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Abstract. We investigate the role of gap states in processes of charge transmission along finite superconducting
Kitaev chain. We use the formalism of non-stationary Green’s functions, which contain full information
about the non-equilibrium and non-stationary properties of the system. We discuss tunneling current and
non-stationary transport properties of a finite Kitaev chain in the subgap regime. Under the assumption
that the finite Kitaev chain is connected at each edge to its own external lead (normal reservoir) we obtain
time-dependent behavior of the tunneling current after the sudden change of bias voltage in one of the leads.
Obtained results show how quickly the ”Majorana mode” at one edge of the chain responds after external
perturbation acts on the ”Majorana mode” at the other edge. Presented calculations are completely analytical
and straightforward, in contrast with many other methods.
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1. INTRODUCTION

In recent decades, significant attention has been
given to systems exhibiting “topologically nontrivial”
properties. However, for practical applications, it is
essential to assess the specific physical characteristics
of such systems in addition to their mathematical
interpretation of the ground state properties. One
of the simplest models that demonstrates properties
allowing for topological interpretation is the atomic
chain with ppp-wave superconductivity of spinless
particles, proposed by A. Kitaev [1]. The primary
interest in this model in subsequent years was driven
by the nontrivial topological interpretation of its
ground-state properties. It was shown that, due to

“topological reasons”, quantum states localized at the

chain edges appear within the superconducting gap.
These states, often referred to as “Majorana modes”,
are commonly associated with the existence of
quasiparticles [2] that bear resemblance to Majorana
fermions [3].

Possible experimental realizations of this model
are typically based on the proximity effect in
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semiconductor nanowires with strong spin-orbit
interaction, placed on a superconducting substrate
[4, 5, 6]. The latest experimental advances and
discussions on the challenges encountered can be
found in the review [7].

It is widely believed that further progress in this field
may involve models with an effective Josephson action,
accounting for Coulomb blockade-type effects [8, 9,
10, 11, 12, 13]. There is hope that long-range Coulomb
interactions could facilitate signal transmission in
finite Kitaev chains using “Majorana states”. However,
recharging effects inevitably involve charge transfer
processes, so we must ensure that we accurately describe
tunneling transport and charge transfer effects first in
the simplest tunneling setup. Theoretical results can
then be compared with tunneling experiments under
various conditions [14, 15].

Some theoretical studies suggest that “Majorana
states” could be utilized as an error-protected
method for storing and transmitting information in
quantum technology [16, 17]. However, if a state
is protected from arbitrary changes due to external
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noise, the same protection may make intentional
changes to the system’s state equally difficult,
potentially rendering the system impractical for real-
world applications. One possible way to study how
well a system responds to a signal is to investigate its
nonstationary transport properties.

In [18], nonstationary effects related to tunnel
barrier transparency modulation were considered
in a quasiclassical approach. That work analyzed a
three-terminal system, where one of the contacts
was effectively used to fix the chemical potential
of the superconductor. In this study, we consider a
two-terminal geometry, where the superconductor is
connected only to two external contacts. To explore
the role of localized states in nonstationary transport
properties, we employ the formalism of nonstationary
Green’s functions for electrons.

Below, we will demonstrate that this approach
enables us to derive explicit analytical expressions
for both the tunnel current and nonstationary charge
transport, in contrast to more complex methods
based on density matrix equations, as discussed,
for example, in [19]. Furthermore, this approach
allows us to compare quasiclassical calculations with
microscopic methods and establish a connection
between the parameters used in these different
approaches.

The exact electronic Green’s functions for
the infinite Kitaev chain in equilibrium can be
obtained analytically [20]. These functions can be
used to derive the nonstationary Green’s functions
for a finite chain, allowing us to understand how
the system evolves over time when subjected to an
external perturbation. The key idea in our approach
is to treat the finite Kitaev chain as a cut segment
of an infinite chain or as a chain with strong defects
(for a single-cut chain, see, e.g., [21]). This trick
enables us to use the Green’s functions of the
infinite chain to study all single-particle states in the
system. Our calculations do not require any special
interpretation of singularities in the single-particle
Green’s function as specific “states”. It is important
to note that the poles of the single-particle Green’s
function, which appear inside the superconducting
gap in this model, can hardly be interpreted as
single-particle excitations. True Majorana particles,
as discussed in the pioneering works [3], are well-
defined particles (quasiparticles) with the usual
algebra of creation and annihilation operators. In
any physical problem, such real particles contribute
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to the single-particle Green’s function with a residue
equal to one. It is well known that bound states
localized around defects, such as paramagnetic
impurities [22] or resonance impurities [23] with
energies lying inside the superconducting gap,
frequently appear in conventional superconductors.
These states are genuine single-particle states. In
the present case, we observe that the appearance of
poles in the electronic Green’s function within the
gap, with residues smaller than one, is more likely an
artifact of the model, which has a degenerate (in the
highly symmetric case) ground state, rather than the
emergence of new quasiparticles.

2. PROPERTIES OF AN ISOLATED
KITAEV CHAIN

In this section, we briefly reproduce some results
related to the spectral properties of a finite Kitaev
chain, using the Green’s function formalism, which
we will employ in later sections.

We start with the free ideal Kitaev chain, which is
completely isolated from any external systems.

