crystal lattice [10, 11]. 
The application of this theory to the case of 
multicomponent metallic glasses yields very good 
results, allowing a quantitative interpretation of 
changes in their properties during heat treatment in 
a solid amorphous state and tracing the connection 
between these changes and the properties of the melt 
and the parent crystal [11]. However, information 
on the applicability of these concepts to pure metals 
remains quite limited.

Firstly, it has been shown that monocrystalline 
aluminum in the premelting region exhibits a 
measurable diaelastic effect – ​a reduction in the shear 
modulus beyond the standard purely anharmonic 
decrease, indicating a significant increase in the 
concentration of interstitial dumbbells as the melting 
temperature is approached [12]. A similar situation 
is observed in polycrystalline indium [13]. Secondly, 
it was established that the observed premelting 
nonlinear increase in the heat capacity of aluminum 
can also be attributed to the intensive generation of 
interstitial dumbbells [14]. Finally, thirdly, about 
70% of the total melting entropy of aluminum 
(and, accordingly, the heat of fusion) observed 
in experiments can be interpreted as the result 
of interstitial dumbbell generation at the melting 
temperature [15].

Based on this information, it was hypothesized 
that laser surface melting of aluminum would 
cause a significant increase in the concentration of 
interstitial dumbbell-type defects in the melt, and 
subsequent rapid cooling would “freeze” them in 
the solid crystalline state. The frozen interstitial 
dumbbells would induce a measurable diaelastic 
effect, the magnitude of which could indicate the 
concentration of these defects in the melt. However, 
other mechanisms of the diaelastic effect are also 
possible, as discussed below.

2. EXPERIMENTAL METHODOLOGY

Monocrystals of aluminum with a purity of 
99.996%, grown using a modified Bridgman method 
with orientation ⟨100⟩ along the growth axis, were 
studied. Orientation control was performed using 
the X-ray method [12]. Samples in the shape of a 
cube with a side length of 3 mm were then prepared 
from the grown crystal using electrical discharge 

machining. Each face of the cube was perpendicular 
to the [100] direction. The samples were then 
processed on a grinding machine with 1200-grit 
abrasive and annealed by heating to 923 K followed 
by slow cooling.

Sample processing was performed using a scanning 
laser beam from an Optolette HR2731 (OPOTEC 
Inc.), which generated radiation pulses with a 
wavelength of 355 nm, a duration of approximately 
10 ns, an output energy of up to 2 mJ, and a pulse 
repetition rate of 100 Hz. The laser was calibrated 
using a Nova II energy meter (Ophir Optronics 
Solutions Ltd.) with a pyroelectric detector PE50-
SH-V2. The laser spot size in the sample surface 
plane was determined using a standard method [16] 
by measuring the area of imprints left by laser pulses 
on a reference aluminum plate. The characteristic 
diameter of the laser spot in these experiments 
was 180 μm. Surface processing of the sample was 
performed using a two-coordinate table, enabling 
sample movement along a “serpentine” trajectory 
at a speed of 3 mm/s with a line spacing of 25 μm, 
ensuring that adjacent laser spots overlapped with a 
coverage coefficient of no less than 98%. Each area 
of the surface was exposed to 30 laser pulses. The 
energy densities on the surface of the processed 
samples exceeded the ablation threshold and were 
1.1 J/cm², 2.4 J/cm², and 5.3 J/cm². The exceeding 
of the ablation threshold was visually observed as an 
accompanying plasma plume and confirmed through 
electron microscopy images of the irradiated sample 
surfaces. All six faces of each cubic sample were 
sequentially processed. The surfaces of the samples 
before and after laser exposure were studied using 
a multi-beam optical profilometer Zygo NewView 
7300.

The irradiated samples were then examined using 
resonant ultrasound spectroscopy (RUS) on a setup 
similar to that described in [17]. The excitation 
and detection of ultrasonic vibrations were carried 
out using piezoelectric transducers, which pressed 
the opposite vertices of the cubic sample. A special 
lever-type system minimized the axial pressure of 
the piezoelectric transducers on the sample, ensuring 
that the measured resonance spectrum was close to 
the natural one (i.e., determined only by the sample 
properties and its geometry). An advanced hardware-
software RUS signal processing firmware enabled 
the registration of sample resonance frequencies 
with high precision, down to ppm levels. A total of 
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five samples were studied in their initial state and 
after various laser treatments. The research results 
are illustrated below with data for three of them. 
Additionally, it should be noted that the time from 
sample irradiation to RUS measurement was several 
weeks.

3. RESULTS

Fig. 1 shows, as an example, 2D profilograms 
(a, b) and surface micrographs (c, d) of sample S5 
in its initial state (a, c) and after laser exposure with 
30  pulses at an energy density of Wp = 5.3  J/cm² 
(b, d). Linear morphological features in the initial 
state (a, c) correspond to abrasive processing traces. 
After laser exposure, these features disappear (b, d), 
and irregular roughness is observed on the surface, 
with a height comparable to that before irradiation. 
Detailed studies using a scanning electron microscope 
(SEM) revealed clear evidence of surface melting. 

A similar situation was observed for treatments with 
other laser energy densities.

The RUS spectra of the studied samples 
over the full range of resonance frequencies 
(500kHz<f<1300  kHz) contain 10–12 peaks 
corresponding to different elastic moduli and 
various interference modes due to the non-
parallelism of the sample faces and other geometric 
defects. Fig.  2 shows the initial sections of the 
RUS spectra of samples S1, S3, and S5 after laser 
exposure at 1.1 J/cm² (a), 2.4 J/cm² (b), and 
5.3 J/cm² (c), followed by annealing via heating 
to 850 K and slow cooling, demonstrating the 
presence of several resonances. The differences in 
the absolute values of the resonance frequencies 
for different samples are due to variations in 
their geometric dimensions. It is evident that the 
resonance frequencies of the irradiated samples 
in all cases are slightly lower than those observed 
after annealing, while the resonance peak heights 

Fig. 1. (Color online) 2D profilograms (a, b) and surface micrographs (c, d) (optical profilometer Zygo NewView 7300) of sample S5 
in the initial state (a, c) and after treatment with 30 UV laser pulses with an energy density of 5.3 J/cm² (b, d). 
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signif icantly increase after annealing, which 
unequivocally indicates a reduction in sample 
defectiveness. As is known, the lowest resonance 
frequency corresponds to pure shear vibrations and 
is controlled by the shear modulus (C44) [17]. This 
modulus (denoted as G hereafter) is of primary 
interest in this study.

Table. Resonance frequencies of shear vibrations after laser 
exposure (firr) and subsequent heating to 850 K (fann), as 
well as the corresponding relative changes in the shear 
modulus (ΔG/G₀) for samples S1, S3, and S5, subjected to 
laser exposure at the specified energy densities (Wp). The 
error in determining the resonance frequencies and their 
changes after annealing is approximately 5 ppm.

Sample
No.

Wp,
J/cm–2

Firr,
kHz

Fann,
kHz DG/G

S1 1.1 673.20 676.16 –0.0087
S3 2.4 573.98 578.17 –0.0127
S5 5.3 683.23 688.24 –0.0145

The table presents the resonance frequencies 
corresponding to the shear modulus for samples S1, 
S3, and S5 after laser exposure (firr) and subsequent 
heating to 850 K (fann) for three energy densities (Wp). 
The relative changes in the shear modulus, calculated as

∆G G f firr ann/ = / 1.2 2 −

are also shown.
As seen, the shear modulus of sample S1 after 

irradiation at Wp = 1.1 J/cm² is by 0.87% lower 
than after annealing. The decrease in the modulus 
after laser exposure increases with the energy of the 
incident radiation, reaching 1.45% for sample S5 at 
Wp = 5.3 J/cm². This is the diaelastic effect discussed 
in this work. Notably, this effect occurs not only 
for the shear modulus but also for all other elastic 
moduli, as all resonance frequencies in the RUS 

Fig. 2. (Color online) Initial sections of the resonant ultrasound 
spectroscopy spectra of aluminum samples S1 (a), S3 (b), and 
S5 (c), treated with UV laser pulses at energy densities of 1.1, 2.4, 
and 5.3 J/cm², respectively. The spectra of the same samples 
after heating to 850 K at a rate of 3 K/min are also shown. It is 
evident that the resonance frequencies increase in all cases after 
annealing.

Fig. 3. (Color online) Temperature dependence of the shear 
modulus of sample S1 after laser exposure and subsequent reheating 
to 850 K. The inset shows the initial sections of these dependencies. 
Arrows indicate the effect of laser exposure on the shear modulus of 
the annealed sample. It is evident that heating to 850 K eliminates 
the influence of laser exposure on the shear modulus.
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spectrum decrease as a result of laser exposure (see 
Fig. 2). It is important to emphasize that no similar 
data are known in the literature.

4. DISCUSSION

Metals, including the studied aluminum, absorb 
light through the transfer of photon energy to the 
electronic component of the skin layer, which has a 
thickness of approximately 10 nm [19]. The transfer 
of energy from the electronic subsystem to phonons 
takes several picoseconds. The heating time is 
approximately equal to the duration of the laser pulse 
and is of the order of 10 ns. At any of the applied laser 
energy densities Wp, surface melting of aluminum 
occurs, as confirmed by the aforementioned SEM 
observations of the irradiated sample surfaces. 
Simultaneously with the surface heating process, heat 
dissipation occurs due to thermodiffusion.

The characteristic heating depth during the laser 
pulse can be estimated as:

	 L = 2 .ατ � (1)

With α = 9.7 × 10⁻⁵ m²/s as the thermal diffusivity 
of aluminum and a laser pulse duration of 10 ns, 
using Equation (1), we obtain a heating depth of L ≈ 
2µm. After the laser pulse ends, the cooling process 
of the heated region begins. The cooling time can be 
estimated from the equation [6]:

	 t
L T

T
c

m=
4 8

,
2

2
0

2απ π
ln








 � (2)

where Tₘ = 933 K is the melting temperature of 
aluminum, and T₀ = 300 K is the initial temperature. 
Using Equation (2), the complete cooling time of the 
surface after laser exposure by a nanosecond pulse is tc 

≈ 25 ns. The cooling (quenching) rate from the liquid 
state can be estimated as Tv/tc ≈ 2 ·1011 К/с, where 
Tv = 2792K is the boiling temperature of aluminum. 
As noted earlier, this cooling rate is insufficient for 
amorphization of the pure metal. Thus, within about 
25 ns, the surface layer undergoes a phase transition 
from the crystalline state to the liquid state and back.

Following the concept of melting of simple metals 
outlined in the introduction, we assume that melting 
of the surface layer results in a high concentration 
of interstitial dumbbell defects, which, due to 
subsequent rapid quenching, become “frozen” into 
the crystalline structure.

The key feature of an interstitial dumbbell is that 
an externally applied alternating mechanical stress 
induces oscillatory motion of 20–30 atoms near its 
core (the atomic structure of this defect is shown in [11, 
20]), leading to significant inelastic deformation and a 
corresponding reduction in the shear modulus [11, 21].

For the shear modulus (G) in the presence of 
interstitial dumbbells with a concentration c, the 
interstitialcy theory gives the relation [10, 21]:

	 G G ci i= ( ),0 exp −αβ � (3)

where G₀ is the shear modulus of the defect-free 
crystal, α ≈ 1 is a dimensionless constant, and βi 
is the dimensionless shear susceptibility. Equation 
(3) shows that if the constant βi is known, then by 
knowing the shear modulus of the defective crystal, 
one can estimate the concentration of interstitial 
dumbbells ci, and vice versa.

A rough estimate using the Reuss approximation 
shows that the relative change in the shear 
compliance of the entire sample (ΔS/S) is related to 
the compliance change of the molten layer (ΔSirr/S₀) 
by:

DS/S = (DSirr/S)(DV/V),

where ∆V/V is the ratio of the molten layer volume 
to the sample volume. As noted earlier, the sample 
melts to a characteristic depth of L = 2 µm. The 
fraction of the molten part of the cubic sample with 
an edge length a, having six faces, is

∆V V L a/ = 6 / = 6 2 10 / (2.2 10 ) 6 10 .6 3 3⋅ ⋅ ⋅ ≈ ⋅− − −

Since for small changes in shear elasticity, 
∆S/S = –∆G/G, from table data, we find that ∆S/S 
ranges from 0.009 to 0.014, depending on the laser 
energy density. Since shear compliance is the inverse 
of the shear modulus, the values of ∆Sirr/S, range from 
1.5 to 2.3, corresponding to Sirr values ranging from 2.4S 
to 3.4S. Using Equation (3), for the shear compliance 
of the irradiated crystal, we take

S c Girr i i= ( ) / ,0exp αβ

where for interstitial dumbbells in aluminum 
αβi = 27  [22]. Thus, the concentration of interstitial 
dumbbells c, which provides such compliance in the 
molten layer, should be 0.033 to 0.045.

Given the approximate nature of the initial data, 
this estimate appears reasonable. Indeed, calculations 
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of the interstitial dumbbell concentration for liquid 
aluminum using three independent methods give 
ci ≈ 0.08 [15], which agrees with Granato’s estimate 
for copper (ci  ≈ 0.09) [10]. On the other hand, 
computer simulations of aluminum melting have 
shown [23] that the shear modulus decreases from 
14.9  GPa just below Tm to 1.8 GPa just above Tm. 
According to interstitialcy theory, the shear modulus 
of the melt is low but not zero. Using Equation (3), 
we estimate the interstitial dumbbell concentration at 
the melting temperature as:

ci = ln(14.9/1.8)/27 ≈ 0.078,

which is close to the values obtained earlier. Finally, 
the pre-melting concentration of interstitial 
dumbbells in crystalline Al, based on precision shear 
modulus measurements, was found to be ci ≈ 0.004 
[12]. The obtained estimate ci ≈ 0.04 after laser 
exposure is comparable to values at Tm, but, naturally, 
higher than pre-melting values.

Thus, these calculations are consistent with the 
understanding of the diaelastic effect in aluminum 
after laser exposure as a result of melting of the thin 
surface layer, accompanied by a sharp increase in the 
concentration of interstitial dumbbells, which remain 
largely frozen in the crystal due to high cooling 
rates. These frozen interstitial dumbbells define the 
observed diaelastic effect.

Other possible mechanisms for the shear modulus 
reduction after laser processing should also be 
considered. When exposed to a laser pulse, significant 
thermomechanical stresses arise in the sample. 
Assuming the temperature at the melt boundary 
is equal to the melting temperature of aluminum, 
while in the bulk of the sample, it remains close to 
room temperature, the temperature difference across 
the sample faces is approximately 600 K. Thus, the 
laser pulses generate high-amplitude mechanical 
pulses, which propagate through the entire sample. 
This corresponds to a relative total strain on the 
order of 10–2. This is a fairly large value, which can 
lead to plastic deformation of the sample due to 
dislocation formation. As is well known, an increase 
in dislocation density can lead to a reduction in the 
shear modulus [24]. To evaluate this mechanism, it 
is necessary to assess the dislocation density in the 
samples after laser processing.

Moreover, at high laser intensities, the 
formation of shock waves may occur as a result of 
the breakdown of the ablation plume [25]. In this 

case, shock-wave-induced nanograin formation in 
the irradiated layer may take place, which could 
potentially contribute to the observed diaelastic effect.

A more detailed study of this phenomenon 
could provide new and important insights into the 
formation of the defect system in the crystal as a 
result of surface laser melting followed by high-speed 
cooling. It is also reasonable to expect that such 
experiments will lead to new significant information 
about the melting mechanism of simple metals.

5. CONCLUSION

For the first time, using resonant ultrasound 
spectroscopy (RUS), a diaelastic effect (reduction 
in elastic constants) has been detected in 
monocrystalline aluminum, induced by nanosecond 
ultraviolet laser pulses, which lead to melting of a thin 
near-surface layer of the sample. As a result of laser 
exposure, the shear modulus decreases from 0.87% to 
1.45% with increasing incident energy density from 
1.1 J/cm² to 5.3 J/cm². Thermal treatment by heating 
to the pre-melting temperature range restores the 
shear modulus to its initial values, while a significant 
increase in the amplitude of RUS peaks indicates a 
substantial reduction in the material’s defect density.

The hypothesis is put forward that surface 
melting is accompanied by the formation of a high 
concentration of interstitial defects in a dumbbell 
configuration, which are preserved in the solid state 
due to the high cooling rate of the molten layer. The 
inelastic deformation caused by these defects leads to 
the observed diaelastic effect.

Other possible interpretations of this phenomenon 
are also noted.
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1. INTRODUCTION

The edge magnetoplasmon (EMP) in a two-
dimensional (2D) electron system was first theoretically 
studied in the works of Volkov and Mikhailov [1, 2]. 
The authors conducted both classical and quantum 
analyses for a half-plane and found the EMP dispersion 
relation as ω( )k where k is the 1D wave vector of the 
plasmon wave along the edge of the sample. Naturally, 
a question arises about the role of boundaries in a real 
experiment, particularly concerning plasma waves in a 
finite-width strip, where the influence of the opposite 
edge must also be taken into account. This formulation 
of the problem was outlined in the introduction of the 
paper by Balev and Vasilopoulos [3]. The authors 
proposed a strip model with “soft” walls, described 
by a parabolic potential for electrons near the strip 
boundaries. However, in their analysis of plasma 
oscillations, they effectively considered only one edge, 
naturally obtaining the already known result for the 
plasmon frequency. Meanwhile, the presence of the 
second boundary leads to qualitatively new features 
of the phenomenon: strictly speaking, one should not 
consider an edge plasmon but rather the eigenmodes of a 
planar plasma waveguide. It is important to note that in 
such a “waveguide”, the electron motion is confined in 

one direction, while the electric field of the plasma wave 
extends formally to infinity. Within the framework of the 
classical hydrodynamic description of 2D plasma, this 
problem was solved in [4, 5]. The plasmon spectrum for 
a 2D electron strip under conditions of strong screening 
by a metallic electrode was found in [6], using a classical 
approach within the local capacitance approximation.

In the present study, we develop a quantum theory 
of magnetoplasmon waves in a 2D electron gas strip 
of finite width L w= 2 .  The boundary conditions 
for the wave functions correspond to hard walls, 
meaning the transverse electron motion (along the 
x-axis) corresponds to a “truncated” harmonic 
oscillator at x w= ±  with the cyclotron frequency 
ωc  and a suspension point X pl= 2- , where p is the 
conserved y-component of the electron momentum 
in the Landau gauge, and l is the magnetic length 
( = 1). For the Landau level with index n, the wave 
function has the form:

	 Ψn X n X n X
y

x y N x
ipy

L
, , ,( , ) = ( )

( )
.ϕ

exp � (1)

Here N n X,  is the normalization coefficient, and 
Ly  is the length of the strip. For the wave function 
ψn X x, ( ) , we have (see, for example, [7]):
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ψ n X
x X lx e,

( )2 /2 2
( ) = − − ×

× − −( )−

Φ q X x X ln ( ) / 2,1 / 2,( ) /2 2

− − − −( )B x X q X x X ln( ) (1 ( )) / 2,3 / 2,( ) /2 2Φ . �(2)

The first index of the confluent hypergeometric 
function in Equation (2) determines the energy of 
the Landau subbands:

q X E Xn n c( ) = ( ) / 1 / 2ω -

via the dispersion equation following from the 
boundary conditions ψn X x w, ( = ) = 0± . From the 
same conditions, the constant B is determined.

The dispersion of the Landau subbands E Xn ( )  
is well known, and its graphs have been repeatedly 
presented in the literature in connection with studies 
of the quantum Hall effect (edge channels, edge 
states). The functions ψn X x, ( )  and E Xn ( )  are 
required to formulate the equation for plasma waves.

2. BASIC EQUATIONS

The problem considered here belongs to the 
class of plasma oscillations in multicomponent low-
dimensional systems. The solution scheme, i.e., 
finding the eigenfrequencies of plasmons in such 
systems through the matrix dielectric function in 
the self-consistent field approximation, is described 
in [8] for 2D systems, such as quantum well 
structures with more than one populated transverse 
quantization level, double quantum wells, or 
multilayer superlattices.

In the case of magnetoplasmons in a 2D electron 
gas strip, the plasma components correspond to groups 
of electrons in different Landau levels (subbands 
E Xn ( ) ), effectively forming 1D systems. Therefore, 
the Green’s function of the Poisson equation takes 
the form of G x x K k x xk ( ) = (| ( ) |) / 20− ′ − − ′ ≠,  
where K 0  is the Macdonald function.

Another significant difference from [8] is the 
dependence of the transverse wave functions 
ψn X x, ( )  (Equation (2)) on the longitudinal electron 
momentum p through the suspension point of the 
oscillator. Accounting for these distinctions, the 
equation for the matrix elements of the plasma wave 
potential j( )x eiky takes the form (taking into account 
the selection rules for the momentum along the strip, 
which allow only transitions ( , ) ( , )2n X m X kl→ + :

2p,

j
n X m X kl, ; , 2 =

+

=
2 ( ) ( )

( ) (

2

, ,

2

2

e
L

f E X kl f E X

E X kl Ey m n X

m n

m n
ε ′ ′ ′

′ ′

′ ′
∑

′ +( )− ′( )
′ + − ′XX i)+ +

×
ω δ

	 × ′′ ′ ′ ′ ′ ′+
J X Xm n m n n X m X kl, ; , , ; , 2( , ) ,j � (3)

Where e is the average dielectric constant of the 
two media separated by the 2D electron gas, f is the 
Fermi occupation factor, and Form factors Jmn m n; ¢ ¢  
are defined as:

J X Xm n m n, ; , ( , ) =¢ ¢ ¢

= ( ) ( ), , 2

− −
+∫ ∫ ′ ×

w

w

w

w

n X m X kl
dxdx x x ψ ψ

	 × − ′ ′ ′′ ′ ′ ′+
K k x x x xn X m X kl0 , , 2(| ( ) |) ( ) ( ). ψ ψ � (4)

In Equation (4), ψ ψn X n X n Xx N x, , ,( ) = ( ) represents 
the normalized wave function of the transverse motion. 
Thus, we obtain a system of linear homogeneous integral 
equations for the functions j

n X m X kl, ; , 2+
, which we will 

denote by Φnm X( ) . For an unbounded discrete electron 
spectrum, the number of equations and, consequently, 
the number of different plasmon modes is infinite, even 
if only one level is populated, for example, E X0( ) . The 
off-diagonal terms in Equation (3) m n¹  correspond 
to virtual transitions with an energy change of at 
least ωc , i.e., they are responsible for inter-subband 
plasmons, whose spectrum has a gap ∆ > ωc  at zero 
wave vector k = 0 . If one is interested only in the low-
frequency part of the plasmon spectrum ω ω c , it is 
necessary to restrict consideration to intra-subband 
plasmons m n= and additionally require the long-
wavelength approximation kl  1 . In the following, we 
will consider both intra-subband plasmons, and inter-
subband plasmons from the lower part of the spectrum, 
i.e., those associated with the levels E X0( )  and E X1( ) .

3. INTRA-BAND PLASMON  
OF THE ZERO SUBBAND

In this case, instead of Equation (3), we have:

Φ00( ) =X

=
 

( ( )) ( ( ))

( ) ( )

2

2
0

2
0

0
2

0

e

l
dX

f E X kl f E X

E X kl E X iπε ω δ∫ ′
′ + − ′

′ + − ′ + +
×

	 × ′ ′J X X X00,00 00( , ) ( ).Φ � (5)
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Assuming k p pF� ∼  (where pF  is the Fermi 
momentum), we expand the differences in Equation 
(5) up to the linear term in k. In the form factors J, 
we set k=0.

