POINT DEFECTS IN FeMe2O4 (Me = Fe, Cr) SPINELS: A DFT+U INVESTIGATION
- Authors: Chichevatov G.D.1,2, Stegaylov V.V.1,2,3
-
Affiliations:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- National Research University “Higher School of Economics”
- Issue: Vol 166, No 3 (2024)
- Pages: 347-373
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/268163
- DOI: https://doi.org/10.31857/S0044451024090062
- ID: 268163
Cite item
Abstract
Spinel-type crystals AMe2O4 encompass a wide range of practical applications like photocatalysis or spintronics, but often demonstrate non-trivial electronic and magnetic properties which theoretical description is mitigated. In this work, we performed DFT+U calculations for the most extensive set of neutral point defects in Fe3O4 (magnetite) and FeCr2O4 (chromite) and investigated all the possible types of cationic and oxygen defects in both spinels. Our results unveil both similarities and principal differences between the defective Fe3O4 and FeCr2O4, posing chromite as a material less prone to defect formation, and could be a valuable asset to the development of new multiscale models of steel corrosion.
About the authors
G. D. Chichevatov
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: chichevatov.gd@phystech.edu
Russian Federation, 125412, Moscow; 141701, Dolgoprudny, Moscow region
V. V. Stegaylov
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); National Research University “Higher School of Economics”
Author for correspondence.
Email: chichevatov.gd@phystech.edu
Russian Federation, 125412, Moscow; 141701, Dolgoprudny, Moscow region; 101000, Moscow
References
- К. И. Кугель, Д. И. Хомский, УФН 136, 621 (1982).
- С. В. Стрельцов, Д. И. Хомский, УФН 187, 1205 (2017).
- D. I. Khomskii and S. V. Streltsov, Chem. Rev. 121, 2992 (2021).
- М. Ю. Каган, К. И. Кугель, Д. И. Хомский, ЖЭТФ 120, 470 (2001).
- I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J. A. Alonso, W. G. Marshall, R. M. Ibberson, A. Podlesnyak, M. J. Mart´ınez-Lope, and M. M. Abd-Elmeguid, Phys. Rev. Lett. 98, 176406 (2007).
- А. О. Сбойчаков, А. В. Рожков, К. И. Кугель, А. Л. Рахманов, Письма в ЖЭТФ 112, 693 (2020).
- A. Bosak, D. Chernyshov, M. Hoesch, P. Piekarz, M. Le Tacon, M. Krisch, A. Kozl�owski, A. M. Ole´s, and K. Parlinski, Phys. Rev. X 4, 011040 (2014).
- S. V. Ovsyannikov, M. Bykov, E. Bykova, D. P. Kozlenko, A. A. Tsirlin, A. E. Karkin, V. V. Shchennikov, S. E. Kichanov, H. Gou, A. M. Abakumov, R. Egoavil, J. Verbeeck, C. McCammon, V. Dyadkin, D. Chernyshov, S. van Smaalen, and L. S. Dubrovinsky, Nat. Chem. 8, 501 (2016).
- S. V. Ovsyannikov, M. Bykov, S. A. Medvedev, P. G. Naumov, A. Jesche, A. A. Tsirlin, E. Bykova, I. Chuvashova, A. E. Karkin, V. Dyadkin, D. Chernyshov, and L. S. Dubrovinsky, Angew. Chem. Int. Ed. 59, 5632 (2020).
- V. I. Anisimov, I. S. Elfimov, N. Hamada, and K. Terakura, Phys. Rev. B 54, 4387 (1996).
- V. S. Zhandun, N. V. Kazak, I. Kupenko, D. M. Vasiukov, X. Li, E. Blackburn, and S. G. Ovchinnikov, Dalton Trans. 53, 2242 (2024).
- V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
- A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
- V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
- V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997).
- G. Trimarchi, I. Leonov, N. Binggeli, D. Korotin, and V. I. Anisimov, J. Phys.: Condens. Matter 20, 135227 (2008).
- L. Hozoi, L. Siurakshina, P. Fulde, and J. van den Brink, Sci. Rep. 1, 65 (2011).
- S. Nishimoto, V. M. Katukuri, V. Yushankhai, H. Stoll, U. K. R¨oßler, L. Hozoi, I. Rousochatzakis, and J. van den Brink, Nat. Commun. 7, 10273 (2016).
- D. A. Maltsev, Y. V. Lomachuk, V. M. Shakhova, N. S. Mosyagin, L. V. Skripnikov, and A. V. Titov, Phys. Rev. B 103, 205105 (2021).