For T = 0 , the numerator becomes δ( ( ) )0E X EF′ −  
(where EF  is the Fermi energy), and the integral 
reduces to the sum of two terms, corresponding to the 
values of the integrand at the points ′ ±X X= 0 , where 
±X 0  are the roots of the equation:

E X EF0( ) = .  Here ( E X0( )  is an even function of X.
By substituting variable X in left-hand side 

of Equation (5) with ±X 0 , we arrive at two 
linear homogeneous equations for the quantities 
Φ Φ± ≡ ±00 0( )X :

	
Φ Φ Φ

Φ Φ

+
+−

−
++

+

−
−−

−
−+

−
−
+











−
−

= ,

=

0 0

0

β

β

k
J

kV

J

kV

k
J

kV

J

ω ω

ω ωω+








+kV0
,Φ

� (6)

Where β πε= / ,2
0e V  is Fermi velocity in the zero 

subband, while

J J X X±± ± ±= ( , ),00;00 0 0

J J X X± ±


= ( , ).00;00 0 0

It is evident that J J−+ +−= . In the Appendix, 
it is shown that J J−− ++= . Thus, there are 
two independent form factors. The roots of the 
determinant of the system (6) determine the plasmon 
frequency ω0( )k :

   ω0
2 2

0
2 2 2 2

0( ) = ( ) 2 .k k V J J V J+ − +( )++ +− ++β β � (7)

In the integrals defining J+± , the functions ψ0
2( )x  

are localized near the points ±X 0  within a region 
of order l. Therefore, for J++ , the argument K 0  is 
small under k ® 0 , and we can use the asymptotic 
form of the Macdonald function:

K k x x k x x e0(| ( ) |) = (| ( ) | / 2),− ′ − − ′ln γ

where γ  is the Euler constant. Then, for J++ , we 
obtain:

	 J
e
k l

J++

−

++










+=

2
| |

,ln
γ

� (8)

where

   J dxdx x
l

x x
xX X++ ∫ ′

− ′










′= ( )
| |

( ).0, 0

2
0, 0

2
 ψ ψln  �(9)

The leading term in J++ is | (| | ) |ln k l . For the 
form factor J+− , the argument y of the K 0  function 
can be set to 2 | | 0k X , which may not be small, even 
for kl  1 . In this case J K k X+− = (2 | | )0 0  and 
gives a significant contribution, provided the stronger 
condition kX 0 1  is satisfied. Under this condition, 
the plasmon frequency becomes

ω
γ

0
2 2

0( ) = 2 [ ( ) ]
2
| |

k k J J V
e
k l

β β ++ +−

−
− +











+








ln


	 + + −





 + }++ +− ++V J J V J0

2 2 2 2
02 .β β � (10)

Thus, we obtain the expected result for a one-
dimensional (1D) plasmon, as found in [9, 10]:

ω  k k lln( ) .

However, it is important to note that in the 
case considered here, the dependence of the 
magnetoplasmon frequency on the electron 
concentration and magnetic f ield cannot be 
expressed analytically. Another important difference 
is the change in the coefficient before the logarithmic 
term: to the Fermi velocity V0  (for a 1D plasmon 
without a magnetic field), the first term in the square 
brackets of Equation (10) is added. This additional 
term can significantly exceed V0  (for example, at 
N L = 106  cm -1 , H = 1.6  T, the enhancement is 
more than an order of magnitude). The results of the 
numerical calculation are presented below.

The formulas derived in this section are valid up 
to the very beginning of the plasmon spectrum (k=0), 
when the plasmon wavelength is much larger than 
all characteristic lengths of the problem, including 
the width of the strip L.  In this limit, the system 
effectively becomes one-dimensional. However, the 
transition to the half-plane limit, studied in [1, 2], is 
impossible, as it corresponds to an infinitely large 
width L. The dispersion laws differ: in the half-plane 
it is proportional to ln k , while in stripe it is ln k  as 
expected for one-dimensional systems [9, 10].

4. INTRA-SUBBAND PLASMONS  
IN A TWO-SUBBAND SYSTEM

Let us now consider the case where the states 
E X0( )  and E X1( )  are populated, but we neglect the 
off-diagonal contribution Φ0,1 . The Fermi level lies 
between E1(0)  and E2(0) , intersecting the curves 
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E X0( )  and E X1( )  at the points ±X 0  and ±X 1 , 
respectively (Fig. 1).

The four equations for Φ00 0( )±X  and Φ11 1( )±X  
lead to a biquadratic equation for the plasmon 
frequencies, the roots of which are equal  (here, the 
results are presented for infinitesimally small plasmon 
momenta kX 0 1 , in order to clarify the behavior 
of ω( )k  at the very beginning of the spectrum):

ω βac
k

V V J J J2
2

0
2

1
2 2

0 ;0
2

0 ;0
2

1 ;1
2

=
2

+ + − + −





 + + + − + +

− + − 


++ − + + + −J J J1 ;1

2
0 ;1
2

0 ;1
2

2 2

	 + + )+ + + +2 ( ) ,0 0 ;0 1 1 ;1β V J V J � (11)

ω ω
γ

opt ac k
e
k l

V V2 2 2
0 1= 2

2
| |

( )+










+ +[

−
ln β

+ − + −( + + + − + +β 2
0 ;0 0 ;0 1 ;1J J J

	 − + − )+ − + + + −J J J1 ;1 0 ;1 0 ;12 2 . � (12)

Here, V0,1  are the Fermi velocities in the zero and 
first subbands, respectively, while six independent 
form factors such as J J0 ,0 0 ,1,+ + + + , etc. are defined 
similarly to how it was done in the previous section.

It is important to emphasize that in Equation 
(11), all logarithmic contributions exactly cancel. 
The corresponding root of the dispersion equation 
gives the linear dependence ωac k( )  as k ® 0 , which 
justifies calling this branch acoustic. The second root 

(optical branch, Equation (12)) exhibits the known 
singularity at zero at k ® 0 :

ωopt k k k l2 2( ) ( ) . ln

5. INTER-SUBBAND PLASMON  
IN A TWO-LEVEL SYSTEM

The rank of the characteristic determinant, 
considering N subbands, is N2, since the dielectric 
function is a 4x4 matrix. Out of the N2 roots, 
N correspond to intra-subband plasmons, while in 
the remaining N(N – 1) roots еаch pair gives rise to 
one inter-subband branch, making the total number 
of inter-subband branches equal to N N( 1) / 2- . We 
focus on the lowest inter-subband branch, associated 
with the E0  and E1  levels. The solution of the 
problem in the general case (for arbitrary plasmon 
momenta k) involves extremely complex numerical 
calculations, as neither the dispersion relations 
of electrons nor the form factors can be expressed 
analytically. Therefore, we limit ourselves to 
finding the threshold frequency ω01( = 0)k , which 
determines the gap in the inter-subband plasmon 
spectrum. The difference between this value and 
the minimum energy gap between the E0  and E1  
subbands is known as the depolarization shift.

If we retain only the equations for m = 0,1  and 
n = 0,1  in the system (3) and take the limit k ® 0 , 
the right-hand side will only include the off-diagonal 
element j, since the diagonal elements vanish due 
to the difference in occupation numbers approaching 
zero at  ψ 0, X (x), ψ 1, X(x). In the same limit, the 
function K k x x0(| ( ) |)− ′  simplifies to:

ln ln ln(2 ( ) ) = (2 ) ( ).e k x x e k l l x x− −− ′ + − ′γ γ/ / /

The first term does not contribute to the form 
factor J01,01  due to the orthogonality of the wave 
functions ψ 0,X(x),   ψ 1,X(x). As a result, we arrive 
at the equation

Φ01 2

0

0

( ) =
2

X
l

dX
X

X
β

−
∫ ′×

	 ×
′

− ′
′ ′∆

∆
Φ

( )

( )
( , ) ( ),

2 2 01
X

X
Q X X X

ω
� (13)

where D(X)∅( ) = ( ) ( )1 0X E X E X-  and ω2  is the desired 
eigenvalue (its minimum vakue is required, i.e. ωmin

2 ), 
and the kernel factor Q X X( , )¢  is equal to

Fig. 1. Electron spectrum of the strip. The figure shows the 
two lowest Landau subbands. The horizontal line indicates the 
position of the Fermi level, w/l = 4.
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Q X X dxdx x x
w

w

w

w

X X( , ) = ( ) ( )0, 1,′ ′ ×
− −
∫ ∫  ψ ψ

	 × − ′ ′ ′′ ′ln( / ) ( ) ( ).0, 1,l x x x xX X ψ ψ � (14)

The value of ωmin
2  was found numerically. We 

replaced the integral with the corresponding Riemann 
sum by dividing the integration interval into a large 
number of points, reducing the problem to finding 
the eigenvalues of a system of linear homogeneous 
equations, the number of which equals the number 
of partition points. The depolarization shift W is 
defined as the difference between the minimum 
plasmon frequency ωmin  and the minimum energy 

gap between the levels D(0). Its dependence on the 
magnetic field is shown in Fig. 2.

As is known, the depolarization shift also 
determines the frequency of IR absorption during 
an inter-subband (inter-level in an infinite plane) 
transition, which differs from the energy gap due 
to the dynamic screening of the electric field of the 
exciting wave.

6. SPATIAL DISTRIBUTION  
OF THE PLASMON WAVE FIELD

In this section, we derive the expression for the 
coordinate dependence of the plasmon potential 
j( )x , corresponding to the zeroth subband, i.e., the 
lowest-frequency branch of the plasmon spectrum. 
Within the self-consistent field theory, j( )x  satisfies 
the Poisson equation (quasistatic approximation, 
neglecting retardation), with the right-hand side 
containing the electron density perturbation induced 
by the plasmon wave. In the present case, we consider 
only the contribution from the zeroth subband:

∆x z x z k k x z k, 0
2

0( , , ) ( , , ) =ϕ ϕ-

=
4

( )
( ) ( )

( ) ( )

2 0
2

0

0
2

0

−
+( )− ( )

+ − + +
×∑π

ε
δ

ω δ

e
L

z
f E X kl f E X

E X kl E X iy X

	 ´Φ00 0,
2( ) ( ).X xXψ � (15)

Equation (15) corresponds to a plasmon in the 
form of a plane wave C eiky , and the matrix element 
Φ00( )X  on the right-hand side is evaluated in the 
plane of the strip z = 0 . The solution to Equation 
(15) is written using the Green’s function G x x( )− ′ , 
already defined in Section 2 for the plane z = 0 . The 
resulting integral for j0( )x  in the long-wavelength 
limit and for T = 0  is evaluated similarly to the 
calculation of the plasmon frequency ω0( )k .

Now it is necessary to find the solutions of the system 
of two equations (6) for the matrix elements Φ00( )X  at 
the points ±X 0 . The result has the form (C is the wave 
amplitude determined by the excitation conditions):
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Fig. 3. Distribution of the plasmon wave potential across the 
transverse coordinate for two opposite propagation directions or 
magnetic field orientations; NL = 106 cm–1, L = 0.2 µm, H = 1 T.

Fig. 2. Dependence of the depolarization shift of the inter-
subband plasmon between levels 0 and 1 on the magnetic field; 
D = W/D(X = 0) –1, NL = 0.47 ⋅ 106 cm–1, L = 0.1 µm.
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Fig. 3 shows the plasmon field j0( )x  for opposite 
propagation directions. As can be seen, for a given 
propagation direction, the maximum of j( )x  is 
located near one edge of the strip. This result was 
previously obtained in [2] within the framework of 
the hydrodynamic approach.

The same mirror ref lection occurs when the 
magnetic field direction is reversed: it is easy to see 
that under X , one should understand-pl sign H2 ( ) , 
while l c eH2 = / | | . Therefore, when the sign of H
is changed, the points X 0  and -X 0  are swapped. 
This “reflection” of the plasmon field relative to the 
midline of the strip when the magnetic field sign is 
reversed is, in principle, accessible to experimental 

observation. When l w  and the Fermi energy is 
such that the points ±X 0  are close to the strip edges, 
the maximum of j( )x  is also near one of the edges, 
and in this sense, such a wave can be called an edge 
magnetoplasmon.

7. DEPENDENCE ON CONCENTRATION 
AND MAGNETIC FIELD

The electron dispersion E p0( )  (see Fig. 1) 
differs significantly from the standard parabolic 
law p m2 2/ .  Accordingly, all characteristics of 
the magnetoplasmon in the strip (the frequency 
dependence on electron concentration and magnetic 
field) appear unusual. For the intra-subband plasmon 
of the zeroth subband, the system is effectively one-
dimensional, so p NF L= 2≠ / ,  where N L  is the 
linear electron density (spin splitting is neglected), 
and X N lL0

2= 2≠ / .  The dependence of EF  on V0
is given by the right half of the lower curve in Fig. 1. 
The dependence of the plasmon frequency ω0  on the 
linear density is determined by the Fermi velocity V0  
and the form factors X 0 , appearing in formula (7). 
The results are presented in Fig. 4.

The dashed line in this figure is drawn to highlight 
the superlinear character of the dependence. Recall 
in this context that the classical 2D plasmon has a 
frequency that depends sublinearly on the surface 
density N s :

ω ω ω= ( ) ,2 2 1/2
c p+

where ωp sN2 µ .
The magnetic dispersion of the plasmon is even 

more unusual: the curve in Fig. 5 has a minimum 
at H » 2 T. This occurs because, as seen from (10), 
the dependence of the plasmon frequency on the 
magnetic field is due to two types of contributions. 
The terms containing the Fermi velocity V0  provide 
the descending part of the curve in Fig. 5, as at a 
given density, the Fermi level rapidly decreases with 
increasing H and approaches the flat region of the 
electronic dispersion E p0( )  where V0  vanishes. Then 
the main contribution remains the first (Coulombic) 
term in (10), which leads to a logarithmically slow 
increase in the frequency.

For the depolarization shift (see Fig. 2), a rapid 
decrease is characteristic with a relatively small 
increase in H : more than an order of magnitude 
decrease at δH H/  = 75%. As the field increases, the 
behavior of the electron wave functions approaches 

p

p

Fig. 4. Dependence of the plasmon frequency on the linear 
electron concentration. Magnetic field H  =  1  T, strip width 
L = 0.2 μm.

Fig. 5. Magnetic field dependence of the plasmon frequency; 
NL = 106 cm–1; L = 0.2 μm, k = 0.4 ⋅ 106 cm–1.
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that realized in an infinite plane, as the influence 
of the strip boundaries decreases. However, in an 
infinite plane, W = 0, because in a strong magnetic 
field, screening (at least linear screening) is absent, 
along with the electron density perturbations linear 
in the perturbing potential.

8. CONCLUSION

We have demonstrated that the consideration 
of sample boundaries signif icantly affects the 
magnetoplasmonic oscillations of a two-dimensional 
electron gas. Mathematically, the problem becomes 
considerably more complex due to the non-standard 
dispersion law of “magnetized” electrons  – the 
dependence of energy on the conserved momentum 
component in the Landau gauge. In the simple 
case of a straight strip, it is possible to analytically 
obtain only the dispersion of intra-subband plasmons 
in the long-wavelength limit, corresponding to 
the lower part of the plasmon spectrum, which 
generally contains an infinite number of branches. 
The dependence of the plasmon frequency on 
concentration and magnetic field was determined 
using numerical methods.
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APPENDIX

Here we demonstrate the validity of the 
relationship J J−− ++= . . For this, we need the 
expression for ψn X x, ( ) , which already accounts for 
the boundary conditions. It has the form:

ψ n X
x X lx e,

( )2 2 2
( ) = − − ×/

× − −( )−

Φ q X x X ln ( ) 2,1 2,( )2 2/ / /

− − −( )×Φ (1 ( )) 2,3 2,( )2 2q X x X ln / / /

    ×
− − −( )
− − −

( ) ( ) 2,1 / 2,( )

( ) (1 ( )) 2,3 2,( )

2 2x X q X w X l

w X q X w X

n

n

Φ

Φ

/ /

/ / 22 2/l( )









. �(17)

Furthermore, we need the explicit form of the 
equation defining the electron spectrum, i.e., the 
parameter q Xn ( ) . For it, we have:

	 F q Xn( ( )) = 0, � (18)

F q
q w X l

w X q w X l
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2,1 2,( )

( ) (1 ) 2,3 2,( )

2 2

2 2

Φ

Φ

− −( )
− − −( )

+
/ / /

/ / /

	 +
− +( )

+ − +( )
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Using the explicit expressions for the form factors 
J±± , we write the difference J J−− ++−  as:

J J dxdx K k x x
w

w

w

w

−− ++
− −

− ′ − ′ ×∫ ∫= ( ( ) )0

× ′ −
 − − −N x xX X X0,

4
0,
2

0,
2( ) ( )ψ ψ

	 − ′ 
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N x xX X X0,
4

0,
2

0,
2( ) ( ) ,ψ ψ � (20)

Here, ψn X x, ( )  is defined in (17). By changing the 
integration variable in the first term within the square 
brackets, we arrive at the expression:

J J dxdx K k x x
w

w

w

w

−− ++
− −

− ′ − ′ ×∫ ∫= ( ( ) )0

× − − ′ −
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N x xX X X0,
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2
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It is evident that to prove the equality J J−− ++= ,  
it is suff icient to show that the relationships 
ψ ψ0, 0,( ) = ( )- -X Xx x  and N NX X0, 0,=- . hold. Using 
(17), we obtain:

ψ ψ0, 0,
( )2 /2 2
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Thus, the expression under the square brackets in 
(22) is the function F q X( ( ))0 , defined in (19), and 
therefore:

	 ψ ψ0, 0,( ) = ( ).- -X Xx x � (23)

For N X0,- , we have:
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N dx xX

w

w

X0, 0,
2 1/2= ( )) .−

−
−

−∫





ψ

Performing the variable change x x→ −  in the 
integral over x  and considering (23), the evenness 
of the normalization coefficient with respect to X  is 
thus proven.
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1. INTRODUCTION

In recent years, there has been a significant 
increase in interest in materials where relativistic 
spin-orbit interaction leads to the manifestation of 
quantum effects on a macroscopic scale [1, 2]. These 
materials are commonly referred to as quantum 
magnets [3]. One of the most striking manifestations 
of quantum effects is the significant reduction of the 
average spin value in magnets with S > 1 / 2  [4]. The 
reason for the spin reduction lies in the consideration 
of single-ion anisotropy (SIA) arising from spin-orbit 
interaction or in the inclusion of pairwise interactions 
associated with higher-order spin invariants of the 
form ( )2S Sf g

S  [5–15]. In magnetic systems where 
such non-Heisenberg interactions are sufficiently 
strong, spin-nematic phases have been observed. 
These phases are characterized by zero magnetization 
even at zero temperature (i.e., complete spin 
reduction), but they exhibit spontaneous symmetry 

breaking due to quadrupole order parameters (mean 
values of operators bilinear in spin components) 
[10]. The enhancement of such quantum effects is 
facilitated by frustration [2], low temperature, low 
system dimensionality [16], and multi-sublattice 
structures.

For example, in multi-sublattice ferrimagnets with 
different magnetic ions, the manifestation of quantum 
effects can be significantly amplified due to the 
possible compensation of the effective field acting on 
the spins of magnetically active ions [17–26]. Indeed, 
as shown in [27], in a two-sublattice ferrimagnet, 
quantum spin reduction in the anisotropic sublattice 
(with S = 1) at low temperatures can be substantially 
suppressed by the exchange interaction field from 
the isotropic sublattice ( S = 1 / 2 ). If there are 
more than two sublattices, the total effective field 
from two isotropically antiferromagnetically coupled 
sublattices acting on the ions of the third anisotropic 
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Abstract. The phase diagrams (magnetic field H  – single-ion anisotropy D) for three-sublattice SU(3)-
ferrimagnet on triangular lattice with mixed sublattice spins (S = 1,1/2,1/2) at different values of exchange 
parameters I (between spins S = 1 and S = 1/2) and J (between spins S = 1/2) are calculated. To correctly 
account for the algebra of the SU(3) group generators, which includes quadrupole operators, the representation 
of Hubbard operators was used. It is shown that depending on the system parameters there can be implemented 
ferrimagnetic Y- or inverted Y (Y )-phase, canted V-phase (spins S = 1/2 are parallel), fan-shaped W-phase, 
as well as collinear ferrimagnetic and ferromagnetic phases. In the case of I < J, a line appears on the phase 
diagram on which SU(3)-ferrimagnet splits into two independent subsystems, one of which is paramagnetic 
with spins S = 1, and the second one is antiferromagnetic with spins S = 1/2 in a zero effective magnetic field. 
In the spin-wave approximation, the dependences of the average values of the quadrupole moment and dipole 
moments of the three sublattices on the magnetic field and the single-ion anisotropy are calculated. The spin-
wave excitation spectrum is analyzed both at I > J and at I < J. It is shown that at I = J in the SU(3)-ferrimagnet, 
an accident degeneracy occurs, which can be lifted by taking into account quantum fluctuations.
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sublattice can be nullified, thereby eliminating the 
mentioned mechanism of spin reduction suppression.

In this regard, one of the key objectives in the 
theory of quantum magnets is to find a microscopic 
model that could predict and study new quantum 
effects with both experimental and practical 
significance. As outlined above, one promising 
approach is to investigate the combined action of 
multiple factors that promote quantum magnetism 
phenomena. In the context of this research 
direction, studies such as [28–30] proposed a 
model of a three-sublattice ferrimagnet with 
mixed spins S = 1,1 2,1 2/ /  on a triangular lattice 
with Ising exchange interaction and SIA in the 
S = 1 spin subsystem. In those studies, based on 
Monte Carlo simulations, the main focus was on 
constructing phase diagrams in the temperature–
SIA plane and searching for a technologically 
significant compensation regime, where the total 
magnetization reaches zero below the critical 
temperature. Notably, alongside SIA in the 
S = 1  spin subsystem, the model proposed in 
[28–30] possessed essential features such as low 
dimensionality and geometric frustration, which, 
as mentioned earlier, enhance quantum effects.

In a recent study [31], the authors investigated 
the SU(3) ferrimagnet (SU3F) model, which closely 
resembles the model proposed in [28–30] but 
includes two crucial generalizations. First, instead of 
Ising exchange interaction, the SU3F model employs 
isotropic Heisenberg exchange. It is well known that 
transverse components of exchange interaction in 
noncollinear magnetic structures induce zero-point 
quantum fluctuations, leading to antiferromagnetic 
(AF) fluctuations. These AF fluctuations, like SIA, 
can cause quantum spin reduction, and therefore, 
the quantum effects driven by AF and SIA should 
be distinguished. The second major difference 
between SU3F and the model proposed in [28–30] 
lies in the use of different exchange integrals I and 
J for interactions between the S = 1  and  S = 1 2/  
sublattices and between the two S = 1 2/  sublattices, 
respectively. As shown below, the phase diagrams 
of SU3F differ qualitatively depending on the ratio 
between the exchange integrals.

Furthermore, it is essential to highlight an 
important conceptual feature of the SU3F model. 
This feature is associated with the fact that significant 
SIA, as known from previous studies [8–15, 32–36], 
necessitates the inclusion of the full set of generators 

of the SU(3) algebra acting in the Hilbert space of 
the S = 1  spin states. Therefore, conventional spin 
operators are insufficient for describing such systems. 
To emphasize this aspect, the model proposed in [31] 
was named the quantum SU(3) ferrimagnet model.

The general characteristic of the SU3F model is 
the simultaneous consideration of several factors 
that enhance quantum effects: SIA, AF fluctuations, 
multi-sublattice structure, low dimensionality, and 
exchange frustration.

The study of the SU3F model in [31] was 
conducted in the absence of an external magnetic 
field and at zero temperature. The dependence of 
the sublattice spin moments and the quadrupole 
moment on the SIA parameter was calculated for 
different exchange integral ratios I J/ .  It was found 
that the critical value of the SIA parameter D c , at 
which SU3F transitions to the quadrupole phase, can 
be significantly smaller than both I and J. Moreover, 
for I J> , a compensation point was observed in the 
total moment M dependence on the SIA parameter, 
i.e., M at D D c< .

This work represents a logical continuation of 
the studies conducted in [31]. Its primary goal is to 
construct the phase diagram of SU3F in the external 
magnetic field–SIA parameter plane and to analyze 
the modification of the magnetic structure and order 
parameters when crossing the phase boundaries. 
The ground state energy and the corresponding spin 
configuration are calculated within the mean-field 
approximation at zero temperature. This condition, 
as is well known, is unachievable by the Monte Carlo 
method used in the previously cited works [28–30]. 
To correctly account for the SU(3) algebra generators 
in the S = 1  spin subsystem, the Hubbard operator 
formalism is employed [11, 35, 37]. In the calculation 
of order parameters, spin operator bosonization is 
applied: the Holstein–Primakoff transformation 
for the S = 1 / 2  spin subsystem and the indefinite 
metric formalism for the S = 1  subsystem [11, 14].

The remainder of this paper is organized as 
follows. Section 2 formulates the SU3F Hamiltonian 
in an external magnetic field lying in the easy-
plane direction. Section 3 presents the SU(2) 
transformation of the S = 1/2S = 1/2S = 1/2 spin 
operators, corresponding to the rotation of local 
coordinate axes. Section 4 details the Holstein–
Primakoff transformation for the S = 1 / 2  spin 
subsystem. Section 5 describes the transition to the 
Hubbard operator representation and their triple 
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SU(3) transformation for diagonalizing the single-
ion Hamiltonian of the S = 1  spin subsystem. The 
bosonization of Hubbard operators and the derivation 
of the dispersion equation are covered in Section 
6. Sections 7 and 8 analyze the characteristics of 
phase diagrams and the changes in order parameters 
for I J<  and I J> , respectively. Section 9 
demonstrates the degeneracy of the SU3F mean-
field ground state at I J= . Section 10 discusses 
changes in the spin-wave excitation spectrum as the 
magnetic field increases under different exchange 
parameter ratios. The main conclusions of the study 
are presented in Section 11.

2. MODEL OF SU3-FERRIMAGNETISM

The crystal structure of the considered SU3F 
is shown in Fig. 1. The red circles mark the lattice 
sites of the sublattice with spin value S = 1 , further 
referred to as the L-sublattice. The green and blue 
circles mark the lattice sites of the sublattices with 
spin value S = 1 2/ ,  denoted further as F and G 
sublattices, respectively. The periodicity of the 
system is defined by the basis vectors a1 and a2, equal 
in magnitude. The vectors z and x connect the nodes 
of different sublattices.

The Hamiltonian of SU3F in an external magnetic 
field can be written as:

	    = ,A exch field+ + � (1)

where:

exch
fg

f g
fl

f l
gl

g lJ S S I S S I S S= ,
{ } { } { }
∑ ∑ ∑+ +

	 A
l

l
yD S= ,

2

∑( ) � (2)

field
f

f
z

g
g
z

L
l

l
zh S h S h S= .− − −∑ ∑ ∑

The operator exch  describes the pairwise 
exchange interaction between the nearest-neighbor 
spins from different sublattices. The lower indices f, 
g and l of the spin operators denote the lattice sites 
from the F-, G- and L sublattices, respectively. The 
exchange integral J determines the strength of the 
antiferromagnetic interaction between the nearest-
neighbor spins from the F- and G- sublattices, while 
the integral I  governs the interaction between the 
F(G)- and L- sublattices. The curly brackets under 
the summation symbols in (2) indicate that the 

summation is carried out only over nearest neighbors, 
with each pair of nodes counted only once.

The operator A  describes the effect of single-
ion anisotropy (SIA) of the easy-plane type acting on 
the spins S = 1  in the L- sublattice. The anisotropy 
parameter D is positive. The y axis is directed 
perpendicular to the ferrimagnet plane xz, which is, 
therefore, the easy magnetization plane.

The operator field  accounts for the Zeeman energy 
of the spins in the external magnetic field H, lying in 
the ferrimagnet plane (easy plane) and determining 
the parameters h g HB= ∝ , and h g HL L B= ∝ , where 
∝B  is the Bohr magneton, and g and gL are the Landé 
factors for the F(G)-sublattices, respectively. In general, 
the g-factors may differ for different sublattices. In this 
study, we assume that the moments are formed without 
the participation of orbital degrees of freedom, i.e., they 
are purely spin-related, so g gL = = 2 .

The direction of the magnetic f ield and the 
type of SIA ensure that the average moment of 
the L sublattice of RL, is oriented in the xz plane, 
perpendicular to the anisotropy axis y. Furthermore, 
considering the nature of the exchange interactions 
and the results of Ref. [38], it can be argued that 
the magnetic structure of the SU3F ground state for 
any values of D  and H  is characterized by a planar 

a2

͢

a1

͢

ξ

͢
ζ ͢

x

Z

Fig. 1. Crystal structure of the three-sublattice SU3F on 
a triangular lattice. Red, green, and blue circles indicate 
the positions of the nodes in the L-, F- and G- sublattices, 
respectively. | a1 | = | a2 | = a are the Bravais lattice vectors, while 
x and z represent the basis vectors.
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configuration of spin expectation values. Therefore, 
without loss of generality, we will assume that the 
spins of all three sublattices lie in the ferrimagnet 
plane xz, with the z axis of the original coordinate 
system conveniently directed along the magnetic 
field.

3. SU(3)-TRANSFORMATION  
OF THE HAMILTONIAN

To calculate the ground-state energy of SU3F, it 
is convenient to start with a unitary transformation of 
the Hamiltonian H:

	  ( , ) = ( , ) ( , ),2 2q q q q q qF G F G F GU U + � (3)

with the operator

	 U i S i S
f F

F f
y

g G
G g

y
2( ) = .q q q

∈ ∈
∏ ∏−( ) −( )exp exp � (4)

The transformation (3) allows one to switch to 
new local coordinates for the F - and G - sublattices, 
where the quantization axes ¢z  and ¢¢z  are rotated 
by the angles qF  and qG  around the y axis, aligning 
them along the equilibrium magnetizations RF  and 
RG , respectively (see Fig. 2).

The unitary transformation (3) of the Hamiltonian 
(1) corresponds to the following formal substitution of 
the spin operators for the F- and G- sublattices [39]:

S S S S Sf
x

f
x

F f
z

F f
y

f
y→ + →cos sinq q ,   ,

	 S S Sf
z

f
z

F f
x

F→ −cos sinq q , � (5)

S S S S Sg
x

g
x

G g
z

G g
y

g
y→ + →cos sinq q ,   ,

	 S S Sg
z

g
z

G g
x

G→ −cos sinq q . � (6)

As a result, the Hamiltonian operator (1) is 
transformed into the following form:

 = ( )2D S
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l
y∑ +

+ + − +{∑J S S S S
fg
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{ }

( ) ( )cos q q

+ + − − }+S S S S S Sf
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g
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f
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g
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f
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g
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F G( ) ( )sin q q

+ + + +{∑I S S S S S S
fl

f
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l
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f
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l
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F f
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l
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{ }

( )cosq

+ − }+( )S S S Sf
z

l
x

f
x

l
z

Fsinq

+ + + +{∑I S S S S S S
gl

g
x

l
x

g
z

l
z

G g
y

l
y

{ }

( )cosq

+ − }−( )S S S Sg
z

l
x

g
x

l
z

Gsinq

− −{ }−∑h S S
f

f
z

F f
x

Fcos sinq q

	 − −{ }−∑ ∑h S S h S
g

g
z

G g
x

G L
l

l
zcos sinq q , � (7)

where the operators Sf
β  and Sg

β  (β = , ,x y z ) relating 
to F- and G-subystems refer to the projections 
of the spin moments on the quantization axes 
corresponding to index β  in the new (rotated) local 
coordinate systems.

4. HOLSTEIN–PRIMAKOFF 
TRANSFORMATION

Following the strategy outlined in the introduction 
for calculating the ground-state energy of SU3F, we 
perform the Holstein–Primakoff transformation 
separately for the F- and G- sublattices:

	
S S a a a S S a a

S S b b b S S b b

f f f f f
z

f f

g g g g f
z

g g

+ + +

+ + +

− ⋅ −

− ⋅ −

= 2 , = ,

= 2 , = ,
� (8)

where the bosonic creation a bf g
+ +( )  and annihilation 

a bf g( )  operators describe spin transitions at site 
f g( )  of the F G( )  sublattice from the state | (| )′↑ 〉 ′′↑ 〉 ,  
corresponding to spin orientation along the ¢ ¢¢z z( )  

RL

RF

O

Z``

Z`Z

RG

θL

θG

θF

Fig. 2. Rotation of local coordinate axes during the unitary 
transformation (3). In the F- and G- sublattices with S = 1/2, the 
axes z are rotated by the angles qF and qG, taking new positions 
z′ and z″, respectively. The local coordinates in the L- subsystem 
with S = 1 remain unchanged, while the angle formed by the 
moment RLand the z axis is denoted by qL.
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axis, to the opposite orientation | (| )′↓ 〉 ′′↓ 〉 , and vice 
versa.

Substituting (8) into the Hamiltonian (7) gives the 
result:

	    = .0
(0) (1) (2)E + + + � (9)

where:

E J S N F G0 0
2= ( )cos q q- -

	 − +hSN F G( ),cos cosq q � (10)

Here, H n( )  ( n = 0,1,2 ) denotes the number 
of sites in the sublattice. The Hamiltonian H (0)  
represents the sum of the single-ion Hamiltonians 
for the L- subsystem:

 (0)
0= ( ),

l

lå
where:

	 0
2( ) = ( ) ,l D S H S H Sl

y
z l

z
x l

x+ + � (11)

The effective fields are defined as:

	
H I S h

H I S I I

z F G L

x F G

= ( ) ,

= ( ),   = 3 .

0

0 0

cos cos

sin sin

q q

q q

+ −

+
� (12)

The linear term in bosonic operators from the 
Hamiltonian (9) can be written as:

(1)

{ }

=
2
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fl

F l
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f fI
S
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S
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{ } { }

� (13)

where:

J J0 = 3

The last term in expression (9) describes the 
excitations in the F- and G subsystems and has the form:

(2)

{ , }

=
2
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S

a a b b
f g

f f g g∑ + +
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x
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( )cos sinq q

	 + +∑ ∑+ +h a a h b bF
f

f f G
g

g gcos cosq q . � (14)

Next, the mean-field logic dictates replacing the 
spin operators H (1)  and H (2)  of the L- subsystems 
with their average values. In the considered zero-
temperature regime, averaging the operators Sl

α  
(α = , ,x y z ) is sufficient to perform based on the 
ground state of the single-site Hamiltonian (11).

5. DIAGONALIZATION OF THE SINGLE-ION 
HAMILTONIAN

To diagonalize the single-ion Hamiltonian (11), 
we use the approach developed in [40]. We transition 
from spin operators to Hubbard operators [37], where 
X m nl

m n, =| |〉〈 , where m n, = { 1,0, 1}− +  are the 
eigenstates of the operator Sl

z  with corresponding 
eigenvalues | mñ  and | nñ  of S n n nl

z | = |ñ ñ . 
Substituting

   

S X X X X

S
i

X X X X

l
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l l l l

l
y

l l l

=
1

2
,

=
2

1,0 1,0 0,1 0,1

1,0 1,0 0,1

+ + +( )
− + + − ll

l
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l
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S X X X X X

S X

0,1

2 1,1 1,1 1,1 1,1 0,0

1,1

,

( ) =
1
2

,

=

( )
+ − −( )+

−− ≡ −X l
1,1 ,       1 1,

�(15)

Describing the transition to representation of the 
Hubbard operators into the single-ion Hamiltonian 
(11) gives:

0
1,1 0,0( ) =

2
l

D
H X DXz l l+







 + +

+ −






 − +( )+D

H X
D

X Xz l l l2 2
1,1 1,1 1,1

	 + + + +( )H
X X X Xx

l l l l2
.1,0 0,1 1,0 0,1 � (16)

In the absence of a magnetic field, the ground 
state of the system is degenerate with respect to 
rotations around the y axis. Choosing the x axis 
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along the vector RL  and assuming equivalence 
between the F - and G -sublattices ( q qF G= - ,), 
the parameter ϕ\phiϕ becomes zero, and the last 
term in (16) vanishes. In this case, the Hamiltonian 
H l0( )  couples only two of the three states ( | 1+ 〉  
and | 1− 〉 ), and its diagonalization requires only 
one unitary transformation (see [31]). However, the 
presence of a magnetic field couples all three states 
| nñ  ( n = { 1,0, 1}− + ), requiring three consecutive 
transformations for the diagonalization of the single-
ion Hamiltonian.

The unitary operator U lnm ( , )α  for each 
transformation is def ined by its generator 
Gnm l

nm
l
mnl X X( ) = -  from the SU(3) group, 

according to the expression:
U l lnm nm( , ) = { ( )} =            α αexp Γ

   = 1 ( 1)( )  ( ).+ − + +cos sinα αX X ll
nm

l
mn

nmΓ � (17)

The new Hubbard operators X r l s ll
rs

 =| , , |〉〈 , 
defined through the new basis states

	 r l U l r lnm, = ( , ) , ,-α � (18)

are expressed via original Hubbard operators as 
follows:

	 X U l X U ll
rs

nm l
rs

nm
 = ( , )  ( , ).− −+α α � (19)

Thus, the unitary transformation reduces to a 
simple substitution in the single-site Hamiltonian:

	 X U l X U ll
rs

nm l
rs

nm→ +
 



 

( , )  ( , ).α α � (20)

Explicit expressions for the right-hand side 
of the last formula were derived in [40] and are 
provided in Appendix A for completeness. The 
variational parameter α  in (17) is chosen such that 
the off-diagonal terms X l

nm   and X l
mn   vanish in the 

transformed Hamiltonian.
Performing the three consecutive unitary 

transformations with the operators U 1,0 2( )α ,  
U 0, 1 3( )- α  and U 1, 1 1( )- α , following the rule (20), 
and retaining the original notation for the indices 
of the new states n = { 1,0, 1}− +  (i.e., without 
tildes), we obtain the diagonal form of the single-ion 
Hamiltonian H l0( ) :

	 0( ) = ,   = 1,0, 1.l X n
n

n l
nn∑ − +ε � (21)

The eigenvalues εn  of the single-ion Hamiltonian 
can be expressed as ( 1 = 1- ):
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From the requirement of nullifying the coefficients 
of the non-diagonal X-operators in the transformed 
Hamiltonian, the following system of equations for 
the angles α j  ( = 1,2,3)j  is obtained:

tgα
α α

α α
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2 2

2 2
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2 2 2

2
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2 = 2 / ( ).1 1,1 1,1 1,1α e e e-
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Similarly, by sequentially applying formula 
(20) with the operators U 1,0 2( )α , U 0,1 3( )α  and 
U 1,1 1( )α , to the representation (15), the spin 
operators Sl

x , Sl
y , Sl

z  and ( )2Sl
y  can be expressed 

through the new (transformed) X-operators. The 
expansion coefficients of the spin operators Sl

α  
in terms of the new Hubbard operators X l

nm  will 
represent the matrix elements of the spin operators 
in the new states: s n S mn m l, | |α α≡ 〈 〉  (α = , ,x y z ). 
Explicit expressions for these matrix elements are 
given in Appendix B.

Within the mean-field approximation, the spin 
operators in the Hamiltonian H (1)  should be 
replaced by their average values, i.e., the diagonal 
matrix elements sn n,

α , calculated for the ground 
state | nñ , corresponding to the minimum value of 
εn . Below, we will choose the set of solutions of 
equations (24) for the angles α j  ( = 1,2,3)j  such 
that the state | 1+ 〉  is the ground state.

Since snn
y = 0  for any n  (see Appendix B), the 

last two sums in formula (13) for H (1)  vanish. The 
reduction of the remaining terms in (13) occurs under 
the conditions:

	

I s s

J S h
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z
F
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( )

( ) = 0,
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q q q
G

z
G

F G G

s

J S h

− +

+ − +
1,1

0

)

( ) = 0,

� (25)

These conditions will be further used to determine 
the equilibrium values of the angles qF  and qG. The 
angle qL, introduced in Fig. 2 for clarity, is not a 
tuning parameter and can be determined through 
the ratio of the average values of the spin projections 
Sl

z  and Sl
x.

The magnetic structure of the SU3F ground state 
is determined by the solutions of the five equations 
(24) and (25) for the angles α j  ( = 1,2,3)j , qF  and 
qG , followed by the selection of the solution set that 
corresponds to the minimum value of the mean-field 
energy of the entire system:

	 E E NMF = ,0 1+ ε � (26)

where the values E0  and ε1  are defined by equations 
(10) and (22), respectively. In Section 7, the SU3F 
phase diagrams in the h – D -coordinates, calculated 
based on the methodology presented here, will be 
presented.

6. BOSONIZATION OF THE L- SUBSYSTEM 
AND THE DISPERSION EQUATION

Within the chosen approximation, the ground 
state energy EMF  is determined without considering 
AF (antiferromagnetic) contributions. Therefore, the 
contributions from the last term in the Hamiltonian 
(9), quadratic in Bose operators, are absent in 
expression (26) for EMF . Nevertheless, when 
calculating the dependencies of order parameters 
on the magnetic field and single-ion anisotropy 
(SIA), the energy spectrum of spin-wave excitations 
is required, and to determine this spectrum, the 
operator H (2)  must be taken into account.

To compute the energy spectrum within the 
spin-wave approximation, we first express the spin 
operators through the new (transformed) X-operators. 
Using (15) and the formulas from Appendix A, we 
obtain expressions for the S-operators of the form:

	 S s X x y zl
n m

nm l
nmα α α= ,   = , , ,

,
å � (27)

where the matrix elements snm
α  are given in Appendix 

B.
Next, considering that the state spectrum H l0( )  

is characterized by three levels and the ground state 
of the single-ion Hamiltonian is the state | 1+ 〉 , we 
introduce, following [11, 14], two types of Bose 
operators: c  and d . The creation of one c d( )  boson 
at site l  is described by the creation operator c dl l

+ +( )  
and corresponds to the system transitioning from 
the “vacuum” state | 1+ 〉  to the state | 0 (| 1 )〉 − 〉  with 
one c d( )  boson. The Hermitian conjugate operator 
c dl l( ) , acting in the opposite direction, annihilates 
the c d( )  boson. States with more than one boson are 
excluded by the metric operator as non-physical.

The representation of Hubbard operators 
through Bose operators, proposed in [40] within the 
framework of the indefinite metric formalism [41], 
takes the form:

	

X c c d d c X c

X c c d d d

l l l l l l l l

l l l l l

1,0 0,1

1,1

= (1 ) ,  = ,

= (1 )

− −

− −

+ + +

+ +
ll l l

l l l l l l l l l

l

X d

X c d X d c X c c

X d

,  = ,

= , = , = ,

=

1,1

0,1 1,0 0,0

1,1

+

+ + +

ll l l l l l ld X c c d d+ + +− −, = (1 ).1,1

� (28)

We use the representation (28) in the formulas 
(27) and substitute the resulting expressions for the 
S-operators (see Appendix C) into the terms H (1)  
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and H (2)  of the Hamiltonian (9). As a result, an 
expression arises in which only contributions up to 
the second order in the a , b , c  and d - operators 
should be retained. Performing the Fourier transform:

	
a

N
e a b

N
e b

c
N

e c d
N

e d

f
k

ikf
k g

k

ikg
k

l
k

ikl
k l

k

ikl
k

=
1

, =
1

,

=
1

, =
1

,

å å

å å
�(29)

we obtain the desired Hamiltonian, which can be 
written as follows:

	 H E HMF SW= .+ � (30)

Here, the first term EMF  corresponds to the 
ground state energy in the mean-field approximation 
(see formula (26)), while the second term H SW  
describes spin-wave excitations and is defined by the 
expression:

H E a a E b b E c c E d dSW
k

a k k b k k c k k d k k= {∑ + + + ++ + + +

+ + ++
+ +J a b b ak k k k k k( )}*γ γ

+ + +−
+
−
+

−J a b a bk k k k k k( )*γ γ

+ + ++ + +I c a a cF k k k k k k0
*( )γ γ

+ + +− +
−
+

−I c a c aF k k k k k k0
*( )γ γ

+ + ++ + +I d a a d
F k k k k k k1

*( )γ γ

+ + +− +
−
+

−I d a d aF k k k k k k1
*( )γ γ

+ + ++ + +I c b b cG k k k k k k0
*( )γ γ

+ + +− +
−
+

−I c b c bG k k k k k k0
*( )γ γ

+ + ++ + +I d b b d
G k k k k k k1

*( )γ γ

	 + +− +
−
+

−I d b d bG k k k k k k1
*( ).γ γ � (31)

In this expression, the following notations were 
introduced:

E J S ha F G F= ( )0− − + −cos cosq q q

− +I s sz
F

x
F0 11 11( ),cos sinq q

E J S hb G F G= ( )0− − + −cos cosq q q

− +I s sz
G

x
G0 11 11( ),cos sinq q

E Ec d= , = ,0 1 1 1ε ε ε ε- -

J
J S

F G± − ±( )=
2

( ) 1 ,0 cos q q

I I
S

s s
s
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A n
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


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1cos sinq q

n A F G= {0,1}, = { , },
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.2 3 3∑ +













−
cos � (32)

In the sum defining the triangular lattice invariant 
γk , the vector δ takes three values: { , , }ξ ζ ζ ξ- -  (see 
Fig. 1). The Brillouin zone, which bounds the region 
of quasimomentum values, is shown in Fig. 3.

To obtain the dispersion equation, we define the 
matrix retarded Green’s function 〈〈 〉〉+X Xk k| ω ,, 
where

X a b c d a b c dk k k k k k k k k
+ + + + +

− − − −= ( , , , , , , , ).

From the requirement for nontrivial solutions 
of the equation of motion for 〈〈 〉〉+X Xk k| ω , the 
spectrum equation follows:

ω
ω

− −
+

A B

B A
k k

k k
= 0,  (33)

where

K

kz

M

G

kx

Fig. 3. The Brillouin zone of the triangular lattice and three high-
symmetry points: G, K, M.
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and
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7. SU3F PHASE DIAGRAM FOR I < J

We will discuss the SU3F phase diagram in 
the magnetic f ield–anisotropy parameter (D) 
coordinates separately for three cases of exchange 
parameter ratios: I J< , I J> , I J= . In this 
section, we consider the first case: I J< .

Fig. 4 shows the phase diagram of the SU3F 
ground state, calculated according to the 
methodology outlined in Section 5, for the exchange 
parameter ratio I J/ = 0.8 . It is evident that three 
phases are realized in the considered regime: the 
inverted Y-phase (hereinafter referred to as Y ), the 
W-phase, and the ferromagnetic phase.

In the Y  phase, the average spin vector of the 
L-sublattice, RL  is aligned along the magnetic field 
direction (the z-axis), while the average spin vectors 
of the F- and G- sublattices, RF  and RG, form equal 
but opposite angles with the z-axis: q qF G= - .  The 
magnitude of the angles θF and θG varies within the 
range [π/2, π].

In the symmetric W-phase, the angles θF and 
θG also have equal magnitudes and opposite signs. 
However, unlike the Y phase, the range of these 
angle magnitudes is different: [0, 2]≠/ .  In this case, 
the projections of all three vectors RF, RG  and RL  
onto the z-axis are positive. The boundary between 
the Y -  and W-phases in Fig. 4 is marked by the 
dashed line. To the right of the red line on the phase 
diagram, the ferromagnetic phase is realized: the 
average spin vectors of the L-, F- and G- sublattices 
are aligned along the magnetic field.

The evolution of the magnetic structure as 
the magnetic field at I J<  is characterized by 
a monotonic decrease in the absolute values of 

p

the angles qF  and qG , as H increases which 
vanish at a certain field value dependent on the 
anisotropy parameter OA (see the red line in Fig. 4). 
This behavior is illustrated by three pictograms 
schematically depicting the magnetic structure in 
each of the three regions of the phase diagram.

To further understand the presented phase 
diagram, we will calculate the dependence of the 
SU3F order parameters on the magnetic field for a 
fixed anisotropy parameter OA and on the anisotropy 
parameter OA for a fixed magnetic field h.

The average spin values RF  and RG  in F- and 
G-sublattices can be calculated using the Holstein–
Primakoff representation (8), according to which:

	
R S S n

R S S n

F f
z

a

G g
z

b

= = ,

= = ,

〈 〉 −

〈 〉 −

′

′′
� (36)

where the boson occupation numbers n a aa f f= 〈 〉+  
and n b bb g g= 〈 〉+  are computed using the spectral 
theorem from the matrix Green’s function 
〈〈 〉〉+X Xk k| ω  introduced in Section 6.

The average spin magnetic moment of the 
L-sublattice RL can be found using the formula:

	 R R RL L
z

L
x= ,

2 2( ) + ( ) � (37)

where the quantities RL
z  and RL

x  are determined 
by the average occupation numbers of c - and  d

h/J

0

2

4

6

8

10

D
/J 4.8

3

2.410 2 4 6

Fig. 4. The h–D phase diagram of the SU3F ground state for 
I/J = 0.8. The black dashed line corresponds to the boundary 
between the Y

-
- and W-phases, while the solid red line indicates 

the boundary between the W phase and the ferromagnetic phase. 
The pictograms illustrating the magnetic structure of SU3F 
represent the RL vector with a red arrow, the RF(G), vectors with 
blue arrows, and the magnetic field h directed upward. On the 
dashed line, a phase is realized where the subsystems with spins 
S = 1 and 1/2 become effectively independent.



JETP,  Vol. 167,  No. 1,  2025

100	 Martynov, Dzebisashvili

-bosons: n c cc k k= 〈 〉+  and n d dd k k= 〈 〉+ , as well as 
correlators 〈 〉+c dk k  and  〈 〉+d ck k . The corresponding 
expressions are obtained by averaging the formulas 
given in Appendix C.

S i n c e  t h e  to t a l  m a g n e t i c  m om en t 
M R R RF G L= + +  is directed along the external 
magnetic field (i.e., along the z-axis), its transverse 
component must identically vanish:

R R RL
x

F F G G+ +sin sinq q = 0,

and the longitudinal component equals:

	 M R R RL
z

F F G G= .+ +cos cosq q � (38)

The average value of the quadrupole moment [42]:

	 Q l Sl
y

2
0 2
( ) = 3 2( ) − � (39)

is calculated similarly after averaging the 
corresponding formulas from Appendix C.

Fig. 5 shows the dependence of the total moment, 
the average spin magnetic moments RL , RF G( ) , M 
(black line), and the quadrupole moment | | /32

0Q  on 
the magnetic field h for the anisotropy parameter ОА 
D J/ = 3  and the exchange integral ratio I/J = 0.8.