- A. V. Oleynichenko, Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, V. M. Shakhova, A. Zaitsevskii, and A. V. Titov, Phys. Rev. B 109, 125106 (2024).
- J. Zhang, Corros. Sci. 51, 1207 (2009).
- Q. Chen, Y. Chen, F. Zhang, J. Yang, C. Zhu, W. Zhang, H. Liu, Y. Zhong, J. Deng, Q. Li, N. Liu, and J. Yang, J. Nucl. Mater. 573, 154097 (2023).
- N. Li and J. Zhang, Oxid. Met. 63, 353 (2005).
- K. Lambrinou, V. Koch, G. Coen, J. Van den Bosch, and C. Schroer, J. Nucl. Mater. 450, 244 (2014).
- L. Martinelli and F. Balbaud-C´el´erier, Mater. Corros. 62, 531 (2011).
- D. Kolotinskii, V. Nikolaev, V. Stegailov, and A. Timofeev, Corros. Sci. 211, 110829 (2023).
- Y. Li, R. Zhou, X. Long, T. Gao, and C. Chen, J. Nucl. Mater. 583, 154492 (2023).
- D. Li, C. Song, H. Y. He, C. S. Liu, and B. C. Pan, Phys. Chem. Chem. Phys. 16, 7417 (2014).
- D. Li, B. Qu, H. Y. He, Y. G. Zhang, Y. Xu, B. C. Pan, and R. Zhou, Phys. Chem. Chem. Phys. 18, 7789 (2016).
- Y. Lei, Y. Zhang, X. Li, Y. Xu, X. Wu, X. Wang, M. Sun, J. Yang, C. Liu, and Z. Wang, J. Nucl. Mater. 582, 154470 (2023).
- E. J. W. Verwey, Nature 144, 327 (1939).
- E. J. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947).
- J. E. Lorenzo, C. Mazzoli, N. Jaouen, C. Detlefs, D. Mannix, S. Grenier, Y. Joly, and C. Marin, Phys. Rev. Lett. 101, 226401 (2008).
- G. Shirane, D. E. Cox, and S. J. Pickart, J. Appl. Phys. 35, 954 (1964).
- S. Bord´acs, D. Varjas, I. K´ezsm´arki, G. Mih´aly, L. Baldassarre, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, and Y. Tokura, Phys. Rev. Lett. 103, 077205 (2009).
- S. Nakamura and A. Fuwa, Phys. Procedia 75, 747 (2015).
- K. Tomiyasu, H. Hiraka, K. Ohoyama, and K. Yamada, J. Phys. Soc. Jpn. 77, 124703 (2008).
- J. A. G. Cer´on, D. A. L. T´ellez, and J. Roa-Rojas, J. Electron. Mater. 51, 822 (2022).
- H.-T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403 (2004).
- I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. Lett. 93, 146404 (2004).
- H. P. Pinto and S. D. Elliott, J. Phys. Condens. Matter 18, 10427 (2006).
- P. Piekarz, K. Parlinski, and A. M. Ole´s, Phys. Rev. Lett. 97, 156402 (2006).
- P. Piekarz, K. Parlinski, and A. M. Ole´s, Phys. Rev. B 76, 165124 (2007).
- F. Zhou and G. Ceder, Phys. Rev. B 81, 205113 (2010).
- P. W. Anderson, Phys. Rev. 102, 1008 (1956).
- H.-Y. Huang, Z.-Y. Chen, R.-P. Wang, F. M. de Groot, W.-B. Wu, J. Okamoto, A. Chainani, A. Singh, Z.-Y. Li, J.-S. Zhou, H.-T. Jeng, G. Y. Guo, J.-G. Park, L. H. Tjeng, C. T. Chen, and D. J. Huang, Nat. Commun. 8, 15929 (2017).
- M. S. Senn, J. P. Wright, and J. P. Attfield, Nature 481, 173 (2012).
- M. S. Senn, J. P. Wright, J. Cumby, and J. P. Attfield, Phys. Rev. B 92, 024104 (2015).
- M. S. Senn, I. Loa, J. P. Wright, and J. P. Attfield, Phys. Rev. B 85, 125119 (2012).
- P. Piekarz, D. Legut, E. Baldini, C. A. Belvin, T. Kol�odziej, W. Tabi´s, A. Kozl�owski, Z. Kakol, Z. Tarnawski, J. Lorenzana, N. Gedik, A. M. Ole´s, J. M. Honig, and K. Parlinski, Phys. Rev. B 103, 104303 (2021).