The change in the magnetic field on this figure 
corresponds to the movement along the horizontal 

dashed line on the phase diagram in Fig. 4. It is 
evident that at the transition point from the W phase 
to the ferromagnetic phase, all curves in Fig. 5 exhibit 
a kink. The values of M  and RL  increase as expected 
with increasing field h, while the quadrupole moment 
decreases.

The dependencies of the order parameters M , 
RL , RF , RG  and Q 2

0  on the anisotropy parameter 
h J/ = 1  are shown in Fig. 6.

The change in the anisotropy parameter D in this 
figure corresponds to the movement along the vertical 
dashed line on the phase diagram in Fig. 4. It can be 
seen that when crossing the boundary between the 
Y - and W -phases, the dependencies of the order 
parameters on D exhibit a kink, while the quadrupole 
moment saturates. The average moment of L-sublattice 
rapidly decreases near the phase boundary but decreases 
more slowly with further increase in D.

Clearly, the reduction of RL  facilitates the upward 
reorientation of the RF G( ) , vectors, as it reduces the 
exchange energy loss between the spins S = 1  and 
S = 1 / 2 .

An important feature of the phase diagram 
presented in Fig. 4 is that along the entire boundary 
between the Y - and W -phases (black dashed line), 
the angle between the vectors RF  and RG  equals π. 
In this case, from expressions (12) for the effective 
fields, we find:

0 1 2 3 4 5 6
h/J
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2

|Q 0
2

|/3
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RF(G)
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D/J

0

0.2
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Fig. 5. Dependence of the total moment RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 |/3 (green line) on the magnetic 
field h. The ratio between the exchange integrals is I/J = 0.8, 
while D/J = 3. The three pictograms composed of one red and 
two blue arrows have the same meaning as in Fig. 4.

Fig. 6. Dependencies of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 |/3 (green line) on the anisotropy 
parameter OA. The ratio between the exchange integrals is 
I/J = 0.8, and h/J = 1
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	 H h Hz L x= , = 0.- � (40)

Taking into account these relations and the 
condition hL ¹ 0 , the solutions of equations (24) 
for the angles α j  ( j = 1,2,3 ) take the form:

	 2 =
2

( 1) , = , = ,1 2 3α α π α π
D
h

n m
L

n m− + � (41)

where n and m are integers.
Substituting these solutions into the expressions 

for the matrix elements of the spin operators from 
Appendix B gives:

	 s sz x
11 1 11= 2 , = 0.cos α � (42)

Since s x
11 = 0  and θ θ πF G- = , from equations 

(25) for the angles qF  and qG , we find the condition:

	 s h Iz
11 0= , � (43)

which must be satisfied by the matrix element s z
11  at 

the boundary between the Y - and W -phases. The 
equation describing the boundary of these phases can 
be easily obtained from the compatibility condition 
of the three equations for the angle α1  and the matrix 
element s z

11  in formulas (41), (42), and (43).
As a result, the following relationship between the 

model parameters and the magnetic field is obtained:

	 D
g
g

I hL=
2

.0
2 2- � (44)

This expression analytically describes the dashed 
line in Fig. 4.

It is important to note that at the points of 
the phase diagram lying on this dashed line, the 
orientation of the (antiparallel) vectors RF  and  RG  
relative to the z-axis is not fixed. This fact implies 
the degeneracy of the SU3F ground state with respect 
to the simultaneous rotation of the spins from the F- 
and G- sublattices around the z-axis, provided that 
the vectors RF  and RG  remain antiparallel.

Indeed, substituting the solutions (41) for the 
angles α j  ( j = 1,2,3 ) into formulas (22) and (23), 
as well as fixing the difference in π in exprssion (10) 
between angles qF  and qG ,, we obtain:

ε1
2 2

0 0
2= 2 2 , = .D h D E J S NL/ /− +( ) −

Thus, at the points of the phase diagram lying 
strictly on the boundary between the Y - and 

W- phases (i.e., along the dashed line in Fig. 4), the 
ground-state energy E E NMF = 0 1+ ε  (see equation 
(26)) does not depend on the angles qF  and qG.

The physical reason for this behavior is that, 
at θ θ πF G- = , the two effective f ields acting 
on the spins in the L-sublattice from the F- and 
G-subsystems compensate each other (see equation 
(12)). As a result, the L-sublattice effectively 

“decouples” from both the F- and G-subsystems. 
Meanwhile, the external magnetic field hL continues 
to act on the L-subsystem, aligning the vector RL  
along the direction hL.

Simultaneously, the F- and G-sublattices 
also “lose connection” with the L-subsystem, as 
the effective fields generated by it in the F- and 
G-sublattices are fully canceled by the external 
magnetic field h. Indeed, as follows from expression 
(7), the quantities Ea  and Eb  (see (32)) are precisely 
the effective fields acting on the spins in the F- and 
G-sublattices, respectively. Since, at the points 
lying on the dashed line of the phase diagram in 
Fig. 4, the conditions (42) and (43) are satisfied, the 
contributions to effective fields Ea  and Eb  from 
the L- subsystem (-I s z

F G0 11 ( )cosq ), the external 
magnetic field ( h F Gcosq ( ) ) cancel each other out.

Thus, at the points belonging to the dashed line 
on the phase diagram in Fig. 4, the SU3F system 
decouples into two effectively non-interacting 
subsystems: one formed by the S=1 spins of 
L-sublattice and the other by the S = 1 2/  spins of F- 
and G-sublattice spins. In this case, the S=1 spins 
behave like a paramagnet in an external magnetic 
field, as they continue to experience the field hL, 
while the interaction between them vanishes. The 
S = 1 2/  spins behave like a two-sublattice (F and 
G) collinear antiferromagnet in an effective zero 
magnetic field. This condition, allowing for an 
arbitrary orientation of the antiferromagnetic vector 
in the zx -plane, leads to additional degeneracy of 
the ground state.

8. PHASE DIAGRAM OF SU3F AT I J/ > 1

When I J> , the phase diagram of SU3F under a 
magnetic field changes qualitatively. Fig. 7 presents 
the phase diagram calculated for the exchange 
parameter ratio I J/ = 1.2.  It is evident that four 
magnetic phases are realized in this case: the Y-phase, 
the collinear ferrimagnetic phase, the V (V ) phase, 
and the ferromagnetic phase.
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In the Y phase, the vector RL , representing the 
average spin in the L-sublattice (red arrow in the 
pictograms of Fig. 7), is directed opposite to the 
magnetic field (along the – z axis), while the average 
spin vectors RF  and RG  (blue arrows) in F- and 
G-sublattices form equal but opposite angles with the 
z-axis: z: q qF G= - , while | | [0, 2]( )θ πF G Î / .

When transitioning from the Y phase to the 
collinear ferrimagnetic phase, the angles qF  and qG  
simultaneously become zero, and all three vectors RF, 
RG  and RL become collinear: the first two align with 
the magnetic field, while the third opposes it.

Beneath the blue and red curves in Fig. 7 lies 
the so-called V phase, where the vector RL forms a 
nonzero angle qL  with the z-axis, while the vectors 
RF  and RG  form equal angles qF  and qG. These 
angles vary within the range 0, p/2.

This region can be further divided by a dashed line 
(shown in Fig. 7) into two subregions. To the right 
of this line, | |< 2θ πL / ,  while to the left, | |> 2θ πL / .  
We retain the V designation for the first region and 
label the second as the V  phase for distinction. 
Along the entire dashed line, the angle qL  strictly 
equals p/2.

In the ferromagnetic phase, all three vectors RF, 
RG  and RL align with the magnetic field.

As in the previous section, to understand the 
magnetic structure, we examine the changes in 

order parameters along two directions on the phase 
diagram: along the horizontal dashed line at a fixed 
value D J/ = 6  and along the vertical dashed line at 
a fixed field h J/ = 1  (see Fig. 7).

Fig. 8 shows the dependence of the quantities RL, 
RF G( ) , M  and Q 2

0  on the external magnetic field 
h at D J/ = 6.  This corresponds to movement along 
the horizontal dashed line in Fig. 7.

It is evident that the changes in RF G( )  and Q 2
0  

with increasing field h are minor, and the reduction in 
the average spin value RF G( )  due to AF interactions 
is insignificant. In contrast, the average moment of 
L-sublattice is significantly suppressed due to both 
AF and OA interactions. In the ferrimagnetic phase, 
the vector RL is directed opposite to the field, and its 
magnitude decreases with increasing h, as expected. 
In the ferromagnetic phase, the vector RL aligns with 
the field, causing its magnitude to increase.

A crucial observation from the graphs in Fig. 8 
is that the evolution of the magnetic structure 
follows the same sequence as in a triangular-
lattice antiferromagnet (TLAF) with S = 1 2/ ,  but 
without OA [38, 43]. However, while the extended 
ferrimagnetic (or  uud) phase in TLAF can only 
be explained by quantum f luctuations (which lift 
accidental degeneracy), in SU3F, this phase arises 
solely due to OA. Moreover, the behavior of the total 
moment M qualitatively reproduces the key stages of 
the TLAF’s evolution: the monotonic increase of M 
in the Y-, V -  and V-phases; a plateau-like region in 
the ferrimagnetic (uud) phase (commonly referred 
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Fig. 7. Phase diagram of the SU3F ground state at I/J = 1.2. 
The green line denotes the boundary between the Y-phase and 
the collinear ferrimagnetic phase, the blue line separates the 
collinear ferrimagnetic and V-phases, the black line separates the 
ferromagnetic and collinear ferrimagnetic phases, the red line 
separates the ferromagnetic and М phases, and the dashed line 
marks the boundary between the V-- and V- phases (on this line, 
qL = –p/2).

Fig. 8. Dependence of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 | (green line) on the external 
magnetic field h at I/J = 1.2 and D/J = 6.
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to as the 1/3 plateau in TLAF); and the saturation 
region of M in the ferromagnetic phase, which, 
however, is less pronounced due to anisotropy.

It is also worth noting that as the anisotropy 
parameter increases, the existence interval of the V
and V phases in Fig. 8 shrinks. As follows from the 
phase diagram in Fig. 7, this interval collapses to a 
point when D J/  7.

Fig. 9 presents the dependence of the quantities 
RL, RF G( ) , M  and | |2

0Q  on the anisotropy 
parameter D at a fixed magnetic field h J/ = 1.  These 
dependencies correspond to movement along the 
vertical dashed line in Fig. 7.

It can be seen that the quadrupole moment 
increases as the anisotropy parameter h increases, 
while the spin moment RL  from the L-sublattice first 
slightly increases in the region of low fields and then 
monotonically decreases. The spin moments RF G( )  
from the F- and G-sublattices do not significantly 
change throughout the entire range of D. Therefore, 
the noticeable increase in the total moment M in 
the ferromagnetic phase is not due to changes in the 
orientation or absolute values of RF G( ) , but rather 
due to the decrease in RL  caused by the anisotropy. 
Upon transition to the Y-phase, the total moment M 
begins to decrease, as the rotation of the vectors RF  
and RG  around the y-axis reduces their projection 
onto the z-axis.

The three vertical lines in Fig. 9 divide the four 
previously described phases. During the transitions 
from the V-phase to the ferromagnetic phase and 

from the ferromagnetic phase to the Y-phase, all 
order parameter dependencies exhibit a kink. At the 
same time, the transition from the V-phase to the V

-phase is not accompanied by any anomalies in the 
presented dependencies.

9. GROUND-STATE DEGENERACY AT I = J

The case I J=  is special because the classical 
analog of the SU3F Hamiltonian, as we will now 
show, exhibits continuous accidental degeneracy.

Indeed, let us define the Hamiltonian dependent 
on the parameter l :

H J S S J S S J S S
fg

f g
fl

f l
gl

g ll l l=
{ } { } { }
∑ ∑ ∑+ + +

	 + ( ) − + +

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,l � (45)

where the direction of the magnetic field h g HB= ∝
is generally arbitrary. All the notations in Equation 
(45) are the same as in the Hamiltonian (1). It is 
evident that if the conditions l = I/J = gL/g are met 
for l and the field h is directed along the z-axis, the 
Hamiltonian (45) coincides with the operator H 
defined by Equation (1).

On the other hand, it is easy to verify that the 
Hamiltonian (45), up to the constant

	 − + + +

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can be represented as
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l
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
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pF pG pL4 3

,
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l � (47)

where the sum p runs over all triangular plaquettes, 
and the lower indices F, G and L of the spin operators 
indicate their belonging to the corresponding 
sublattices in the p-th plaquette.

Thus, if the SU3F parameters satisfy the condition

	 I
J

g
g
L= , � (48)

then the SU3F Hamiltonian in Equation (1) can be 
represented in the form of Equation (47) with the 
field h directed along the z-axis.
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Fig. 9. Dependence of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 | (green line) on the parameter D 
for I/J = 1.2 and D/J = 6.
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If we now consider classical moments instead of 
spin operators in Equation (47), i.e., ordinary vectors 
of fixed length, it is easy to see that the minimum 
value of the Hamiltonian (47) will be achieved when 
both of its terms vanish. The vanishing of the first 
term implies that the spins of the L-sublattice lie in 
the easy-plane zx . The requirement for the second 
term in (47) to vanish reduces to the equation

	 S S S
h
JpF pG pL+ + −l

3
= 0. � (49)

It is evident that, for certain values of the 
magnetic fields h, this equation can be satisfied by 
an infinite set of solutions, i.e., different orientations 
of the three vectors RL, RF  and RG, even when the 
field h does not lie in the zx-plane. Moreover, if the 
magnetic field is parallel to the zx-plane (as in our 
case), the orientation of the vectors RL, RF  and RG, 
which minimizes the Hamiltonian (47), may not 
necessarily be coplanar with the zx-plane.

The above analysis of the classical limit of 
the Hamiltonian (47) suggests that the observed 
(continuous) degeneracy of the SU3F ground state 
should also hold in the quantum case when the 
condition (48) is satisfied. Our calculations using 
the mean-field approximation at I J=  and g gL =  
confirmed that this is indeed the case.

Similar degeneracy occurs in other quantum 
magnets, such as the antiferromagnet on a triangular 
lattice (AFTL) with S = 1 / 2  [43]. As was first 
demonstrated in [38], this degeneracy can be lifted by 
considering zero-point quantum fluctuations. This 
approach requires taking into account higher-order 
terms (compared to the harmonic approximation 
used in this work) when bosonizing spin operators 
within the Holstein–Primakoff representation for 
the F - and G -subsystems and within the indefinite 
metric formalism for the L-subsystem.

For this reason, constructing the phase diagram of 
SU3F at critical parameters satisfying the condition 
(48) will be carried out by the authors in a separate 
study.

10. SPIN-WAVE EXCITATIONS  
IN SU3F UNDER A MAGNETIC FIELD

The spectral properties of SU3F in the absence 
of a magnetic field were thoroughly studied in [31]. 
In this section, we analyze changes in the spectrum 
under a nonzero magnetic field while keeping the 

anisotropy parameter OA fixed. Four dispersion 
curves ε jk  ( j = 1, ,4 ) were calculated for each set 
of model parameters based on equation (33) derived 
in Section 6.

Fig. 10 shows the results of numerical calculations 
of the dispersion curves for four different magnetic 
field strengths with the model parameters I J/ = 0.8  
and D J/ = 3 . On the phase diagram in Fig. 4, the 
four black dots along the horizontal dashed line 
correspond to these four field values. It is evident 
that at h J/ = 1 , the system is in the Y phase; 
at h J/ = 1.87 , the system is in the antiparallel 
phase for the F - and G -sublattices; at h J/ = 3  
the system transitions into the W  phase; and at 
h J/ = 5.5 , the system reaches the ferromagnetic 
phase. Each of the four panels in Fig. 10 displays four 
dispersion curves corresponding to the four types of 
introduced bosons. However, only one curve (black 
in all graphs) can be confidently associated with the 
high-energy d-bosons. The other three branches are 
formed through the hybridization of the a-, b- and 
c-boson states.

Crucial observation is that in the first three 
graphs (a, b, c), there is at least one Goldstone 
mode (blue curves) associated with the breaking of 
symmetry in the ground state due to the collective 
rotation of spins in the F- and G-sublattices around 
the magnetic field direction. In the ferromagnetic 
phase (Fig. 10d), the ground state does not break 
this symmetry, and thus, the Goldstone (gapless) 
mode is absent.
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Fig. 10. Spin-wave excitation spectra at I/J = 0.8, D/J = 3, and 
four external magnetic field strengths: h/J = 1 (a), 1.87 (b), 3 (c), 
5.5 (d). The wave vector k traverses the triangular path GKM in 
the Brillouin zone (see Fig. 3).
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In Fig. 10b, two Goldstone modes appear 
(coincident blue and red curves). The origin of the 
second mode relates to the phase diagram feature 
discussed in Section 7, specifically the dashed curve 
(see Fig. 4). In this scenario, the moments RF  and 
RG  align along the zx -plane in opposite directions, 
causing the system’s energy to degenerate with 
respect to the rotation of the RF  and RG  vector line 
around the y-axis.

As mentioned in Section 7, this behavior is due to the 
vanishing of effective fields and the effective decoupling 
of the L-subsystem from the F- and G-subsystems. In 
such a case, the nodes of the L-sublattice become 
effectively isolated (even from each other), which 
explains the flat dispersion of the two high-energy 
branches (black and brown) in Fig. 10b.

The dispersion dependencies ε jk  shown in Fig. 11 
were calculated with the following model parameters: 
I J/ = 1.2,  D J/ = 6,  for four values of the external 
magnetic field: h J/ = 0.3,  1, 4 and 6. On the phase 
diagram in Fig. 7, these four field values correspond 
to the four black dots along the horizontal dashed 
line. As the magnetic field h increases, the system 
sequentially transitions through the following four 
phases: the Y  phase at h J/ = 0.3;  the ferrimagnetic 
phase at h J/ = 1;  the V- phase at h J/ = 4.3;  and the 
ferromagnetic phase at h J/ = 6.

From the graphs presented in Fig. 11, it is evident 
that the Goldstone mode appears only in the first 
case (Fig. 10a), as the breaking of ground-state 
symmetry (relative to rotations around the z-axis) 

occurs exclusively in the Y
--phase. In all other 

regions of the phase diagram (Fig. 7), the spin-wave 
excitation spectrum remains gapped.

11. CONCLUSION

The main outcome of this study is the construction 
of the phase diagram of the SU3F ferrimagnet on a 
triangular lattice, plotted in the coordinates of the 
magnetic field h  (applied in the easy-plane anisotropy 
plane) and the single-ion anisotropy parameter D at 
zero temperature. Among the key features of the SU3F 
model, the following three stand out: 1) different spin 
magnitudes in magnetic sublattices: two sublattices 
(F and G) have spin S = 1 2/ , while the third L-sublattice 
has spin S = 1;  2) single-ion anisotropy: easy-plane 
anisotropy acts on the L-sublattice with spin S=1; 3) 
different exchange integrals: The exchange interactions 
differ between the F- and G-sublattices (J) and between 
the L- F(G) sublattices (I).

Numerical calculations under the mean-field 
approximation revealed two qualitatively distinct 
types of SU3F phase diagrams depending on the 
ratio between the exchange integrals I and J. These 
phase diagrams differ both in the number of realized 
phases and in the nature of their magnetic structures.

For I J< , the ground state of SU3F can be 
characterized by three magnetic configurations: the 
Y , W phase, and the ferromagnetic phase (see Fig. 
4). Notably, along the boundary between the Y - and 
W -phases (dashed line in Fig. 4), the SU3F system 
effectively splits into two independent magnetic 
subsystems/ The first subsystem consists of spin‑1 sites 
on a triangular lattice and behaves as a paramagnet. 
Another one consists of S = 1 2/  spins forming a 
planar hexagonal lattice in a collinear two-sublattice 
antiferromagnetic phase under an effective zero 
magnetic field. This decoupling leads to an additional 
degeneracy of the ground state, associated with the free 
rotation of the antiferromagnetic vector within the easy-
plane. This degeneracy manifests as an extra Goldstone 
mode in the spin-wave excitation spectrum.

For the reverse exchange ratio ( I J> ), the SU3F 
the h–D- phase diagram undergoes significant 
changes. It now features four distinct regions 
characterized by different magnetic ground-
state structures, i.e. the Y- phase, two collinear 
ferrimagnetic and ferromagnetic phases, as well as the 
V-phase. The V-phase can further be subdivided into 
two sub-phases (V  and V), depending on whether 
the angle qL exceeds the critical value p/2.
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Fig. 11. Spin-wave excitation spectra at I/J = 1.2, D/J = 6 and 
four external magnetic field strengths: h/J = 0.3 (a), 1 (b), 4 (c), 
6 (d). The wave vector k traverses the triangular path GKM in the 
Brillouin zone (see Fig. 3).
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For both I J<  and I J> , the quadrupole and 
dipole order parameters were analyzed as functions 
of both the magnetic field (at fixed anisotropy OA) 
and the anisotropy parameter OA (at fixed magnetic 
field h). One significant result of this study is the 
dependence of the total moment M on the external 
magnetic field. For I J>  and a specific finite value 
of ОА, this dependence qualitatively reproduces 
the well-known behavior observed in quantum 
antiferromagnets on a triangular lattice with uniform 
spin S = 1 2/  and without anisotropy [38, 43]. 
Specifically, within a certain magnetic field range, the 
magnetization curve exhibits a plateau (albeit with 
a slight tilt in our case). In conventional quantum 
triangular-lattice antiferromagnets (QTAFMs), this 
plateau arises due to quantum antiferromagnetic 
fluctuations, while in SU3F, it emerges due to the 
presence of single-ion anisotropy.

A notable finding is the qualitative difference 
between the two phase diagrams for I J<  and 
I J> . There is no continuous transformation 
at I J®  from one diagram to the other. This is 
because, when the exchange integrals become equal 
( I J= ), accidental degeneracy arises, leading to 
an ambiguity in the magnetic configuration within 
the mean-field approximation for given magnetic 
field and anisotropy values. We hypothesize that, 
as with QTAFMs, quantum fluctuations should lift 
the observed accidental degeneracy (as well as the 
additional degeneracy noted for I J< ). However, 
a detailed investigation of this issue requires further 
study and will be addressed in future research.

In conclusion, we emphasize that in the present 
study, the magnetic field h applied to the quantum 
SU3F system was oriented within the easy-plane 
anisotropy plane. If the magnetic field were instead 
applied perpendicular to this plane, the behavior 
of the magnetic order parameters could differ 
qualitatively.
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APPENDIX A. UNITARY TRANSFORMATION 
OF HUBBARD OPERATORS

As a result of the unitary transformations of the 
Hubbard operators according to formula (20), with 
the unitary operator U nm  ( )α  ( n m¹ )defined by 
formula (20), the following expressions are obtained 
[40]:

X X Xnn nn mm= 2 2cos sinα α  + −

− +( )1
2

2 ,sin α X Xnm mn   

X X Xmm mm nn= 2 2cos sinα α  + +

+ +( )1
2

2 ,sin α X Xnm mn   

X X Xnm nm mn= 2 2cos sinα α   − +

+ −( )1
2

2 ,sin α X Xnn mm  

X X Xmn mn nm= 2 2cos sinα α   − +

+ −( )1
2

2 ,sin α X Xnn mm  

X X Xnp np mp= ,cos sinα α  -

X X Xpn pn pm= ,cos sinα α  -

X X Xpm pm pn= ,cos sinα α  +

X X Xmp mp np= ,cos sinα α  +

X Xpq pq= ,

where all four state indices p , q , n  and m  are 
different, and the site indices are omitted. In the 
main text, for brevity, the tilde notation, indicating 
the new (transformed) states, is not used for the 
indices of the thrice-transformed Hubbard operators.

APPENDIX B. MATRIX ELEMENTS  
OF SPIN OPERATORS

This appendix presents the explicit form of the 
matrix elements s n S mnm l

α α≡ 〈 〉| |  ( α = { , , }x y z  
and n m, = {1,0,1} ),, used in the decomposition 
(27). These elements were obtained from the three 
successive transformations of the Hubbard operators 
using the three unitary operators U 1 1 1( )- -α , 
U 0 1 3( )- -α  and U 10 2( )-α , followed by substituting 
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the transformed results into the representation (15) 
for the spin operators of the L -sublattice.

Matrix elements for the spin operator Sl
z :

s z
11 1 2 1 2 3

2= ( )cos cos sin sin sinα α α α α+ −

- 2
1

2
3,sin cosα α

s z
1 1 1 2 3 1 2

2= ( )cos sin sin sin cosα α α α α- -

- 2
1

2
3,cos cosα α

s z
00

2
2

2
3

2
3= ,sin cos sinα α α-

s sz z
10 01 1

2
2 3= =

1
2

(1 ) 2− + −sin sin sinα α α

-
1
2

(2 ) ,1 2 3cos sin cosα α α

s sz z
10 0 1 1

2
2 3= =

1
2

(1 ) 2− + +cos sin sinα α α

+
1
2

(2 ) ,1 2 3sin sin cosα α α

s sz z
11 1 1 1 2 3= =

1
2

2 2cos sin sinα α α +

+ − −
1
2

2 ( ).1
2

2
2

3
2

3
2

2sin sin sin cos cosα α α α α

For the operator Sl
x :

s x
11 1 2= 2(cos sinα α -

− +sin sin cos cos cosα α α α α1 3 2 1 2)(

+ +sin sin sin sin cosα α α α α1 3 2 1 3),

s x
1 1 1 2= 2(sin sinα α +

+ −cos sin cos sin cosα α α α α1 3 2 1 2)(

- -cos sin sin cos cosα α α α α1 3 2 1 3),

s x
00 2 3 2

2
3=

1

2
( 2 2 ),cos sin sin cosα α α α-

s x
11

1
2 3 3 2=

2

2
( 2 )

cos
sin cos sin cos

α
α α α α- -

− + +
sin

cos sin sin sin
2

2 2
( 2 2 (1 )),1

2 3 2
2

3
α

α α α α

s x
10

1
2 3 2 3=

2
( 2 )

cos
cos cos sin sin

α
α α α α+ +

+ +
sin

cos cos sin sin
α

α α α α1
2 3 2 3

2
( 2

1
2

2 2 ),

s x
10

1
2 3 2 3=

2
( 2 )− + +

sin
cos cos sin sin

α
α α α α

+ +
cos

cos cos sin sin
α

α α α α1
2 3 2 3

2
( 2

1
2

2 2 ),

s s s s s sx x x x x x
11 1 1 10 01 10 0 1= , = , = .

For the operator Sl
y :

s s sy y y
11 1 1 00= = = 0,

s
iy

01 1 2=
2

(− +sin cosα α

+ +cos cos sin sinα α α α1 3 2 3( )),

s
iy

10 1 2=
2

(cos cosα α +

+ +sin cos sin sinα α α α1 3 2 3( )),

s
iy

11 2 3 3=
2

( ),sin cos sinα α α-

s s s s s sy y y y y y
11 1 1 10 01 10 0 1

= , = , = .- - -

For the operator ( )2Sl
y :

〈 〉 + +1 | ( ) | 1 =
1
2

1
2

2 2
1

2
2Sl

y
cos sinα α

+ − −
1
2

( 2 )2
1

2
2

2
3 2 3sin cos sin sin sinα α α α α

− +
1
2

2 ( ),1 2 2 3 3sin cos sin sin cosα α α α α

〈 〉 + +1 | ( ) | 1 =
1
2

1
2

2 2
1

2
2Sl

y
sin sinα α

+ − +
1
2

( 2 )2
1

2
2

2
3 2 3cos cos sin sin sinα α α α α

+ +
1
2

2 ( ),1 2 2 3 3sin cos sin sin cosα α α α α

〈 〉 +0 | ( ) | 0 =
1
2

( 22
2 3Sl

y sin sinα α

+ +1 ),2
2

2
3cos cosα α

〈 〉 −1 | ( ) | 1 =
1
4

(2 2
2

2
3Sl

y
cos sinα α

- - -sin sin sin sinα α α α2 3
2

2 12 ) 2

− +
1
2

2 ( ),1 2 2 3 3cos cos sin sin cosα α α α α

〈 〉 − +1 | ( ) | 0 =
1
2

( )2
1 2 3 2 3Sl

y sin cos sin sin cosα α α α α

+ −








1
2

2
1
2

(2 ) ,1 2 3
2

2 3cos sin cos cos sinα α α α α

〈 〉 − +1 | ( ) | 0 =
1
2

( )2
1 2 2 3 3Sl

y cos cos sin cos sinα α α α α
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+ −








1
2

2
1
2

(2 ) ,1 2 3
2

2 3sin sin cos cos sinα α α α α

〈 〉 〈 〉 〈 〉 〈 〉1( ) 1 = 1 ( ) 1 , 0( ) 1 = 1 ( ) 0 ,2 2 2 2| | | | | | | |S S S Sl
y

l
y

l
y

l
y

〈 〉 〈 〉0 | ( ) | 1 = 1 | ( ) | 0 .2 2S Sl
y

l
y

APPENDIX C. BOSONIZATION  
OF SPIN OPERATORS FOR S=1

Using the representation (28) in formulas (27) and 
retaining only terms up to the second order in boson 
operators, the following spin operator expressions 
through bosonic operators are obtained:

S s c c s d dl
x x

l l
x

l l=
1

2
[( ( ) ( )0,1 1,1

+ ++ + + +

+ + + + − ++ + +s d c c d s s s c cx
l l l l

x x x
l l1,0 1,1 0,0 1,1( ) ( )

+ − +( ) ],1,1 1,1s s d dx x
l l

S
i

s c c s d dl
y y

l l
y

l l=
2

[ ( ) ( )0,1 1,1
+ +− + − +

+ −+ +s d c c dy
l l l l1,0

( )],

S s c c s d dl
z z

l l
z

l l= ( ) ( )0,1 1,1
+ ++ + + +

+ + + + − ++ + +s d c c d s s s c cz
l l l l

z z z
l l1,0 1,1 0,0 1,1( ) ( )

+ − +( ) ,1,1 1,1s s d dz z
l l

( ) =
1
2

[(( ) ( ) )2
1,0

2
1,1

2S s s c cl
y y y

l l− ++

+ − −+(( ) ( ) )
1,0

2
0,1

2s s d dy y
l l

− + + + ++ +s s d d s s c cy y
l l

y y
l l1,0 0,1 1,0 1,1

( ) ( )

+ + + ++ +(( ) ( ) ) ( )].0,1
2

1,1
2

0,1 1,1
s s s s d c c dy y y y

l l l l

The presented expressions, after averaging and 
applying the spectral theorem to compute the boson 
operator expectations, were used to derive the 
formulas for calculating the order parameters RL, M 
and Q 2

0 .
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1. INTRODUCTION

In recent decades, significant attention has been 
given to systems exhibiting “topologically nontrivial” 
properties. However, for practical applications, it is 
essential to assess the specific physical characteristics 
of such systems in addition to their mathematical 
interpretation of the ground state properties. One 
of the simplest models that demonstrates properties 
allowing for topological interpretation is the atomic 
chain with ppp-wave superconductivity of spinless 
particles, proposed by A. Kitaev [1]. The primary 
interest in this model in subsequent years was driven 
by the nontrivial topological interpretation of its 
ground-state properties. It was shown that, due to 

“topological reasons”, quantum states localized at the 
chain edges appear within the superconducting gap. 
These states, often referred to as “Majorana modes”, 
are commonly associated with the existence of 
quasiparticles [2] that bear resemblance to Majorana 
fermions [3].

Possible experimental realizations of this model 
are typically based on the proximity effect in 

semiconductor nanowires with strong spin-orbit 
interaction, placed on a superconducting substrate 
[4, 5, 6]. The latest experimental advances and 
discussions on the challenges encountered can be 
found in the review [7].

It is widely believed that further progress in this field 
may involve models with an effective Josephson action, 
accounting for Coulomb blockade-type effects [8, 9, 
10, 11, 12, 13]. There is hope that long-range Coulomb 
interactions could facilitate signal transmission in 
finite Kitaev chains using “Majorana states”. However, 
recharging effects inevitably involve charge transfer 
processes, so we must ensure that we accurately describe 
tunneling transport and charge transfer effects first in 
the simplest tunneling setup. Theoretical results can 
then be compared with tunneling experiments under 
various conditions [14, 15].

Some theoretical studies suggest that “Majorana 
states” could be utilized as an error-protected 
method for storing and transmitting information in 
quantum technology [16, 17]. However, if a state 
is protected from arbitrary changes due to external 
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noise, the same protection may make intentional 
changes to the system’s state equally diff icult, 
potentially rendering the system impractical for real-
world applications. One possible way to study how 
well a system responds to a signal is to investigate its 
nonstationary transport properties.

In [18], nonstationary effects related to tunnel 
barrier transparency modulation were considered 
in a quasiclassical approach. That work analyzed a 
three-terminal system, where one of the contacts 
was effectively used to fix the chemical potential 
of the superconductor. In this study, we consider a 
two-terminal geometry, where the superconductor is 
connected only to two external contacts. To explore 
the role of localized states in nonstationary transport 
properties, we employ the formalism of nonstationary 
Green’s functions for electrons.

Below, we will demonstrate that this approach 
enables us to derive explicit analytical expressions 
for both the tunnel current and nonstationary charge 
transport, in contrast to more complex methods 
based on density matrix equations, as discussed, 
for example, in [19]. Furthermore, this approach 
allows us to compare quasiclassical calculations with 
microscopic methods and establish a connection 
between the parameters used in these different 
approaches.

The exact electronic Green’s functions for 
the infinite Kitaev chain in equilibrium can be 
obtained analytically [20]. These functions can be 
used to derive the nonstationary Green’s functions 
for a finite chain, allowing us to understand how 
the system evolves over time when subjected to an 
external perturbation. The key idea in our approach 
is to treat the finite Kitaev chain as a cut segment 
of an infinite chain or as a chain with strong defects 
(for a single-cut chain, see, e.g., [21]). This trick 
enables us to use the Green’s functions of the 
infinite chain to study all single-particle states in the 
system. Our calculations do not require any special 
interpretation of singularities in the single-particle 
Green’s function as specific “states”. It is important 
to note that the poles of the single-particle Green’s 
function, which appear inside the superconducting 
gap in this model, can hardly be interpreted as 
single-particle excitations. True Majorana particles, 
as discussed in the pioneering works [3], are well-
defined particles (quasiparticles) with the usual 
algebra of creation and annihilation operators. In 
any physical problem, such real particles contribute 

to the single-particle Green’s function with a residue 
equal to one. It is well known that bound states 
localized around defects, such as paramagnetic 
impurities [22] or resonance impurities [23] with 
energies lying inside the superconducting gap, 
frequently appear in conventional superconductors. 
These states are genuine single-particle states. In 
the present case, we observe that the appearance of 
poles in the electronic Green’s function within the 
gap, with residues smaller than one, is more likely an 
artifact of the model, which has a degenerate (in the 
highly symmetric case) ground state, rather than the 
emergence of new quasiparticles.

2. PROPERTIES OF AN ISOLATED 
KITAEV CHAIN

In this section, we briefly reproduce some results 
related to the spectral properties of a finite Kitaev 
chain, using the Green’s function formalism, which 
we will employ in later sections.

We start with the free ideal Kitaev chain, which is 
completely isolated from any external systems.

The model Hamiltonian of such a system can be 
written as

  

��H t
n

N

n n
n

N

n n n n

n

N

n n

=
=1 =1

1

1 1

=1

1

− − +( )+

+

∑ ∑

∑

−

+ +

−

+

µ ψ ψ ψ ψ ψ ψ

ψ ψ

   

 ∆ 11
*
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Here, ψn
  and ψn  are the creation and 

annihilation operators for a particle at site n, m is 
the chemical potential, t is the hopping parameter 
between neighboring sites, D is the superconducting 
order parameter, which in this study we consider as 
a fixed parameter, N is the total number of sites in 
the lattice.

To obtain exact solutions for the Green’s 
functions of the Hamiltonian (1), it is convenient to 
use the Green’s functions of an infinite Kitaev chain. 
Indeed, the behavior of a finite chain can be modeled 
by considering an infinite chain with infinitely strong 
point defects U→+∞ added at sites 0 and N+1 (see 
Fig. 1). As a result, the particles located between 
these two sites will be completely isolated from the 
outer parts of the chain, and the Green’s functions 
will be identical to those of a finite Kitaev chain of 
length N, as long as the node indices lie between 0 
and N+1.
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Thus, the behavior of the system is described by 
the following Hamiltonian, corresponding to the 
system shown in the figure:

	 H H V  = ,0 + � (2)
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This Hamiltonian (2) is identical to Hamiltonian 
(1) when U→∞. To determine the physical properties 
of the chain, we use the formalism of normal 
and anomalous Green’s functions, denoted as 
G t tnm ( , )¢ , F t tnm ( , )¢ , respectively. In this work, we 
use the following definitions of Green’s functions:
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where a b ab ba   , ={ } + ,  < >= ( )a a Tr ρ .  The indices 
R and A denote the retarded and advanced Green’s 
functions, respectively.

Using Dyson’s equation for Hamiltonian (2), 
we can express the retarded Green’s functions 
Γnm

R t t( , )¢  of the finite chain in terms of the Green’s 
functions Γnm

R t t0 ( , )¢  of the infinite Kitaev chain. In 
the Appendix, it is shown that the functions Γnm

R ( )ω  
have poles at points ω ω= 0± , where
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As | |< 1χ±  (see 52), expression (6) is written for the 
case χ±

N
 1. For sufficiently large N, the parameter 

ω0  is small compared to other system parameters and 
decays exponentially as the N chain length increases.

For the cases | D |   t and | D | <  t, | D | →  t, the 
“exponential smallness” of expression (6) in N can 
be explicitly demonstrated:
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The exponential decay of ω0  with increasing 
chain length is explained by the exponentially weak 
overlap of the two bound states at opposite edges of 
the chain. Using (8), we can estimate the localization 
length of the bound states as:

   l
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where a is the lattice constant.
Such an exponential dependence has been 

observed in tunneling experiments using Coulomb 
blockade methods, as described in [15].

In the limit N→∞, the states near each edge begin 
to behave as if the chain were semi-infinite. In this 
case, the two poles with residues equal to 1/2 together 
correspond to a single Fermi excitation, which is 
split between the two edges of the chain. Thus, the 
residue in terms of Bogoliubov excitations is equal to 
1, as it should be. However, when observing only one 
end of the chain, we “see” only half of this excitation. 
This Fermi excitation is very specific because it is 

D

DD

D
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the excitation that connects two degenerate ground 
states with different parity (i.e., a different number of 
electrons), but with the same energy.

This statement can be easily illustrated with a 
simple example of a two-site chain. The Hamiltonian 
(1) for two sites can be diagonalized using the 
Bogoliubov transformation. In terms of Bogoliubov 
operators, the Hamiltonian takes the form

	 H E c c c c
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For ∆ = 2 2t - µ  (which in the case m = 0 gives 
D = t), we obtain ε1 = 0  (the solution 53 for the case 

N = 2 , ω = 0 ). Then, | >=
1

2
( ) | 0 >0 1 2Φ ψ ψ+ +−  

corresponds to the ground state and satisf ies 
c1,2 0| >= 0.Φ  At the same time, the state 
| >= | >= ( ) | 0 >1 1 0 1 2Φ Φc v u + + +ψ ψ  a l s o  h a s 
zero energy, which means that the ground state is 
degenerate. For the matrix elements between these 
ground states, we have

< | | >= / 2, < | | >= / 2.0 1 1 1 1 0Φ Φ Φ Φψ ψu v

This means that in the single-particle function G 11
at ω = 0 , a pole appears with a residue equal to 1/2.

3. TUNNELING CURRENT

We f irst consider the stationary tunneling 
properties of the Kitaev chain. To do this, we assume 
that the chain is connected at sites 1 and N to two 
external reservoirs with a large number of degrees of 
freedom, labeled by indices l and r, respectively.

The total Hamiltonian can then be written as

m
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The current flowing into the chain through site 1 
is given by the standard expression ([24]):
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Using the nonstationary diagrammatic technique, 
this expression can be rewritten as
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The parameter p corresponds to the density of 
states inside both reservoirs, g pα ω( )  is the Green’s 
function of reservoir α when it is disconnected from 
the chain, where α takes values l and r, GR

n,m(t, t1) 
are the exact are the retarded and advanced Green’s 
functions of the chain, accounting for tunneling 
transitions into the reservoirs.

Crucially, the tunneling Hamiltonian (11) and 
the tunneling current (12) are expressed in terms of 
real electron operators, and they directly provide 
the actual electric current in the system. It should be 
noted that attempts to use effective Hamiltonians in 
terms of Majorana quasiparticle operators often lead, 
in our opinion, to questionable results, as handling 
Majorana operators requires great caution and 
precision. Due to the Clifford algebra commutation 
relations, there is no Wick’s theorem directly applicable 
to Majorana operators, and pair correlators do not 
have the meaning of Green’s functions, which form 
the basis of conventional diagrammatic techniques. 
In the calculations presented in this paper, we do not 
encounter any difficulties that we would have faced if we 
had worked with Majorana operators. For the problem 
of a finite Kitaev chain of arbitrary length, inserted 
between two leads and described by Hamiltonian 
(11), we have exactly computed the electronic current 

Fig. 1: Infinite Kitaev chain with two defects
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(12). It is not surprising that some discrepancies may 
arise between our results and those of [26, 27, 25] 
and other authors, as the latter were obtained using a 
number of approximations in the Majorana operator 
representation.

In what follows, we assume, as usual, that due 
to the large number of particles and degrees of 
freedom in each reservoir, the particle distribution 
function does not significantly change throughout 
the experiment, and thus each reservoir remains 
practically in equilibrium. However, the system as a 
whole is not in equilibrium, although in this section, 
we consider it stationary, meaning the current does 
not change over time. Thus, Equation (13) can 
be rewritten using frequency-dependent Green’s 
functions as follows:
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We can simplify this expression by introducing the 
irreducible part
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Then, we can use the identity
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where nα ω( )  are the Fermi-Dirac distribution 
functions for the l and r reservoirs.

Thus, Equation (14) can be rewritten as:
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Here, the current Il  is determined by the upper-
left element of the matrix Il

  ( I l


11 ).
An expression of this type in terms of 

nonequilibrium Green’s functions was first derived 
in [24] and later applied in [28]. At first glance, this 
expression appears asymmetric with respect to the 
left and right contacts. However, in the stationary 
case, a properly calculated current (17) can always 
be rewritten in an explicitly symmetric form.

In our case, Equation (17) can be further 
simplified using the relations
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Using the wide-band approximation for the 
reservoirs, we assume that for the considered values of 
ω , the condition Σl r

A
l ri( ) ( )( )ω γ» , Σl r

R
l ri( ) ( )( ) ,ω γ≈ −  

holds, where γ πν τl r
l r

p
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densities of states in the rese rvoirs l r( ) .
Direct substitution gives:
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A formula of this type was derived in [24]. It 
should be noted that the obtained equation for 
the current through the system is symmetric with 
respect to its two edges. Naturally, this implies 
that, in the stationary case, the current flowing 
into the system equals the current f lowing out 
of it. The conservation of total current cannot 
be violated in any system and does not require 
additional conditions, such as equal tunneling 
rates or symmetrically applied voltages at different 
edges. Thus, the appearance of asymmetric 
expressions for stationary tunneling current, as 
obtained in some works on Kitaev chain-type 
systems (e.g., [29]), signals the need to verify the 
applied approximations. This statement remains 
valid even for interacting systems, but deriving an 
explicitly symmetric expression in such cases is 
more challenging. Examples of such calculations 
for systems with electron-phonon interactions can 
be found, for example, in [30, 31]. We emphasize 
that Equation (20) is exact and explicitly symmetric 
for the left and right contacts.

Since we aim to study the low-energy bound state 
corresponding to the “Majorana mode”, we consider 
the case where the applied voltage is smaller than the 
superconducting gap. In this case, we exclude the 
influence of quasiparticle states from the continuous 
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spectrum. To express Γ1, ( )N
R

ω through the Green’s 

functions of the isolated chain Γn m
R

, ( )ω , we use 

Dyson’s equation:
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Simple algebraic transformations yield:
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where I  is the identity matrix. The explicit form 
of the Green’s functions Γn m

R
, ( )ω  for ω  ∆ ,t

is derived in the Appendix. A simpler form can be 
obtained for ∆2 / ( ) 1tγ  . Retaining the leading 
terms in (55) for this parameter, we get:
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Substituting this result into (20), we obtain:
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l r l r
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These and further calculations are performed for 
the following parameter hierarchy: t l r> > ,∆ γ . For 
the case γ l r, > ∆ , we cannot exclude the influence of 
the continuous part of the spectrum on conductivity, 
and information about low-energy resonances is lost, 
so this case is not considered here.

We see that the magnitude of the current (25) is 
directly proportional to ω0

2 , meaning that the current 
decreases exponentially with increasing chain length. 
Moreover, if ω0 = 0 , which is typically associated 
with Majorana particles, then no current f lows 
through the system at all. Note that Equation (25) 
is symmetric with respect to the contact parameters 
l and r, as expected. A similar expression for the 
normal component of the current was obtained in 
the quasiclassical approach in [18], where it was 
also noted that the zero-bias peak in tunneling 
conductance is unlikely to be observed for a realistic 
ratio between ω0  and γ l r, .

The tunneling conductance peak associated with 
Majorana states was also studied in [32]. That study 
considered a single NS contact, where it was assumed 

that the chemical potential of the superconductor 
was somehow fixed. The problem was solved using 
the effective transmission coefficient method for 
quasiparticles, which, in the presence of a bound 
state, always leads to formulas of type (25). However, 
the peak amplitude for the two different systems – 
a single NS contact and a superconductor between 
two normal contacts – cannot be directly compared 
due to the problem of fixing the superconducting 
chemical potential. It is worth noting that results 
similar to those in [32] for the current in an NS 
contact, considering Majorana states, can also be 
obtained using the methods from [33].

If in Equation (25) the applied voltage is greater 
than the width of localized states, but less than the 
superconducting gap, meaning n nl r( ) ( ) = 1ω ω-  for 
ω γ γ l r, then we obtain a simple final expression 

for the tunneling current associated with Majorana 
modes:

	 I
C

C
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l r

l r l r
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γ γ ω
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Thus, the magnitude of the current is always 
determined by the smallest transfer rate present in 
the system (the weakest link); in our case, these rates 
are defined by the parameters ω γ γ γ γ0

2 / ( ), ,l r l r+ . 
If ω γ γ0

2 2³ C l r , then the general equation (25) leads 
to a current proportional to γ γ γ γl r l r/ ( )+ , which 
is the usual expression for tunneling through an 
intermediate state. For the considered system, the 
physically reasonable relation is ω γ γ0 , l r . Using 
this, we obtain:

	 I
Cl

l r
=

2
.0

2ω
γ γ+( )

� (26)

If we use Equations (8) and (23), this formula 
gives:

	 I
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For arbitrary parameters µ < <∆ t , the current 
is always small in long chains. In the case of ω0 = 0,  
which is considered the most favorable scenario for 
observing unusual topological properties, we will not 
be able to observe a zero-bias peak in the tunneling 
conductance at all. This observation holds true for the 
model considered in this paper, where the chain has 
two contacts at its edges. In any experiment measuring 
stationary current, at least two external leads are 
required, connected to the “left” and “right” edges of 
the system. Of course, there are more complex multi-
contact configurations, but their analysis is beyond 
the scope of this paper. Real hybrid semiconductor-
superconductor structures, which simulate the Kitaev 
chain, require the consideration of a model Hamiltonian 
that describes a semiconductor nanowire with strong 
spin-orbit interaction, which is coupled due to the 
proximity effect to an underlying superconducting layer. 
In this case, the superconductor can be considered 
as a reservoir with a fixed chemical potential, and 
the “second contact” as the interface between the 
semiconductor and the superconductor. Alternatively, 
instead of edge connections, we could also consider a 
Kitaev chain lying on a substrate, where all chain atoms 
are weakly coupled to corresponding substrate atoms. 
In this case, the “second contact” with the reservoir 
becomes spatially distributed. This problem can be 
solved, but it is different from the one considered in 
this paper. Nevertheless, if the overlap of the localized 

state with the reservoir states is small, then the zero-
bias current peak should also be small. Its magnitude 
in the case of a spatially distributed “second contact” 
will not decay exponentially with chain length, but will 
still be much smaller than what would be expected from 
naive formulas. This may be a possible reason why the 
zero-bias peak is often poorly observed in conventional 
tunneling experiments [14].

We want to emphasize that naively applied general 
formulas for the tunneling current between two contacts 
often lead to misleading results when used for low-
dimensional systems, such as the Kitaev chain [21], 
due to the possible appearance of localized states in 
the contact region.

The lowest-order response (second order in 
the tunneling coupling) of quantum mechanical 
perturbation theory describes the current only at 
the initial moment after the tunneling connection is 

“switched on”. However, the stationary tunneling current 
can only be calculated using the full system of kinetic 
equations, or equivalently, the full system of equations 
for the nonstationary Keldysh-Green’s functions. Only 
in simple systems with a continuous spectrum, where 
rapid electron relaxation to equilibrium is implicitly 
assumed, is the formula based on the equilibrium local 
density of states of the leads guaranteed to be valid.