- W. Wang, J. Li, Z. Liang, L. Wu, P. M. Lozano, A. C. Komarek, X. Shen, A. H. Reid, X. Wang, Q. Li, W. Yin, K. Sun, I. K. Robinson, Y. Zhu, M. P. Dean, and J. Tao, Sci. Adv. 9, eadf8220 (2023).
- J. Noh, O. I. Osman, S. G. Aziz, P. Winget, and J.-L. Br´edas, Sci. Technol. Adv. Mater. 15, 044202 (2014).
- J.-H. Park, L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T. Chen, Phys. Rev. B 55, 12813 (1997).
- D. Schrupp, M. Sing, M. Tsunekawa, H. Fujiwara, S. Kasai, A. Sekiyama, S. Suga, T. Muro, V. A. M. Brabers, and R. Claessen, Europhys. Lett. 70, 789 (2005).
- S. K. Park, T. Ishikawa, and Y. Tokura, Phys. Rev. B 58, 3717 (1998).
- A. Hevroni, M. Bapna, S. Piotrowski, S. A. Majetich, and G. Markovich, J. Phys. Chem. Lett. 7, 1661 (2016).
- A. Banerjee and A. J. Pal, J. Phys.: Condens. Matter 32, 055701 (2019).
- L. Craco, M. S. Laad, and E. Mu¨ller-Hartmann, Phys. Rev. B 74, 064425 (2006).
- S. Srivastava, B. P. Uberuaga, and M. Asta, J. Phys. Chem. C 127, 17460 (2023).
- H. Liu and C. Di Valentin, J. Phys. Chem. C 121, 25736 (2017).
- М. И. Шутикова, В. В. Стегайлов, ЖЭТФ 160, 249 (2021).
- M. I. Shutikova and V. V. Stegailov, J. Phys.: Condens. Matter 34, 475701 (2022).
- N. Naveas, R. Pulido, C. Marini, P. Gargiani, J. Hernandez-Montelongo, I. Brito, and M. Manso-Silv´an, J. Chem. Theory Comput. 19, 8610 (2023).
- E. Gu¨rsoy, G. B. Vonbun-Feldbauer, and R. H. Meißner, J. Phys. Chem. Lett. 14, 6800 (2023).
- O´. A. Restrepo, O´ . Arnache, J. Restrepo, C. S. Becquart, and N. Mousseau, Comput. Mater. Sci. 213, 111653 (2022).
- M. Robbins, G. Wertheim, R. Sherwood, and D. Buchanan, J. Phys. Chem. Sol. 32, 717 (1971).
- H. Levinstein, M. Robbins, and C. Capio, Mater. Res. Bull. 7, 27 (1972).
- K. Kose and S. Iida, J. Appl. Phys. 55, 2321 (1984).
- D. Lee and G. Chern, Physica B 407, 297 (2012).
- J. Ma, V. O. Garlea, A. Rondinone, A. A. Aczel, S. Calder, C. dela Cruz, R. Sinclair, W. Tian, S. Chi, A. Kiswandhi, J. S. Brooks, H. D. Zhou, and M. Matsuda, Phys. Rev. B 89, 134106 (2014).
- P. V. B. Pinho, A. Chartier, D. Menut, A. Barbier, M. O. Hunault, P. Ohresser, C. Marcelot, B. Warot-Fonrose, F. Miserque, and J.-B. Moussy, Appl. Surf. Sci. 615, 156354 (2023).
- D. Santos-Carballal, A. Roldan, R. Grau-Crespo, and N. H. de Leeuw, Phys. Rev. B 91, 195106 (2015).
- D. Das and S. Ghosh, J. Phys. D 48, 425001 (2015).
- C. Li, P. Li, L. Li, D. Wang, X. Gao, and X. J. Gao, RSC Adv. 11, 21851 (2021).
- Н. А. Фоминых, В. В. Стегайлов, Письма в ЖЭТФ 117, 857 (2023).
- S. A. Chambers, T. C. Droubay, T. C. Kaspar, I. H. Nayyar, M. E. McBriarty, S. M. Heald, D. J. Keavney, M. E. Bowden, and P. V. Sushko, Adv. Funct. Mater. 27, 1605040 (2017).
- C. Benhalima, S. Amari, L. Beldi, and B. Bouhafs, Spin 9, 1950014 (2019).
- D. A. Andersson and C. R. Stanek, Phys. Chem. Chem. Phys. 15, 15550 (2013).
- L. Sun, J. Alloys Compd. 875, 160065 (2021).