To clarify this idea, let us consider a tunneling 
contact with a localized state at the edge of one of the 
leads. This localized state creates a sharp peak in the 
local density of states and contributes to the simplest 
formula for tunneling current. Suppose this state is 
empty at the initial moment (i.e., lies above the Fermi 
level). Then, immediately after applying a positive bias 
voltage to the other lead, the current begins to flow 
into this empty localized state. However, after some 
relaxation time, determined by the tunneling rate, this 
state becomes occupied, and from that point onward, 
no more electrons can tunnel into it. The stationary 
tunneling current then vanishes, even though the 
simplest formula still predicts a “zero-bias peak” in 
the tunneling conductance. For this localized state 
to contribute to the stationary current, some inelastic 
processes must be included, which are responsible for 
removing (or adding) electrons from this localized state. 
For a finite system, it is also possible that this localized 
state at one edge has some overlap with the second 
contact. (This corresponds to our case and the case of a 
distributed “grounded contact” in a real system.)

In the usual formula for tunneling current, which 
relies on the local density of states of the contacts, it is 
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implicitly assumed that at any moment, the chemical 
potentials of all contact states are fixed. To maintain 
a constant chemical potential, the system must be 
connected to some reservoir via a contact that allows 
for particle exchange. Thus, when we say that we fix the 
chemical potential of localized states, we are implicitly 
including some inelastic relaxation processes or a direct 
connection to a reservoir for these states.

4. NONSTATIONARY CURRENT

Now, let us attempt to answer the question of what 
the typical time scales are for current or charge transfer 
from one edge of the chain to the other. We will pose 
the problem differently than in [18], where the effect 
of periodic modulation of tunnel barrier transparency 
on zero-bias tunneling conductance was studied. An 
interesting result in that study was the discovery and 
analysis of resonance between the external driving 
frequency and the splitting of Majorana states ω0 . In 
our case, we are interested in the characteristic speeds 
of transient processes. To do this, let us assume that 
the system is initially in equilibrium at t < 0 , and then 
at t = 0 , a voltage is applied to one of the leads. This 
additional voltage induces a nonstationary current, 
which at t→∞ reaches the stationary value (25).

The applied voltage shifts the energy levels in the 
reservoirs by Va, where the index a denotes the reservoir. 
Thus, the reservoir Hamiltonian can now be written as
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The current flowing from the left reservoir into 
the system is given by (for the “right” contact r, all 
formulas can be written similarly):
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Here, the irreducible part takes the form:
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In the frequency representation, these expressions 
correspond to the following formulas:
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where ν εα( )  is the density of states in the reservoir 
a, δ→ +0 . For simplicity, we assume that τα  does 
not depend on p. In the wide-band approximation, 
where we assume that ν ε( )  remains constant for 
ε ω ω , , ,¢ V l r ,  these expressions simplify to:
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As a result, in the frequency representation, 
Equation (29) simplifies to:
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where
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Using Dyson’s equations for retarded and 

advanced Green’s functions, we can show that:
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Substituting these last expressions into (34), we 

obtain:
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We see that the first term in (35) exists only 
if V l ¹ 0  and does not directly depend on the 
properties of the right reservoir r.

This means that this term corresponds to the 
filling of states at the left edge of the chain due to a 
change in its chemical potential.

Consequently, the second term represents the 
current that f lows from one reservoir to another 
through the entire chain.

If we consider only the second term, we obtain:
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Since our goal is to study the propagation of 
perturbations through the chain, we assume that 
at time t = 0 , the voltage changes only at the right 
contact, and we observe the time-dependent current 
at the left contact under the condition V l = 0 . Then, 
by direct calculations, we obtain that:
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As expected, if t→∞, the current approaches its 
stationary value (25):
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If t → +0 , the current at the opposite edge of the 
chain is not observed, illustrating the continuity of 

the current change when passing through t = 0 :
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If now, as in the previous section, we are 
interested in the role of “Majorana states,” we apply 
an additional voltage to the right contact, which is 
greater than the width of the localized states but 
less than the value of the superconducting gap. This 
means that the conditions

n n n Vl r r
r( ) = ( ) = 0, ( ) = 1.ε ε ε-

are satisfied for ε γ γ l r,

The current is defined as
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We consider the case γr, γl  ω0 under the assumption 
that w0 is always small. However, for very symmetric 
tunneling coupling with the leads, we could have 
ω γ γ0

2 2( ) r l- .  This case appears unrealistic, but 
it demonstrates an oscillating current signal at the left 
edge:
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If ω γ γ0 | | r l-  and t > 0,  Equation (38) 
simplifies to:
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Note that the negative sign indicates that the 
current flows from r to l. For significantly different 
tunneling rates, for example, γr  γl, the time 
evolution of the leading contribution to the current 
is determined by the slowest rate:

	 I t
C

el
r

C lt( ) =
2

1 .0
2

4
− −








−ω
γ

γ � (41)

The final formula shows that if γ l ® 0 , the 
current signal at the other end of the chain increases 
very slowly.

5. CONCLUSION

This paper demonstrates that the transport 
properties of a finite-length Kitaev chain can be 
fully investigated using the conventional Green’s 
function technique. For any nonstationary 
problem, this formalism appears much more 
convenient than the language of Majorana 
fermions or other methods, allowing for the exact 
analytical results. Our calculations bridge the 
gap between phenomenological parameters for 
quasiparticles in quasiclassical calculations and the 
microscopic description of quasi-one-dimensional 
superconductors.

It has been shown that the stationary tunneling 
current through a finite chain is always determined 
by the lowest transfer rate among the parameters 
ω γ γ γ γ0

2 / ( ), ,l r l r+ , provided the applied voltage 
is less than the superconducting gap. For arbitrary 
µ <| |<∆ t , the stationary current is always 
exponentially small for long chains. It should be 
noted that for a finite Kitaev chain placed between 
two external thermostat contacts, no significant peak 
can be observed at ω0  in the tunneling conductance. 
Furthermore, in the case of ω0 = 0 , the stationary 
current completely vanishes.

We have also obtained the time-dependent 
behavior of the tunneling current following a sudden 
change in the bias voltage at one of the leads. It was 
shown that the typical timescales of tunneling current 
evolution are primarily determined by the tunneling 
rates γ γl r,  from the left and right edge sites of the 
chain to the corresponding leads. Although the 
results presented here are for an ideal system, we can 
be confident – based on the conclusions of [34, 35]—
that weak disorder does not significantly affect the 
properties of the ideal Kitaev chain. Therefore, only 
strong disorder can completely alter our results.

In conclusion, it is worth noting that when 
considering systems of multiple Kitaev chains, an 
effective description based on Coulomb blockade 
effects is often constructed. However, such an 
effective description is sensitive to charge transfer 
rates, which may be important for modern proposals 
related to signal transmission, quantum information 
exchange, and storage using Kitaev chains.
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APPENDIX ANALYTICAL DESCRIPTION 
OF THE ISOLATED KITAEV CHAIN

In this section, we present the formulas for the 
Green’s functions of the isolated Kitaev chain.

As shown in [20], the exact solution for the Green’s 
functions of the infinite chain can be written as:

Γ
∆
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R
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The complex value of the square root A± −
2 1  

is defined such that it has a branch cut along the 
interval A± −

2 1  and takes positive values when 
A± > 1 .
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	 χ± ± ±− −= 1.2A A � (44)

We assume δ→ +0 . The Green’s function for 
the Hamiltonian (2) can be written in terms of the 
Green’s function of the infinite chain, using Dyson’s 
equation with the perturbation 

?
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If we solve Equation (45) for Γnm
R ( )ω  and take the 

limit U → ∞ , we can find the exact solution for the 
Green’s functions Γnm

R ( )ω :
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The matrix elements of Γnm
R ( )ω  describe the 

Green’s functions of the finite chain, provided the 
indices satisfy the condition 0 < , < 1n m N + . It 
can be directly verified that Γnm

R ( ) = 0ω  if one of 
the arguments n  or m  is positive, while the other 
is negative, giving us direct proof that our procedure 
effectively removes the site n = 0 from the system. 
The same is true for the site n N= 1+ .

We can see that the function Γnm
R ( )ω  may have a 

set of poles at values ω  determined by the equation:

det Γ Γ Γ Γ00
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00
0 1

0, 1
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N
R R

N
Rω ω ω ω−( )+

−
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Since Γnm
R0 ( )ω  has no poles inside the 

superconducting gap, it can be assumed that 
the solutions of this equation correspond to the 
energies of states localized at the chain edges. Direct 
substitution of the Green’s functions (42) allows us to 
find the solution for ω  at arbitrary parameter values.

For the semi-infinite chain, if N → ∞ , the 
situation simplifies significantly. Equation (47) 
simplifies to:

	 det Γ0,0
0 ( ) = 0,R ω( ) � (48)

and it has only one solution in the gap ω = 0.  This 
solution does not arise if | m | > 2t. This pole at ω = 0  
exists in the Green’s function Γnm

R ( )ω  only if both n  
and m  are positive or both are negative, for any set 
of parameters t, ,µ ∆  satisfying the condition

t 2 2 2> ( / 2) ,µ + ∆

the condition that separates the topologically 
nontrivial and trivial phases. This means that the 
system described by the Hamiltonian (2) has two 
states with energy ω = 0 : one to the left and one to 
the right of the defect, which cuts the chain into two 
subsystems.

If we now consider a long finite chain of length Т, 
we can write the equation for localized states as
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where ΓN N
X R
+ +1, 1

( ) ( )ω  is the Green’s function for the 
semi-infinite chain:
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Since we are interested in bound states within the 
gap with energies close to zero, the calculations can 
be simplified using the following fact. For ω® 0 , 
the values of χ  satisfy the condition χ± < 1 . Indeed, 
for ω = 0 , Equation (44) gives
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As a result,
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This means that χ < 1 for t 2 2 2> (( / 2) )µ + ∆
and ω ∆ . Thus, quantities like χN appearing in 
the Green’s functions Γ0N , are small parameters for 
large N. Henceforth, we will refer to such quantities 
as “exponentially small,” implying exponential decay 
with chain length (or number of sites).

Expanding Equation (49) in terms of ω  and 
χ±

N , which we treat as small, as explained above, we 
obtain
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where I  is the identity matrix. The solution ω = 0  
corresponds to the pole of the Green’s function, 

which exists only on the semi-infinite chain segments. 
The other pair of solutions has finite but small 
energies ω ω= ,0±  where

ω
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µ
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Here we see that this solution satisf ies the 
approximations we made, if χ±

+N 1 1 . Considering 

Equation (51), the condition t 2 2 2= (( / 2) )µ + ∆  

separates the two regions with oscillating and non-
oscillating solutions for ω0 . If ω0  crosses zero with 
varying μ, this implies a change in fermion parity, as 
discussed in [36].

The leading term in the expansion of the Green’s 
function Γnm

R ( )ω  near ω ω→ ± 0 , which in quantum 
mechanics would describe the spatial structure of the 
wavefunctions of the two localized states, takes the 
following form:
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Diagonal elements Γnn  show the spatial 

distribution of density in localized states. In the limit 

D =  t, only Γ11  and ΓNN  remain non-zero, since 

Equation (52) gives

χ χ+ −∝ ∝ −n n n
t | | .

/2∆

In the high-symmetry case m = 0 and | D | → t, the 
energy levels are equal:
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As noted earlier (see, for example, [37]), for an 
odd number of sites is equal to zero for any values 
of t and D.
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1. INTRODUCTION

Plasma physics is essential for understanding 
various astrophysical and laboratory phenomena, 
where electron transport significantly influences the 
behavior and evolution of plasma systems. In the 
field of fusion plasma, plasma heating and current 
drive have been primarily examined to maintain the 
conditions necessary for the magnetic confinement 
of plasmas [1]. It has been demonstrated that the 
propagation and damping of radiofrequency waves, 
including ion cyclotron, electron cyclotron, and 
lower-hybrid waves, produce energetic ions and 
electrons through Landau and cyclotron damping, 
which leads to current drive generation in the plasma 
system. Along with such collisionless damping, the 
collisional relaxation of energetic particles is involved 
in the evolution of particle distribution in the 
plasma system. Likewise, collisionless wave-particle 
interactions and collisional relaxation also play a 
crucial role in particle transport in astrophysical 
plasmas. Indeed, turbulence and the associated 
plasma instabilities are ubiquitous in astrophysical 

plasmas, and understanding energy transport through 
such turbulence is a long-standing problem [2–5].

Plasma phenomena and their dynamical evolution 
in space and astrophysical plasmas depend on the 
magnetization, defined as follows:

	
ω πpe

e

e

e

n e m

eB m c

n

BΩ
=

4 /

/
,0

2

0

0

0
µ � (1)

where

ω πpe e e en e m eB m c= 4 / , = /0
2

0Ω

stand for the plasma frequency and electron 
gyrofrequency, respectively, and these quantities 
depend on the plasma density n0  and magnetic 
field B0 . Thus, the phenomena associated with 
plasma physics have been examined across a wide 
range of magnetization factors [6–11]. For instance, 
the characteristics of plasma instabilities in space 
plasma depend on the properties of the medium, 
such as strongly magnetized plasma in the solar 
atmosphere near the Sun (ωpe e/ < 1Ω ) and weakly 
magnetized plasmas in the solar wind propagating 
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toward Earth (ωpe e/ > 1Ω ) [6, 7]. Additionally, a 
wide range of ωpe e/ Ω  can be adopted to model 
the pulsar wind propagation from the strongly 
magnetized magnetosphere of a pulsar to the weakly 
magnetized pulsar wind nebulae propagating toward 
the interstellar medium [8, 9]. Furthermore, rigorous 
theories have been proposed for kinetic turbulence 
and their roles in particle heating through energy 
transfer in ambient astrophysical environments, 
including weakly magnetized media such as 
interplanetary, interstellar, and intracluster media (
ωpe e/ 1Ω  ) [10, 11].

Understanding turbulence and dynamical 
evolution in various astrophysical media is crucial 
for comprehending particle transport across strongly 
magnetized to weakly magnetized plasmas, which is 
essential to examine the nature of plasma distribution 
in various space and astrophysical plasmas. The 
mechanisms behind particle transport in space 
weather have been particularly examined so far. 
Indeed, suprathermal electrons have been observed by 
the Parker Solar Probe in the interplanetary medium; 
these electrons are expected to originate in the solar 
corona and escape into the interplanetary medium 
along open magnetic field lines [12, 13]. While particle 
transport in plasmas has primarily been attributed 
to Coulomb collisions, observational evidence of 
suprathermal electrons highlights the importance 
of collisionless wave-particle interactions. In this 
regard, recent theoretical studies have proposed a 
kinetic model based on the Fokker-Planck equation, 
including wave-particle interactions mediated by 
plasma turbulence [14–23]. For instance, Kim et 
al. [14] highlighted that the persistence of a non-
Maxwellian distribution in the solar wind could be 
exhibited through wave-particle interactions due 
to Langmuir turbulence in the absence of Coulomb 
collisions (see also [15]). Tang et al. [16] incorporated 
Coulomb collisional effects along with wave-particle 
interaction terms into the kinetic model and showed 
that Coulomb collisions predominantly transport core 
electrons following a Maxwellian distribution, whereas 
suprathermal electrons are preferentially accelerated 
through whistler turbulence. Simulation studies using 
the particle-in-cell (PIC) method have also shown the 
formation of suprathermal electrons through whistler 
turbulence [24, 25]. These findings are consistent with 
observational evidence of suprathermal electrons in 
interplanetary space [12, 13].

Despite the considerable progress mentioned 
above, several gaps persist in our understanding, 
particularly regarding how these mechanisms operate 
under different plasma magnetization conditions. 
Notably, the plasma parameters, including 
magnetization, differ between interplanetary space 
and other astrophysical media such as interstellar 
and intracluster media. Consequently, plasma 
phenomena related to particle transport could also 
differ. While simulation studies using kinetic plasma 
simulations have demonstrated possible acceleration 
mechanisms through collisionless shocks and 
turbulence in various astrophysical media [26–31], 
it is essential to understand the transport of such 
accelerated particles in these media to demonstrate 
the persistence of non-Maxwellian distributions.

In this context, this work aims to improve our 
understanding of particle transport theory based 
on the kinetic transport equation and whistler 
turbulence under different plasma magnetization 
conditions relevant to various astrophysical media. 
To achieve this, we adopt a kinetic transport model 
that incorporates the spectral evolution influenced 
by both Coulomb collisions and wave-particle 
interactions, as proposed in previous works [16–
19]. By examining how suprathermal electrons 
are transported through whistler turbulence under 
varying degrees of plasma magnetization, we extend 
the applicability of the kinetic transport model to 
various astrophysical environments. This work reveals 
distinct behaviors in diffusion timescales for weakly 
and strongly magnetized plasmas, with significant 
implications for electron transport dynamics. 
Additionally, we identify minimum conditions for 
resonant scattering dominated by wave-particle 
interactions over Coulomb collisions, highlighting 
dependencies on Coulomb collision effects and the 
power-law slope of the whistler turbulence spectrum. 
This comprehensive approach allows us to explore 
diffusion timescales in both velocity and pitch angle 
space, providing new insights into the underlying 
processes governing electron transport in plasmas.

2. DESCRIPTION OF THE KINETIC MODEL

The evolution of the electron velocity distribution 
function in astrophysical environments has been 
examined using the kinetic transport equation [16–
19]. The electromagnetic interaction in a typical 
astrophysical environment includes the electric force 
and the Lorentz force, which are described as follows:
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Here, e  and me  are the electric charge and the 
mass of electrons, and E  and B  denote the electric 
and magnetic fields, respectively. a rr ( )  is the radial 
component of the acceleration due to the electric 
force, whereas aL  is the non-radial component due 
to the Lorentz force. Using the acceleration a  due to 
the external forces along with the terms responsible 
for Coulomb collisions and wave-particle interactions 
of kinetic turbulence, the kinetic transport equation 
can be described as follows:
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Here, the electron velocity distribution function is 
expressed in the position ( r ), velocity ( v ) and time 
(t) domains, and δ δf t
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/( )  and δ δf t

wp
/( )  include the 

effects of Coulomb collisions and kinetic turbulence, 
respectively. In the coordinates of the radial distance 
r , the velocity v , and the parameter including the 
pitch angle θ  between the velocity and magnetic 
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The Coulomb collisions with Maxwellian 
backgrounds of electrons and protons have been 
employed in the solar wind environments [16]. The 
term associated with the Coulomb collisions [32] can 
be expressed as:
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where m mp e/  is the proton-to-electron mass ratio 
and v eth,  and v pth,  are the thermal velocities of 
the background Maxwellian electrons and protons. 
erf( )x  and G x( )  are the error function and the 
Chandrasekhar function, respectively. The collision 
frequencies corresponding to the collisions with the 
Maxwellian background electrons ( cv e, ) and protons 
( cv p, ) are given by:

	 c
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where n0  and lnΛ  are the plasma density and the 
Coulomb logarithm.

To model the terms for wave-particle interaction, 
we consider the resonant scattering of electrons by 
right-handed polarized whistler waves as a main 
wave-particle interaction mechanism in the turbulent 
plasma system. Considering the cyclotron resonance 
of electrons with waves propagating parallel to the 
guiding magnetic field B0 , the resonant particles 
satisfy the following condition:

	 ω µr ek v k n( ) = ,


+ Ω � (8)

where ωr  and k  are the oscillatory wave 
frequency and the wavenumber, respectively, and 
 e ee B m c=| | /0  is the electron gyrofrequency. The 
integer n ¹ 0  must be finite for cyclotron resonance 
through the parallel waves. In the whistler regime (
ωr e< Ω ), the magnetic power spectrum [18, 22] can 
be described as follows:
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where A  is the normalization constant, and the 
spectral index s  is expected not to exceed 2 [22]. The 
evolution of the electron distribution function due to 
wave-particle interaction through whistler turbulence 
[16–19] can be expressed as

δ
δ µ µµµ µ
f
t

D
f

m
D

f
vwp e

v







∂
∂

∂
∂
+

∂
∂









 +=

1

	 +
∂
∂

∂
∂
+

∂
∂
























1 1 1
2

2
2v v

v
m

D
f

m
D

f
ve

v
e

vv∝ ∝ 
. � (10)

The diffusion tensor for nonrelativistic electrons 
is expressed as:
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Here, we used dimensionless parameters, 
b = /v c  and a pe e= /2 2ω Ω  with the plasma 

frequency ω πpe en e m= 4 /0
2 . To consider both 

weakly magnetized plasmas such as interplanetary, 
interstellar, and intracluster media ( a  1 ) and 
strongly magnetized plasmas near the stellar 
magnetosphere ( a < 1 ), we examine the properties 
of wave-particle interactions mediated by whistler 
turbulence over a wide range of parameter a .

In the kinetic model described by Equation 
(4), the detailed evolution mediated by Coulomb 
collisions and wave-particle interactions depends 
on the initial electron distribution. The electron 
distribution of thermal plasma is typically modeled 
as Maxwellian, given by:
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While the Maxwellian distribution is suitable for 
describing the medium in the absence of nonlinear 
processes such as plasma and magnetohydrodynamic 
(MHD) waves, shocks, and turbulence, it has been 
demonstrated that plasma processes associated 
with such phenomena can accelerate particles. This 
particle energization results in a distribution that 
deviates from Maxwellian, known as the kappa 
distribution [33–35]. The electron kappa distribution 
is defined as:
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where Γ( )x  is the Gamma function and 
the parameter κ  determines the slope of the 
suprathermal distribution. For v v e th, , the kappa 
distribution follows a power-law form,

f v veκ
κ

,
2( 1)( ) .∝ − +

A smaller value of κ  results in a flatter particle 
distribution, whereas a larger value of κ  makes 
the kappa distribution closer to Maxwellian. In the 
subsequent section, we explore how the initial slope 
of the electron distribution function inf luences 
electron transport through whistler turbulence, taking 
into account the dependence on magnetization.

It is noteworthy that the nature of plasma 
turbulence and wave-particle interaction mediated 
by such turbulence could be substantially different 
from the interpretation obtained through linear 
theory [36, 37]. Specifically, the effects of nonlinear 
processes on energy dissipation by whistler waves 
have been examined through PIC simulations 
[38, 39]. According to the results of these numerical 
simulations, the significance of nonlinear damping 
of whistler waves depends on the fluctuation energy 
of the turbulence and the magnetization of the 
plasma system [38]. In weakly magnetized plasma, 
linear damping dominates over nonlinear damping, 
indicating that the theory developed in the linear 
regime could be applicable for examining wave-
particle interaction through whistler turbulence. In 
strongly magnetized plasma, when the turbulent 
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fluctuation ( δB ) is sufficiently weak (i.e., δB B£ 0
), linear theory could be applicable. In this regard, 
the kinetic model in this work could be suitable for 
weak turbulence systems in space and astrophysical 
environments. For systems with strong turbulence (
δB B³ 0 ), nonlinear processes should be taken into 
account in the model, which is beyond the scope of 
this paper.

3. ELECTRON TRANSPORT THROUGH 
WAVE-PARTICLE INTERACTION AND ITS 

DEPENDENCE ON THE MAGNETIZATION 
OF THE PLASMA SYSTEM

Comparison of τ τµv vv/  (upper panels) and 
τ τµµ / vv  (lower panels) across parameter space. 
The plots depict variations with respect to electron 
velocity b  ranging from 10 3-  to 10 1- , and 
magnetization parameter a  spanning from 10 4-  to 
104 . Larger values of a  indicate weakly magnetized 
plasmas, whereas smaller values denote strongly 
magnetized plasma

Firstly, we examine the acceleration timescales 
through whistler turbulence and their dependence on 
the magnetic field strength using the three diffusion 
coefficients. The acceleration timescales can be 
derived as follows:
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where γe  is the Lorentz factor, which is approximately 
1 for nonrelativistic particles. To assess the relative 
importance of pitch angle scattering, the following 
ratios were calculated:
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In a strongly magnetized plasma ( a ® 0 ), the 
ratios simplify to:

	
τ
τ

µ
τ
τ

µµ µµv

vv vv
→ →− −1 2

, , � (21)

indicating that the relative importance of diffusion 
in pitch angle space is independent of the particle 
velocity b  and magnetic field strength parametrized 
by a  once the particles satisfy the resonant condition. 
Given that the pitch angle parameter satisf ies 
| |< 1∝ , the following relations hold true in strongly 
magnetized plasmas:

	 τ τ τµ µµvv v< < . � (22)

In weakly magnetized plasmas ( a  1), however, 
the ratios of these characteristic timescales may vary 
depending on the particle velocity b and magnetic 
field strength a.