- T. Ramachandran and F. Hamed, Mater. Res. Bull. 95, 104 (2017).
- A. Boudjemaa, R. Bouarab, S. Saadi, A. Bouguelia, and M. Trari, Appl. Energy 86, 1080 (2009).
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).
- R. Dieckmann, J. Phys. Chem. Sol. 59, 507 (1998).
- R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 81, 344 (1977).
- R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 81, 414 (1977).
- R. Dieckmann, T. O. Mason, J. D. Hodge, and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 82, 778 (1978).
- R. Dieckmann, Ber. Bunsenges. Phys. Chem. 86, 112 (1982).
- R. Dieckmann, C. A. Witt, and T. O. Mason, Ber. Bunsenges. Phys. Chem. 87, 495 (1983).
- R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 90, 564 (1986).
- M. Backhaus-Ricoult and R. Dieckmann, Ber. Bunsenges. Phys. Chem. 90, 690 (1986).
- R. Dieckmann, M. R. Hilton, and T. O. Mason, Ber. Bunsenges. Phys. Chem. 91, 59 (1987).
- J. T¨opfer, S. Aggarwal, and R. Dieckmann, Solid State Ion. 81, 251 (1995).
- S. Aggarwal and R. Dieckmann, Phys. Chem. Miner. 29, 695 (2002a).
- S. Aggarwal and R. Dieckmann, Phys. Chem. Miner. 29, 707 (2002b).
- N. Peterson, W. Chen, and D. Wolf, J. Phys. Chem. Solids 41, 709 (1980).
- J. A. Van Orman and K. L. Crispin, Rev. Mineral. Geochem. 72, 757 (2010).
- F. Millot and N. Yan, J. Phys. Chem. Solids 58, 63 (1997).
- S. Shousha, S. Khalil, and M. Youssef, Phys. Chem. Chem. Phys. 23, 25518 (2021).
- C. L. Muhich, V. J. Aston, R. M. Trottier, A. W. Weimer, and C. B. Musgrave, Chem. Mater. 28, 214 (2016).
- Y. Meng, X.-W. Liu, C.-F. Huo, W.-P. Guo, D.B. Cao, Q. Peng, A. Dearden, X. Gonze, Y. Yang, J. Wang, H. Jiao, Y. Li, and X.-D. Wen, J. Chem. Theory Comput. 12, 5132 (2016).
- M. W. Chase, NIST-JANAF Thermochemical Tables, ACS, New York (1998).
- G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
- G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
- G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
- V. Stegailov, G. Smirnov, and V. Vecher, Concurr. Comput. Pract. Exp. 31, e5136 (2019).
- A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
- S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013).
- I. Mosquera-Lois, S. R. Kavanagh, A. Walsh, and D. O. Scanlon, J. Open Source Softw. 7, 4817 (2022).
- I. Mosquera-Lois, S. R. Kavanagh, A. Walsh, and D. O. Scanlon, Npj Comput. Mater. 9, 1 (2023).
- S. E. Ziemniak, L. M. Anovitz, R. A. Castelli, and W. D. Porter, J. Chem. Thermodyn. 39, 1474 (2007).
- R. Snethlage and D. Klemm, Neues Jb. Miner. Abh. 125, 227 (1975).
- M. Shevchenko, D. Shishin, and E. Jak, Ceram. Int. 48, 33418 (2022).
- B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, Phys. Rev. B 79, 235125 (2009).
- B. Meredig, A. Thompson, H. A. Hansen, C. Wolverton, and A. van de Walle, Phys. Rev. B 82, 195128 (2010).
- K. Sharma, L. Calmels, D. Li, A. Barbier, and R. Arras, Phys. Rev. Mater. 6, 124402 (2022).
- R. Arras, K. Sharma, and L. Calmels, J. Mater. Chem. C 12, 556 (2024).
- H. S. C. O’Neil and A. Navrotsky, Am. Mineral. 69, 733 (1984).
- R. Eppstein and M. Caspary Toroker, ACS Mater. Au. 2, 269 (2022).
- V. A. Kurepin, Contrib. Mineral. Petrol. 149, 591 (2005).
- D. Levy, R. Giustetto, and A. Hoser, Phys. Chem. Miner. 39, 169 (2012).
- Elnaggar, S. Graas, S. Lafuerza, B. Detlefs, W. Tabis, M. A. Gala, A. Ismail, A. van der Eerden, M. Sikora, J. M. Honig, P. Glatzel, and F. de Groot, Phys. Rev. Lett. 127, 186402 (2021).
Supplementary files