Fig. 1 shows τ τµv vv/  and τ τµµ / vv  as functions 
of electron velocity b and magnetization a. A few 
points were noted: (1) In weakly magnetized plasmas 
( a  1), diffusion processes in the pitch angle space 
become prominent, whereas a saturated behavior 
is observed for particle acceleration in sufficiently 
strong magnetic fields ( a  1 ). (2) The dependence 
on magnetic field strength is more pronounced for 
accelerating electrons with higher b. Particularly, 
panels (a) and (d) show that τ τµv vv/  and τ τµµ / vv  
exhibit similar asymptotic behaviors for small b 
and large pitch angles | m | > 0.5, irrespective of A. 
Conversely, panels (b), (c), (e), and (f) illustrate 
that the effects of magnetic field strength on pitch 
angle scattering are more significant for electrons 
with larger b. (3) In strongly magnetized plasmas 
( a < 1), τµv  and τµµ  increase as the pitch angle | m | 
decreases, whereas the opposite behavior is observed 
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in weakly magnetized plasmas ( a > 1). This indicates 
that wave-particle interactions are influenced by the 
magnetic field strength of the background medium.

Next, we examine the conditions under which 
the acceleration timescales are dominated by wave-
particle interactions over Coulomb collisions. 
Assuming fixed background temperatures (constant 
v eth,  and v pth, ), these regimes depend on the 
magnetic field strength and the initial distribution 
of suprathermal electrons. Considering the diagonal 
terms in δ δf t

cc
/( )  and δ δf t

wp
/( )  for velocity space 

diffusion, we have the following expressions:
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For v v e th, , the Chandrasekhar function can 

be approximated as G v v v ve e( / ) ( / ) / 2, ,
2

th th≈ −  

and Equation (23) simplifies to:
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Fig. 1. Comparison of tμv/tvv (upper panels) and tμm/tvv (lower panels) across parameter space. The plots depict variations
with respect to electron velocity b ranging from 10−3 to 10−1, and magnetization parameter a spanning from 10−4 to 104.
Larger values of a indicate weakly magnetized plasmas, whereas smaller values denote strongly magnetized plasma
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Assuming the suprathermal electrons follow a 
kappa distribution function, the distribution of high-
energy electrons with v v e th,  approximates to a 
power-law tail, f v q∝ − . The derivatives of f  are 
expressed as follows:
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Using Equations (26) and (27), Equations (24) 
and (25) can be rewritten as
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Electrons gain energy when

δ δ δ δf t f t
cc wp( ) + ( ) ≥ 0.

In this case, we obtain the following inequality for 
D vv :
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Using the inequality (30), we examine how the 
slope of the initial distribution of suprathermal 
electrons could influence the relative importance 
between Coulomb collisions and wave-particle 
interactions. For nonrelativistic electrons where 
v ceth, / 1 b  (or the Lorentz factor γe » 1 ), the 
acceleration timescale ( )tvv  satisfies
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To explore the dependence on the slope of the 
suprathermal electron distribution, we estimate 
the maximum acceleration timescales for the two 
different regimes as follows:
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Fig. 2. a – ​Maximum acceleration timescale, tmv,max, plotted 
against b for four different q values. b – tmv,max shown for three 
different b values across various q values. The electron thermal 
velocity is set as vth,e/c = 10–3. Gray lines indicate tmv,max/c–1

v,e = 1
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Because electron velocities satisfy v v eth, 1  and 
v v pth, 1 , the maximum acceleration timescale 
is much larger when q → ∞ . This indicates the 
evolution of the electron distribution function with 
a larger q more effectively depends on Coulomb 
collisions, and such a distribution is likely to resemble 
a Maxwellian. It is understandable that wave-particle 
interactions with sufficiently large q  are inefficient 
due to the absence of a sufficient number of resonant 
particles. Indeed, acceleration timescales become 
longer regardless of electron velocity for larger 
q (panel a of Fig. 2), and these effects are more 
pronounced for suprathermal electrons with higher b.

While the analysis in this section has focused 
on the diagonal terms of the diffusion tensor, it 
has been demonstrated that the off-diagonal terms, 
particularly those involving diffusion in pitch angle 
scattering, are significant in weakly magnetized 
plasmas. Using equations (19) and (20), we can 
roughly estimate the maximum values of τµv  and 
τµµ  for wave-particle interactions. Applying the 
inequality (31) to Equations (19) and (20), we obtain
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Fig. 3 shows the behavior of the two characteristic 
timescales τµv  and τµµ  across a wide range of 
slope parameters q  and electron velocities b . In 
weakly magnetized plasmas ( = 10 )4a , shown in 
the left panels of Fig. 3, wave-particle interactions 
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Fig. 3. tmv,max and tmm,max for weakly (left panels) and strongly (right panels) magnetized plasmas. Here, the electron thermal velocity 
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v,e = 1 
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magnetic field strength decreases (or,  e
-1  increases), 

we interpret that these effects could be minor when 
considering regimes dominated by wave-particle 
interactions ( )1

,
1 e v ec- -

 . Additionally, a steeper 
initial slope of the suprathermal electron distribution 
q  leads to a larger minimum velocity, indicating that 
transport of suprathermal electrons is less likely when 
q  is sufficiently large.

For low-frequency whistler waves ( )ωr e Ω , 
the wavenumber k



 and wavelength λ


 for scattering 
particles are derived as follows:
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From the inequality (35), we obtain the maximum 
wavenumber k

,max  and the minimum wavelength 
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,min  for wave-particle interactions:
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can effectively transport electrons with softer 
distribution slopes due to enhanced diffusion in 
pitch angle space. This enhancement occurs even 
in scenarios where tvv v ec> ,

1- , as τ τµµ µ< ,
1

v v ec

-  
can be satisfied. Conversely, in strongly magnetized 
plasmas ( = 10 )4a - , shown in the right panels of Fig. 
3, diffusion in pitch angle space does not significantly 
enhance efficient transport through wave-particle 
interactions when collisional effects dominate 
( > ),

1tvv v ec- , as τ τ τµ µµvv v< < .

4. CYCLOTRON RESONANCE 
OF SUPRATHERMAL ELECTRONS 

AND NATURE OF WHISTLER WAVES

In this section, we derive the conditions for the 
minimum velocity of resonant electrons and the 
characteristics of whistler waves corresponding to 
wave-particle interaction. The criteria described in this 
section encompass the characteristics of the turbulent 
power spectrum, such as its power-law slope, and 
the effects of Coulomb collisions, as depicted in the 
schematic Fig. (see Fig. 4). Assuming that the energy 
transferred through whistler turbulence remains 
constant across spectra with arbitrary slopes, the 
maximum wavenumber of a flatter spectrum could be 
larger than that of a steeper spectrum. Additionally, 
Coulomb collision effects may suppress energy transport 
to smaller scales, thereby allowing for a larger maximum 
wavenumber with stronger Coulomb collisional effects. 
Such wave characteristics could inf luence particle 
transport through turbulence by determining the 
minimum momentum of electrons required for wave-
particle interactions.

Considering only the electron collision term, the 
minimum velocity criterion can be derived using the 
inequality (31) as follows:
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Here, for simplicity, we consider only electron-
electron collisions since the collisional timescales 
satisfy c cv e v p,

1
,
1- -

 . Clearly, more electrons with 
lower velocities can be energized through wave-
particle interactions when collisional timescales are 
longer. While the minimum velocity increases as the 

PB(k)

(b)

(a)

PB(k)

km2 km1
k

(s1 < s2)

kcc kwp

k

k–s2

k–s1

Coulomb collisions

Fig. 4. a – ​Schematic diagrams illustrating whistler turbulence 
spectra with two different power-law slopes (s1, s2). Assuming 
constant energy transport through whistler turbulence, the 
maximum wavenumber for a steeper (s2) spectrum may be 
smaller than that for a flatter spectrum (s1) (km2  <  km1). b  – ​
Schematic diagrams demonstrating the influence of Coulomb 
collisions on turbulent energy transport. Coulomb collisions 
hinder energy transfer to smaller scales, potentially resulting in 
a smaller maximum wavenumber (kcc) compared to scenarios 
without Coulomb collisions (kwp)
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We also consider the minimum collisional length 
defined as
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In the criterion (37), the maximum wavenumber 
decreases as the initial slope of the electron 
distribution function (q) increases. This indicates that 
the wavenumber range of wave-particle interactions 
could be reduced when there are fewer suprathermal 
electrons (i.e., the spectrum is steeper with larger q).

According to the conditions for resonant scattering 
and efficient wave-particle interactions, we explore 
the minimum electron velocity and wave properties 
relevant to wave-particle interactions across varying 
power-law slopes of turbulent spectra. The maximum 
wavenumber k

,max  and minimum wavelength 
λ
,min , derived using the inequality (31) that includes 

Coulomb collisions and wave-particle interactions, 
align with the physical insights demonstrated in 
Fig.  4. Specifically, k

,max  decreases and λ
,min  

increases as the power-law slope of the turbulent 
spectra increases. This suggests that turbulence with 
a flatter spectrum is more efficient at transporting 
particles. Additionally, as shown by the solid lines 
in Fig. 5, relatively strong Coulomb collisions can 
suppress particle transport by reducing k

,max . In 
contrast, weakly collisional plasmas (represented 
by dashed lines in Fig. 5) exhibit greater k

,max  

Fig. 5. a — Minimum electron velocity, b — minimum collisional mean free path, c — maximum wavenumber, and d — minimum 
wavelength as functions of pitch angle μ. Solid lines correspond to c−1

v,e/We
−1 = 106, while dashed lines correspond to c−1

v,e/We
−1 = 107. 

The results are shown for q = 5 as an example
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values. It is important to note that this analysis 
generally applies to weakly collisional plasmas where 
λ λ� �,min mfp,min .

5. SUMMARY AND DISCUSSION

In this work, we demonstrate how wave-particle 
interactions through whistler turbulence differ 
between weakly and strongly magnetized plasmas. 
In strongly magnetized plasmas (characterized 
by a pe e= / 12 2ω Ω  ), the diffusion timescales at 
large pitch angles (| m | > 0.5) exhibit saturation for 
sufficiently small values of a, indicating that strong 
magnetic fields effectively regulate particle diffusion 
in pitch angle space. In weakly magnetized plasmas 
(where a  1 ), on the other hand, large-angle 
scattering can be enhanced due to the increased 
magnetization factor a. This enhancement suggests 
that electron transport via wave-particle interactions 
may dominate over Coulomb collisions, facilitated by 
enhanced diffusion in pitch angle space. Additionally, 
incorporating Coulomb collision effects, we provide 
conditions for electron transport through whistler 
turbulence, including the minimum electron velocity 
and wavelength required for resonant scattering. 
These findings are broadly applicable to weakly 
collisional astrophysical plasmas, offering insights 
into the range of resonant velocities and maximum 
wavenumbers for wave-particle interactions across a 
wide range of magnetic field strengths parametrized 
by a. In such environments, weakly magnetized 
mediums benefit from efficient transport via wave-
particle interactions, particularly when suprathermal 
particles are present.

We further comment on the signif icance of 
investigating particle transport through plasma 
turbulence in space and astrophysical media. The 
generation of suprathermal particles is feasible 
through collisionless shocks or plasma turbulence 
in various astrophysical environments, with multi-
wavelength emissions serving as observational 
evidence of particle acceleration. While studies 
on electron transport via whistler turbulence have 
predominantly focused on non-Maxwellian electron 
distributions in solar wind environments, similar 
investigations in diverse astrophysical contexts are 
warranted. For example, research has shown that 
velocity anisotropy in interstellar and intracluster 
media can induce whistler waves [27, 40, 41], 
potentially maintaining non-Maxwellian electron 
distributions within localized regions experiencing 

whistler turbulence. Additionally, it has been shown 
that suprathermal electrons can be generated by 
various plasma instabilities in astrophysical media, 
including whistler, firehose, mirror, and cyclotron 
instabilities. In particular, current drive exhibited in 
localized areas, such as the upstream and downstream 
regions of collisionless shocks, could trigger plasma 
instabilities that significantly amplify the magnetic 
field and generate suprathermal particles through 
waves satisfying cyclotron resonance conditions 
[26–28, 40–43]. The characteristics of these plasma 
instabilities and their acceleration efficiency depend 
on the properties of collisionless shocks, including 
the shock Mach number, plasma magnetization, 
and the geometry of the background magnetic field 
[27, 40]. Moreover, Lower-Hybrid waves could be 
induced by diamagnetic currents in inhomogeneous 
plasma systems, which typically propagate in space 
and astrophysical plasmas, including those with 
compressible turbulence. The roles of particle 
acceleration or heating through Lower-Hybrid waves 
have also been proposed [44, 45]. In this context, it is 
necessary to conduct further investigations, including 
the theory of particle transport through various 
plasma instabilities triggered in astrophysical media, 
corresponding numerical simulations to support the 
theory, and complementary observations representing 
particle acceleration and heating.
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1. INTRODUCTION

Alongside the widespread use of liquid crystals 
(LCs) in information display technologies, there 
has been increasing interest in utilizing LCs 
for various photonic devices. In particular, LC 
materials doped with laser dyes can be employed 
both for studying the photonic properties of LCs 
[1, 2] and as an active medium for microlaser 
systems [3, 4, 5, 6, 7]. Among these systems, 
microlasers operating in the waveguide light 
generation mode hold a special place [8, 9, 10, 11, 
12]. However, despite the many advantages of the 
waveguide generation mode, this approach also 
has certain drawbacks. For example, controlling 
the LC layer to create spatially periodic refractive 
index modulation and, consequently, distributed 
feedback, requires control electrodes that confine 
the LC layer. In LC devices, transparent electrodes 
based on indium tin oxide (ITO) are widely used. 
In this case, an inevitable problem arises due to 
the need to minimize light energy losses in the 
electrodes during waveguide mode propagation.

In [13], numerical FDTD modeling demonstrated 
that light propagation in the waveguide mode within 
oriented LC layers confined by transparent ITO 
electrodes is characterized by significant resonant 
losses. These losses occur in specific spectral ranges 
due to phase-synchronous energy transfer from 
the liquid crystal layer to the thin electrode layers. 
The present study aims to experimentally observe 
the resonant losses predicted in [13] by exciting 
luminescence in the LC layer and recording the 
luminescence spectrum at the output of the liquid 
crystal waveguide formed by the LC layer and the 
confining layers, including ITO. The study also 
investigates the possibility of reducing these losses 
by introducing alignment layers with a low refractive 
index between the ITO electrodes and the LC layer, 
as recommended in [13].

2. EXPERIMENTAL SAMPLES

The experimental scheme of the liquid crystal 
(LC) cell with ITO electrodes is shown in Fig. 1. 
The cell consists of two glass substrates 1, 2, with 
transparent ITO electrodes 3, 4 at their inner sides. 
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We used industrial glass for display technologies 
with a measured ITO electrode thickness of 
150  ±  10  nm. To achieve planar alignment of 
the nematic LC (E7, Merck), thin polymer 
films 5, 6 were applied to the ITO surfaces and 
mechanically rubbed with a soft cloth along the 
z-axis, determining the easy axis direction and, 
consequently, the optical axis direction in the LC 
layer. Two types of polymers were used for the 
alignment films: (a) polyimide (PI) with a refractive 
index of 1.65 (AD9103 lacquer, NPO Plastik) 
and (b) f luorinated polymer with a refractive 
index of 1.42 (copolymer of tetrafluoroethylene 
and vinylidene f luoride, F42-V). The LC layer 
thickness, alignment film type, and presence of 
ITO electrodes varied depending on the sample 
number (see table).

As seen from the table, Sample 1 does not 
contain ITO electrodes. This LC cell was used as 
a reference sample to visualize spectral changes 
in the emitted light due to the presence of ITO 
electrodes.

The choice of the liquid crystal E7 is due to the 
extensive study of this material and the availability 
of many of its physical parameters. For example, 
the spectral dependencies of the refractive index, 
crucial for our studies, are well known across a wide 

spectral range [14], allowing us to build a realistic 
model of resonant losses in the E7 layer between 
ITO electrodes in [13]. To impart luminescent 
properties to the LC layer, we used the well-
known laser dye DCM (4-(Dicyanomethylene)-
2-methyl‑6-(4-dimethylaminostyryl)-4H-pyran, 
Sigma Aldrich, 0.6 wt.%). This dye is characterized 
by intense luminescence in the 570–650 nm 
wavelength range and is widely used to achieve 
lasing effects in various LC systems.

The luminescence excitation and registration 
scheme is shown in Fig. 2. Luminescence excitation 
in the LC layer was performed using radiation 1 from 
a neodymium laser operating in Q-switched mode 
at a wavelength of λ=532 nm with a pulse duration 
of 10 ns. The pulse energy was approximately 
80 μJ. The laser radiation was linearly polarized 
along the direction z  (along the LC director), 
ensuring maximum luminescence efficiency [11]. 
The laser beam was focused on the LC layer in cell 
3 by cylindrical lens 2 into a narrow stripe with a 
width of dz = 0.1  mm and a length of dx = 3 mm 
along the direction x  of waveguide luminescence 
propagation 5. The position x0  of the focused area 
center, measured from the LC cell end, varied from 
1.5 to 2.5 mm.

Luminescence from the LC layer end face was 
recorded using a fiber optic spectrometer Avantes 
Avaspec 2048. To exclude the registration of light 
propagating into the substrates, the ends of the 
latter were coated with an opaque (black) dye 
layer, and a mask with a slit was used. To register 
polarization spectra, a polarizer 4 was placed in 

С. П. Палто, Д. О. Рыбаков, А. Р. Гейвандов, И. В. Касьянова ЖЭТФ, том 167, вып. 1, 2025

1

2

3

4

5

6

7

x
y

z

Рис. 1. Схематическое изображение слоистой структуры

ЖК-ячейки. 1, 2 � стеклянные подложки; 3, 4 � слои

ITO-электродов; 5, 6 � полимерные ориентирующие слои,

натертые в направлении z; 7 � слой ЖК (E7) с красителем

DCM (оси цилиндров указывают направление директора

ЖК)

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ

Схема экспериментальной ЖК-ячейки с ITO-
электродами показана на рис. 1. Ячейка состоит
из двух стеклянных подложек 1, 2, на внутрен-
ние стороны которых нанесены прозрачные ITO-
электроды 3, 4. Нами использованы промышленные
стекла для дисплейных технологий с измеренной на-
ми толщиной ITO-электродов 150± 10 нм. Для пла-
нарной ориентации нематического ЖК (E7, Merck)
на поверхность ITO наносились тонкие полимерные
пленки 5, 6, которые механически натирались мяг-
кой тканью вдоль оси z, определяющей направле-
ние легкой оси и соответственно направление опти-
ческой оси в слое ЖК. Для тонких ориентирующих
пленок мы использовали два типа полимеров: а) по-
лиимид (PI) с показателем преломления 1.65 (лак
АД9103, НПО Пластик); б) фторированный поли-
мер с показателем преломления 1.42 (сополимер тет-
рафторэтилена и винилиденфторида Ф42-В). Тол-
щина жидкокристаллического слоя, тип ориентиру-
ющей пленки и наличие ITO-электродов варьирова-
лись в зависимости от номера образца (см. таблицу).

Как видно из таблицы, образец №1 не содер-
жит ITO-электродов. Эта ЖК-ячейка использова-

z

x

3

4

5

Рис. 2. Схема возбуждения люминесценции в слое ЖК,

1 � лазерный пучок (λ = 532.8 нм, τ = 10 нс);

2 � цилиндрическая линза (фокусное расстояние 100 мм,

характерные размеры области фокусировки δz = 0.1 мм;

δx = 3 мм); 3 � жидкокристаллическая ячейка; 4 � на-

бор оптических фильтров и поляризатор; 5 � излучение,

регистрируемое оптоволоконным спектрометром

лась нами в качестве референсного образца для ви-
зуализации в оптических спектрах излучения изме-
нений, связанных с наличием ITO-электродов.

Выбор жидкого кристалла E7 обусловлен вы-
сокой степенью изученности данного материала
и известностью многочисленных физических па-
раметров. Например, спектральные зависимости
показателя преломления, которые очень важны
для наших исследований, известны в широком
спектральном диапазоне [14], что позволило нам
построить реалистичную модель резонансных
потерь в слое E7 между ITO-электродами в
работе [13]. Для придания слою ЖК люминесциру-
ющих свойств использовался известный лазерный
краситель DCM (4-(Dicyanomethylene)-2-methyl-
6-(4-dimethylaminostyryl)-4H-pyran, Sigma Aldrich,
0.6 вес.%). Данный краситель характеризуется ин-
тенсивной люминесценцией в диапазоне длин волн
570–650 нм и широко используется для получения
лазерного эффекта в том числе и в различных
ЖК-системах.

Схема возбуждения и регистрации люминесцен-
ции показана на рис. 2. Возбуждение люминесцен-
ции в слое ЖК осуществлялось с использованием
излучения 1 от неодимового лазера, работающего в
режиме модулированной добротности на длине вол-
ны λ = 532.8 нм при длительности импульса 10 нс.
Энергия импульса составляла примерно 80 мкДж.
Лазерное излучение было линейно поляризованным
в направлении z (вдоль директора ЖК), что обеспе-
чивает максимальную эффективность люминесцен-
ции [11]. Лазерный пучок фокусировался на слой
ЖК в ячейке 3 цилиндрической линзой 2 в уз-
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Рис. 1. Схематическое изображение слоистой структуры

ЖК-ячейки. 1, 2 � стеклянные подложки; 3, 4 � слои

ITO-электродов; 5, 6 � полимерные ориентирующие слои,

натертые в направлении z; 7 � слой ЖК (E7) с красителем

DCM (оси цилиндров указывают направление директора

ЖК)
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Рис. 2. Схема возбуждения люминесценции в слое ЖК,
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0.6 вес.%). Данный краситель характеризуется ин-
тенсивной люминесценцией в диапазоне длин волн
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ЖК-системах.
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ции в слое ЖК осуществлялось с использованием
излучения 1 от неодимового лазера, работающего в
режиме модулированной добротности на длине вол-
ны λ = 532.8 нм при длительности импульса 10 нс.
Энергия импульса составляла примерно 80 мкДж.
Лазерное излучение было линейно поляризованным
в направлении z (вдоль директора ЖК), что обеспе-
чивает максимальную эффективность люминесцен-
ции [11]. Лазерный пучок фокусировался на слой
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Fig. 2. Scheme of luminescence excitation in the LC layer.
1 – ​laser beam (λ = 532 nm, τ = 10 ns); 2 – ​cylindrical lens 
(focal length f = 100 mm, characteristic focusing area dimensions 
dz = 0.1 mm; dx = 3 mm); 3 – ​liquid crystal cell; 4 – ​set of 
optical filters and polarizer; 5 – ​radiation registered by a fiber 
optic spectrometer.

Fig. 1. Schematic diagram of the layered structure of the LC cell. 
1, 2 – ​glass substrates; 3, 4 – ​ITO electrode layers; 5, 6 – ​polymer 
alignment layers rubbed in the direction z; 7 – ​LC layer (E7) 
with DCM dye (cylinder axes indicate the LC director direction).
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front of the fiber optic cable lens, allowing the 
recording of TE-polarized spectra (electric field 
oscillations along the z  axis and LC director, see 
Fig. 1) and TM-polarized spectra (electric field 
oscillations in the xy  plane). Additionally, glass 
optical filters were used to attenuate both scattered 
laser radiation and luminescence when necessary, 
installed alongside the polarizer in front of the fiber 
optic cable input lens of the spectrometer.

3. DISCUSSION OF RESULTS

Fig. 3 shows the spectra of unpolarized 
luminescence for the reference sample 1 (see table) 
without ITO electrodes (curve 1) and sample 2 
(curve 2), obtained under identical laser excitation 
pulse energies (approximately 80 μJ). It is worth 
noting that the luminescence intensity here and 
below is presented on a logarithmic scale. As 
seen, the luminescence intensity for sample  2 
with ITO  electrodes is significantly lower than 
that recorded for the reference sample 1. In the 
spectrum (curve 2), a characteristic dip at the 
wavelength of 588 nm is observed, which is absent 
in the sample without ITO. When the spectrum 
of sample 2 is divided by the spectrum of sample 
1, the spectral dependence of the relative losses 
I I2 1/  in sample 2 compared to sample 1 is 
obtained (see the inset in Fig. 3).

It is evident that the relative losses associated 
with the presence of ITO electrodes are 
characterized by a spectral band with a maximum 
absorption at the wavelength of 592 nm. The 
luminescence intensity at this wavelength for 
sample 2 is approximately 8 times lower than that 
for sample 1. There is also an increase in losses at 
wavelengths longer than 625 nm. Unfortunately, it 
is challenging to register this longer-wavelength 
band accurately across the entire range due to the 

very low luminescence intensity at wavelengths 
above 650 nm.

According to the numerical calculations in 
[13] for a planarly-aligned liquid crystal layer E7 
confined by ITO electrodes with a thickness of 
170 nm, two resonance bands exist in the spectral 
range of 550–900 nm, with maximum losses at 
wavelengths of волн λ1 = 570  nm and λ2 = 705  nm 
for TE- and TM-polarized light, respectively. The 
spectral position of these losses does not depend on 
the thickness of the LC layer. However, as shown 
in [13], changes in the ITO layer thickness and 

Table. Analyzed samples and their parameters

Sample No. LC layer thickness, μm Sample type Alignment layer thickness, nm ITO presence

1 6.7 ± 0.2 PI 20 ± 10 No

2 6.8 ± 0.2 PI 20 ± 10 Yes

3 2.4 ± 0.2 PI 20 ± 10 Yes

4 12 ± 0.2 PI 20 ± 10 Yes

5 6.3 ± 0.2 Ф42-В 350 ± 10 Yes

Fig. 3. Luminescence spectra at the output of the LC cell (see 
Fig. 2) after light propagation in the LC layer in the waveguide 
mode. The pump area length determining the propagation 
distance is dx = 3 mm, and the distance from the pump center to 
the LC cell edge is x0 = 1.5 mm. Curve 1 – ​spectrum of sample 1 
(no ITO electrodes); curve 2 – ​spectrum of sample 2 (with ITO 
electrodes, thickness 150 nm). The inset shows the ratio of the 
spectrum of sample 2 to that of sample 1.
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Таблица. Исследованные образцы и их параметры

№ Толщина слоя Тип Толщина Наличие

образца ЖК, мкм образца ориентирующей ITO

пленки, нм

1 6.7± 0.2 PI 20± 10 Нет

2 6.8± 0.2 PI 20± 10 Да

3 2.4± 0.2 PI 20± 10 Да

4 12± 0.2 PI 20± 10 Да

5 6.3± 0.2 Ф42-В 350± 20 Да

кую полоску шириной δz = 0.1 мм и протяженно-
стью δx = 3 мм в направлении x волноводного рас-
пространения люминесценции 5. Положение x0 цен-
тра сфокусированной области, измеряемое от торца
ЖК-ячейки, варьировалось от 1.5 до 2.5 мм.

Люминесценция с торца ЖК-слоя регистри-
ровалась оптоволоконным спектрометром Avantes
Avaspec 2048. Для исключения регистрации излу-
чения, вытекающего в подложки, торцы последних
покрывались слоем светонепроницаемого (черного)
красителя и использовалась маска со щелью. Для
регистрации поляризационных спектров перед
линзой оптоволоконного кабеля спектрометра
устанавливался поляризатор 4, что позволяло реги-
стрировать спектры TE- (направление колебаний
электрического вектора вдоль оси z и директора
ЖК (рис. 1) и TM-поляризованного излучения
(направление колебаний электрического вектора
в плоскости xy). Кроме того, для ослабления как
рассеянного лазерного излучения, так и люминес-
ценции, в случае необходимости использовались
стеклянные оптические фильтры, которые, как
и поляризатор, устанавливались перед входной
линзой оптоволоконного кабеля спектрометра.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 3 показаны спектры неполяризован-
ной люминесценции для референсного образца №1
(см. таблицу) без ITO-электродов (кривая 1 ) и об-
разца №2 (кривая 2 ), полученные при одинако-
вых энергиях (около 80 мкДж) импульса лазер-
ного возбуждения. Обращаем внимание, что здесь
и ниже интенсивность люминесценции показана в
логарифмическом масштабе. Как видно, интенсив-
ность люминесценции в случае образца №2 с ITO-
электродами существенно ниже интенсивности лю-
минесценции, зарегистрированной для референсно-
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Рис. 3. Спектры люминесценции на выходе торца ЖК-

ячейки (см. рис. 2) после распространения излучения в

слое ЖК в волноводном режиме. Протяженность области

накачки, определяющей длину, на которой распространя-

ется излучение, δx = 3 мм, расстояние от центра накач-

ки до края ЖК-ячейки x0 = 1.5 мм. Кривая 1 � спектр

образца № 1 (ITO-электроды отсутствуют); кривая 2 �

спектр образца № 2 (имеются ITO-электроды толщиной

150 нм). На вставке показано отношение спектра образца

№2 к спектру образца №1

го образца №1. В спектре (кривая 2 ) можно также
видеть характерный провал на длине волны 588 нм,
который отсутствует в образце без ITO. Если взять
отношение спектра 2 к спектру 1, то получим спек-
тральную зависимость относительных потерь I2/I1
в образце №2 по отношению к образцу №1 (вставка
на рис. 3).
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the presence of a polyimide alignment film can 
shift the spectral position of the resonance bands. 
Considering the experimental error associated with 
measuring the ITO layer thickness and the presence 
of a thin polyimide alignment film in experimental 
sample 2, we associate the observed loss maximum 
at 592 nm with the resonance band calculated at 
λ1 = 570  nm for the TE-polarized mode in [13]. 
Similarly, the increasing losses at wavelengths 
above 625 nm (inset in Fig. 3) are explained by 
the calculated resonance band at λ2 = 705  nm for 
TM-polarized light. The spectral data in Fig. 4, 
showing the polarization spectra of luminescence, 
conf irm this conclusion. The luminescence 
intensity dip at 588 nm is characteristic only for 
the TE-polarized mode (curve 1 in Fig. 4). As the 
wavelength increases beyond 625 nm, the intensity 
of TM-polarized luminescence, shown by curve 2, 
decreases faster than that of the TE mode (curve 
1). Thus, the observed long-wavelength losses also 
agree with the numerical model in [13].

According to the analytical model of a thin ITO 
layer with a refractive index n1 ​ between the glass 
substrate n0  and the liquid crystal layer n2 , the 
wavelengths corresponding to the maxima of the 
resonance losses are determined by the following 
relations [13]:
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where the indices TE and TM refer to TE- and TM-
polarized light, respectively, and m  is a natural 
number. The additional phase shifts δφ  in Equation 
(1), associated with double reflection of waves in 
the ITO layer from the boundaries of the ITO-
glass substrate and the ITO-LC layer interfaces, are 
determined for TE- and TM-polarized light by the 
following expressions:
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It is also important to consider the spectral 
dispersion of refractive indices: n n0 0( )≡ λ is the 
refractive index of the glass substrate, n n1 1( )≡ λ is 
the refractive index of ITO, n nTE TM TE TM2, , 2, , ( )≡ λ
is the polarization-dependent refractive index 
of the liquid crystal (for planarly-aligned LC, 
n nTE2, =



, n nTM2, = ⊥ ), θ1  is the angle between 
the layer normal and the wave vector in the 
ITO layer (for phase-synchronized coupling of 
the planar mode from the LC layer to the ITO, 
sinθ1 1 2, ,= /n n TE TM ).
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Рис. 4. Поляризационные спектры люминесценции, изме-

ренные для образца № 1, где 1 � TE-поляризация; 2 �

ТМ-поляризация. Расстояние от центра накачки до края

ЖК-ячейки x0 = 1.5 мм

Видно, что относительные потери, связанные с
наличием ITO-электродов, характеризуются спек-
тральной полосой с максимумом поглощения на
длине волны 592 нм. Интенсивность люминесценции
на данной длине волны для образца №2 примерно
в 8 раз меньше, чем для образца №1. Наблюдается
также рост потерь на длинах волн более 625 нм. К
сожалению, эту более длинноволновую полосу труд-
но зарегистрировать во всем диапазоне с хорошей
точностью из-за очень низкой интенсивности люми-
несценции на длинах волн более 650 нм.

Согласно численным расчетам в работе [13] для
планарно-ориентированного жидкокристаллическо-
го слоя E7, ограниченного ITO-электродами толщи-
ной 170 нм, в спектральном диапазоне 550–900 нм
существует две резонансные полосы с максималь-
ными потерями на длинах волн λ1 = 570 нм
и λ2 = 705 нм соответственно для ТЕ- и ТМ-
поляризованного света. Спектральное положение
этих потерь не зависит от толщины слоя ЖК. Од-
нако, согласно [13], изменение толщины слоя ITO,
а также наличие полиимидной пленки могут сдви-
гать спектральное положение резонансных полос.
Принимая во внимание экспериментальную ошиб-
ку, связанную с измерением толщины слоя ITO, а
также наличие в экспериментальном образце №2
тонкой ориентирующей полиимидной пленки, мы

отождествляем наблюдаемый максимум потерь на
длине 592 нм с рассчитанной в [13] резонансной
полосой на длине волны λ1 = 570 нм для TE-
поляризованной моды. Аналогично, увеличивающи-
еся потери с увеличением длины волны более 625 нм
(вставка на рис. 3) объясняются рассчитанной ре-
зонансной полосой на длине волны λ2 = 705 нм
для ТМ-поляризованного света. Спектральные дан-
ные на рис. 4, где показаны поляризационные спек-
тры люминесценции, подтверждают сделанный вы-
вод. Провал в интенсивности люминесценции на
длине волны 588 нм характерен лишь для ТЕ-
поляризованной моды (кривая 1 на рис. 4). С рос-
том длины волны выше 625 нм интенсивность ТМ-
поляризованной люминесценции, показанная кри-
вой 2, убывает быстрее, чем интенсивность ТЕ-моды
(кривая 1 ). Таким образом, наблюдаемые длинно-
волновые потери также согласуются с численной мо-
делью в [13].

Согласно аналитической модели тонкого ITO-
слоя с показателем преломления n1 между стеклян-
ной подложкой (показатель преломления n0) и жид-
кокристаллическим слоем n2, длины волн для мак-
симумов резонансных потерь определяются следую-
щими соотношениями [13]:

λm,TE,TM =
2dITOn2

m−
δφTE,TM

2π

×

×

��
n1

n2,TE,TM

�2

− 1, (1)

где индексы TE, TM относятся к TE- и ТМ-
поляризованному свету соответственно; m � нату-
ральное число. Для поляризованного света допол-
нительные набеги фаз δφ в (1), связанные с двой-
ным отражением волн в ITO-слое от границы кон-
такта ITO со стеклянной подложкой и ЖК-слоем,
определяются для ТЕ- и ТМ-поляризованного света
следующими соотношениями:

δφTE = −2


arctg




�
sin2(θ1,TE)−

�
n0

n1

�2

cos(θ1,TE)


+

+arctg




�
sin2(θ1,TE)−

�n2,TE

n1

�2

cos(θ1,TE)




 ,
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Fig. 4. Polarization spectra of luminescence measured for 
sample 1, where curve 1 corresponds to TE-polarization and 
curve 2 to TM-polarization. The distance from the pump center 
to the LC cell edge is x0 = 1.5 mm.
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As follows from Equation (1), real solutions exist 
only under the condition n n1 2≥ . For ITO, there is 
strong spectral dispersion of the refractive index [13], 
so the corresponding solutions exist only in specific 
spectral ranges, which differ for TE- and TM-
polarized light due to the optical anisotropy of the 
liquid crystal and, accordingly, the conditions:

n n n nTE TM1 2, 1 2,, .≥ ≥

As shown in [13], for planar LC alignment, there 
are only two solutions for TM-polarized light: 
λm ≅ 720 nm for m = 1  and λm ≅ 440  nm for 
m = 2 . Since the luminescence spectrum is limited 
to approximately 550–700 nm, we can observe 
only the short-wavelength edge of the TM mode 
absorption for m = 1 , which appears at wavelengths 
above 625 nm (see the inset in Fig. 3).

For TE polarization, the corresponding loss 
peak occurs at λ  =  570  nm, which, considering 
measurement errors and differences between our 
experiment and the model, is very close to the 
observed peak at 592 nm (see the inset in Fig. 3). 
In the experiment, as in the model, this loss peak is 
observed exclusively for TE-polarized light (Fig. 4).

The model in [13] predicts a signif icant 
increase in losses with decreasing LC layer 
thickness. This was confirmed experimentally 
(Fig. 5). Here, curve 1 corresponds to sample 3 
(see table) with an LC layer thickness of d = 2.4

μm, and curve 2 corresponds to a thickness of 
d = 12 μm. Both curves are for unpolarized light, 
showing the loss peak at 592 nm and the onset 
of a sharp luminescence decrease at wavelengths 
above 625 nm, associated with the existence of a 
longer-wavelength loss band peaking beyond 700 
nm. A comparison of luminescence intensities at 
590  nm reveals that reducing the thickness from 
12 to 2.4 μm increased the losses by approximately 
40  times. The presence of strong loss bands 
for sample 3 around λm ≅ 590 nm and in the 
longer-wavelength region ( λm > 700 nm) leads to 
significant narrowing of the luminescence spectrum 
(curve 1, Fig. 5), with the luminescence maximum 
shifting to the longer-wavelength region near 
λ = 625  nm, where losses are minimal. In sample 
4 (curve 2), the loss bands appear only as shoulders 
in the luminescence spectrum, and there is virtually 
no shift in the luminescence peak ( λ = 611 nm). 
Notably, at a fixed pump energy of approximately 
80 μJ, the luminescence intensity peak in sample 
4 was so high that we had to shift the pump center 
from the LC cell edge to x0 = 2.5  mm to remain 
within the dynamic range of the spectrometer.

Thus, the spectral measurements fully confirmed 
the presence of resonance losses caused by the 
ITO electrodes. According to the aforementioned 
numerical modeling, resonance losses can be 
signif icantly suppressed by introducing thin 

Fig. 6. Spectra of unpolarized luminescence for sample 2 
(curve  1, d  =  6.8 μm) and sample 5 (curve 2, d  =  6.3 μm). 
Distance from the pump center to the LC cell edge x0 = 2.5 mm.

Fig. 5. Spectra of unpolarized luminescence for sample 3 (curve 1 
d = 2.4 μm) and sample 4 (curve 2, d = 12 μm). Distance from 
the pump center to the LC cell edge is x0 = 2.5 mm.
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δφTM = 2π − 2
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Здесь также важно учитывать спектральную
дисперсию показателей преломления: n0 ≡ n0(λ)

� показатель преломления стеклянной подлож-
ки, n1 ≡ n1(λ) � показатель преломления ITO,
n2,TE,TM ≡ n2,TE,TM (λ) � зависящий от состо-
яния поляризации показатель преломления ЖК
(для планарно ориентированного ЖК n2,TE = n

�
,

n2,TM = n
⊥

), θ1 � угол между нормалью к слоям
и волновым вектором волны в ITO-слое (если речь
идет о перекачке планарно распространяющейся
моды из ЖК-слоя в ITO, то sin θ1 = n1/n2,TE,TM ).

Как следует из (1), реальные решения существу-
ют лишь при условии n1 ≥ n2. Для ITO имеет
место сильная спектральная дисперсия показателя
преломления [13], поэтому соответствующие реше-
ния существуют лишь в определенных спектраль-
ных диапазонах, которые различаются для ТЕ- и
TM-поляризованного света из-за оптической анизо-
тропии ЖК и, соответственно, требований

n1 ≥ n2,TE , n1 ≥ n2,TM .

Как показано в [13], в случае планарной ориента-
ции ЖК, для ТМ-поляризованного света существу-
ют лишь два решения: λm

∼= 720 нм для m = 1 и
λm

∼= 440 нм для m = 2. Поскольку спектр люминес-
ценции ограничен диапазоном примерно 550–700 нм,
мы можем наблюдать лишь коротковолновый край
поглощения для ТМ-моды с m = 1, который, как мы
полагаем, хорошо виден на длинах волн более 625 нм
(вставка на рис. 3). Для TE-поляризации соответ-
ствующий пик потерь оказывается на длине волны
570 нм, который, с учетом погрешностей и некото-
рых различий между нашим экспериментом и моде-
лью, очень близок к наблюдаемому на длине волны
592 нм (см. вставку на рис. 3). В эксперименте, как
и в модели, этот пик потерь наблюдается исключи-
тельно для ТЕ-поляризованного света (рис. 4).

Модель в [13] предсказывает сильный рост по-
терь с уменьшением толщины ЖК-слоя. Это под-
твердилось и в эксперименте (рис. 5). В данном слу-
чае кривая 1 получена для образца №3 (см. табли-
цу), где толщина ЖК-слоя d = 2.4 мкм, а кривая
2 � для толщины d = 12 мкм. Обе кривые полу-
чены для неполяризованного света, поэтому можно
видеть как потери с максимумом на длине волны
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Рис. 5. Спектры неполяризованной люминесценции для

образца №3 (кривая 1, d = 2.4 мкм) и для образца № 4

(кривая 2, d = 12 мкм). Расстояние от центра накачки до

края ЖК-ячейки x0 = 2.5 мм

592 нм, так и начало резкого уменьшения люминес-
ценции на длинах волн выше 625 нм, что связыва-
ется нами с существованием более длинноволновой
полосы потерь с максимумом на длине волны бо-
лее 700 нм. Из сравнения интенсивностей люминес-
ценции на длине волны 590 нм легко видеть, что
при уменьшении толщины от 12 до 2.4 мкм поте-
ри увеличились примерно в 40 раз. Наличие интен-
сивных полос потерь для образца №3 в окрестно-
сти λm

∼= 590 нм и в более длинноволновой обла-
сти (λm > 700 нм) приводит к тому, что спектраль-
ная область люминесценции сильно сужается (кри-
вая 1, рис. 5), а максимум люминесценции смещает-
ся в длинноволновую область спектра к λ = 625 нм,
где потери минимальны. В образце №4 (кривая 2 )
полосы потерь выражены лишь в виде плеч в спек-
тре люминесценции, а спектрального сдвига мак-
симума люминесценции практически не наблюда-
ется (λ = 611 нм). Отметим, что при фиксиро-
ванной накачке примерно 80 мкДж в образце №4
интенсивность люминесценции в максимуме оказа-
лась настолько высокой, что нам пришлось сдви-
нуть центр накачки от края ЖК-ячейки до значе-
ния x0 = 2.5 мм, чтобы оставаться в пределах дина-
мического диапазона спектрометра.
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Рис. 6. Спектры неполяризованной люминесценции для

образца №2 (кривая 1, d = 6.8 мкм) и для образца № 5

(кривая 2, d = 6.3 мкм). Расстояние от центра накачки до

края ЖК-ячейки x0 = 1.5 мм

Таким образом, спектральные измерения пол-
ностью подтвердили наличие резонансных потерь,
обусловленных ITO-электродами. Согласно уже
упомянутому численному моделированию, резо-
нансные потери могут быть существенно подавлены
введением между слоем ЖК и ITO-электродами
тонких пленок с низким показателем преломления.
Именно этому условию удовлетворяет образец №5,
где в качестве ориентирующих ЖК-пленок исполь-
зуются сравнительно толстые (350 нм) пленки из
фторированного полимера Ф42-В с показателем
преломления 1.42. Результаты измерения спектров
люминесценции оказались весьма впечатляющими
(рис. 6). При фиксированной энергии импульса
накачки 80 мкДж интенсивность люминесценции в
максимуме выросла примерно в 50 раз по сравне-
нию с образцом №2. Также исчезли характерная
полоса с максимумом потерь на 590 нм и потери
в длинноволновой части спектра, характерные
для образца №2. На длинах волн более 650 нм
люминесценция существенно выросла так, что
даже на 750 нм измеряемый сигнал люминесценции
существенно превышает уровень шума.

Отметим, что интенсивность люминесценции в
образце №5 существенно превышает не только та-

ковую в образце №2, но и в образце №1, где ITO-
электроды отсутствуют. Таким образом, высокая
интенсивность люминесценции в образце №5 свя-
зана не только с устранением резонансных потерь.
Мы предполагаем, что в случае образца №5 суще-
ственным фактором, способствующим увеличению
интенсивности люминесценции, является и то, что
показатель преломления фторполимера (n = 1.42)
существенно ниже показателя преломления стек-
лянных подложек (n0 = 1.51). Благодаря этому
в ЖК-слое образца №5 может распространять-
ся существенно большее количество волноводных
ТМ- и ТЕ-поляризованных мод излучения, чем
в образцах №1, 2. Действительно, в случае об-
разцов №1, 2 наименьший показатель преломле-
ния ЖК n

⊥
= 1.52, с которым взаимодействуют

ТМ-поляризованные моды, оказывается очень близ-
ким к показателю преломления дисплейного стек-
ла (1.51). Поэтому критический угол по отноше-
нию к плоскости подложек, ниже которого суще-
ствуют волноводные моды, очень мал и значитель-
ное количество ТМ-поляризованного излучения лю-
минесценции, распространяющегося под углом вы-
ше критического, вытекает в стеклянные подлож-
ки. Ситуация усугубляется и тем, что в реаль-
ности директор ЖК не строго совпадает с на-
правлением ТЕ-поляризации из-за наличия неболь-
шого (2–4◦) угла преднаклона директора по от-
ношению к плоскости подложек. Таким образом,
даже ТЕ-поляризованное излучение, для которого
условие волноводного режима выполнено для ши-
рокого диапазона углов распространения, частич-
но преобразуется по мере распространения в ТМ-
поляризованные моды, вытекающие в подложку. Ре-
зонансные потери, в свою очередь, характеризуют-
ся достаточно широкими спектрами, что приводит
к значительному уменьшению интенсивности люми-
несценции даже на длинах волн вдали от резонанс-
ных максимумов. Это не только видно на вставке
к рис. 3, но, например, особенно ярко выражено на
рис. 5 для образца №3 (кривая 1 ), где, как уже от-
мечалось, из-за существенных потерь на �хвостах�
резонансных полос наблюдается сужение спектра и
сдвиг максимума люминесценции. Таким образом,
резонансные потери приводят к уменьшению люми-
несценции во всем спектральном диапазоне. Отме-
тим также, что моделирование в [13], где резонанс-
ные полосы являются сравнительно узкими, было
выполнено для одномодового режима, когда �ин-
жектированный� в волновод свет характеризовался
волновым вектором, строго параллельным плоско-
сти ЖК-слоя.
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low-refractive-index films between the LC layer 
and the ITO electrodes. This condition is satisfied 
in sample 5, where relatively thick (350 nm) 
fluorinated polymer F42-V films with a refractive 
index of 1.42 were used as LC alignment layers. The 
results of luminescence spectra measurements were 
quite impressive (Fig. 6). At a fixed pump pulse 
energy of 80 μJ, the peak luminescence intensity 
increased by approximately 50 times compared 
to sample 2. The characteristic loss band with a 
maximum at 590 nm disappeared, as did the long-
wavelength spectral losses characteristic of sample 
2. At wavelengths above 650 nm, luminescence 
increased significantly, so that even at 750 nm, the 
measured luminescence signal was significantly 
above the noise level.

To note, the luminescence intensity in sample 
5 significantly exceeds not only that of sample 2 
but also that of sample 1, where ITO electrodes 
are absent. Thus, the high luminescence intensity 
in sample 5 is not only due to the elimination of 
resonance losses. We hypothesize that another 
significant factor contributing to the increased 
luminescence intensity in sample 5 is the low 
refractive index of the fluoropolymer ( n = 1.42 ), 
which is significantly lower than that of the glass 
substrates ( n0 = 1.51 ). As a result, a significantly 
larger number of TE- and TM-polarized waveguide 
modes can propagate in the LC layer of sample 5 
compared to samples 1 and 2. Indeed, in samples 
1 and 2, the lowest refractive index of the LC, 
n⊥ = 1.52 , interacting with TM-polarized modes, 
is very close to the refractive index of the display 
glass (1.51). Therefore, the critical angle relative to 
the substrate plane, below which waveguide modes 
exist, is very small, causing a significant amount 
of TM-polarized luminescence propagating at 
angles above the critical angle to leak into the glass 
substrates.

The situation is further complicated by the fact 
that, in reality, the LC director does not strictly 
coincide with the TE polarization direction due to 
a slight (2–4°) pretilt angle of the director relative 
to the substrate plane. Thus, even TE-polarized 
radiation, for which the waveguide condition is 
satisfied over a wide range of propagation angles, 
partially converts into TM-polarized modes 
that leak into the substrate. Resonance losses, in 
turn, are characterized by relatively broad spectra, 
significantly reducing luminescence intensity even 

at wavelengths far from the resonance maxima. 
This is evident not only from the inset in Fig. 3 
but also, for example, in Fig. 5 for sample 3 (curve 
1), where, as already noted, significant losses 
on the “tails” of the resonance bands lead to 
spectral narrowing and a shift of the luminescence 
maximum. Thus, resonance losses lead to reduced 
luminescence across the entire spectral range. It 
is also worth noting that the modeling in [13], 
where the resonance bands are relatively narrow, 
was performed for a single-mode regime, where 
the light “injected” into the waveguide was 
characterized by a wave vector strictly parallel to 
the LC layer plane.

4. CONCLUSION

The experiment confirmed the presence of 
resonance losses during light propagation in 
waveguide mode within an LC layer confined by 
ITO electrodes. The observed spectral loss bands are 
polarization-sensitive. The spectral position of these 
bands does not depend on the LC layer thickness, 
while their intensity increases with decreasing layer 
thickness.

It was also demonstrated that the use of fluorinated 
polymer alignment layers with a low refractive index 
effectively suppresses resonance losses. The obtained 
results are significant for the application of waveguide 
modes in electrically controlled LC devices utilizing 
light propagation in waveguide mode, particularly for 
liquid crystal microlasers.
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