The model Hamiltonian of such a system can be
written as

—~ N N-1
H= _MZ\Vn\Vn —I‘Z (\Vn\l]nJrl + Wn+1\|]n)+
1 n=1

" (1)
N-1 .
+Z (Awnwnﬂ +A Vi41¥n )
n=1

Here, vy, and vy, are the creation and
annihilation operators for a particle at site n, u is
the chemical potential, 7 is the hopping parameter
between neighboring sites, A is the superconducting
order parameter, which in this study we consider as
a fixed parameter, N is the total number of sites in
the lattice.

To obtain exact solutions for the Green’s
functions of the Hamiltonian (1), it is convenient to
use the Green’s functions of an infinite Kitaev chain.
Indeed, the behavior of a finite chain can be modeled
by considering an infinite chain with infinitely strong
point defects U—~+oo added at sites 0 and N+1 (see
Fig. 1). As a result, the particles located between
these two sites will be completely isolated from the
outer parts of the chain, and the Green’s functions
will be identical to those of a finite Kitaev chain of
length N, as long as the node indices lie between 0
and N+1.
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Thus, the behavior of the system is described by
the following Hamiltonian, corresponding to the
system shown in the figure:

(2)
where

Ho = 030 130 (VWm0 + WV ) +
n n

+Z(AW”Wn+1 + A*‘Vn-HW” )’
n

R gy =|Gm @ 1) Fan @) _
e FRE@ 1y GRE@ 1)
oty = Gt 1) Fh, | _
e FAv@, ¢y GA+@, 1)

K<t = ,fm(t ty Foo(tt)

e ety Gl )

where j&,B =ab + 521, <a>= Tr(f)cAz). The indices
R and A denote the retarded and advanced Green’s
functions, respectively.

Using Dyson’s equation for Hamiltonian (2),

we can express the retarded Green’s functions
IR (t,t") of the finite chain in terms of the Green’s
functions FOR (¢,t") of the infinite Kitaev chain. In
the Appendix, it is shown that the functions an( ®)
have poles at points ® = +w,, where

0y = |A|4r% — u?) (XJJ\F/H XZ_VH) ©6)
it\/4(t2 — APy -2
Here
—pil\/4t u +4|A|2)
e ™ 20 +A) @
As | . [<1 (see 52), expression (6) is written for the

case |X:|:| < 1. For sufficiently large N, the parameter
o, is small compared to other system parameters and
decays exponentially as the N chain length increases.

For the cases |A| < tand |A| < t, |A| — ¢, the
“exponential smallness” of expression (6) in N can
be explicitly demonstrated:
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V=u (‘l’o‘l’o TV +1‘VN+1)-

This Hamiltonian (2) is identical to Hamiltonian
(1) when U~oo. To determine the physical properties
of the chain, we use the formalism of normal

and anomalous Green’s functions, denoted as

G,m @1,
use the followmg definitions of Green’s functions:

m (@,1") , respectively. In this work, we

(., v @} (v, 0, v, ()}

o —1), (3)
v, v @} {ur©, v, 00}
(Wi @, v @} {v,©, v, )}
o’ —1), (4)
{W,T @), v (t’)} {\V,T ), vy ')}
] <wmwm>wmwmv )
+ +
Yo @YW @), @ (@)
4Ale N B, lA| <<1,
®o = N In(\[2r/~[a) (8)
2te ., -|Ah <t

The exponential decay of ®, with increasing
chain length is explained by the exponentially weak
overlap of the two bound states at opposite edges of
the chain. Using (8), we can estimate the localization
length of the bound states as:

a(t/|A),

a/ln(,/zz/(z —|A|)),

where a is the lattice constant.

|A] <<1,

)

~
loc —

¢ —|A) <t

Such an exponential dependence has been
observed in tunneling experiments using Coulomb
blockade methods, as described in [15].

In the limit N—oo, the states near each edge begin
to behave as if the chain were semi-infinite. In this
case, the two poles with residues equal to 1/2 together
correspond to a single Fermi excitation, which is
split between the two edges of the chain. Thus, the
residue in terms of Bogoliubov excitations is equal to
1, as it should be. However, when observing only one
end of the chain, we “see” only half of this excitation.
This Fermi excitation is very specific because it is

JETP, Vol. 167, No. 1, 2025
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Fig. 1: Infinite Kitaev chain with two defects

the excitation that connects two degenerate ground
states with different parity (i.e., a different number of
electrons), but with the same energy.

This statement can be easily illustrated with a
simple example of a two-site chain. The Hamiltonian
(1) for two sites can be diagonalized using the
Bogoliubov transformation. In terms of Bogoliubov

operators, the Hamiltonian takes the form
Hy = E, +gcite; + ey¢5 ¢, (10)

where

4
=u(W1+W2)iv(\V1 v3)

V2 V2o

viu? = l[1 + 7“],

€12

2

A
’ 2 2
2

For A = 1> — uz (which in the case p = 0 gives
A = 1), we obtain g = 0 (the solution 53 for the case
N =2, =0). Then, | ®, >=%(W—\v§)|0>
corresponds to the ground state and satisfies
c12|®y>=0. At the same time, the state
| @, >=c, |®y >=( +uy;y;)|[0> also has
zero energy, which means that the ground state is
degenerate. For the matrix elements between these
ground states, we have

<D |y | Dy >=u/\/§,<®1|\V1|‘D0>=V/\/§-

This means that in the single-particle function G |,
at ® = 0, a pole appears with a residue equal to 1/2.

3. TUNNELING CURRENT

We first consider the stationary tunneling
properties of the Kitaev chain. To do this, we assume
that the chain is connected at sites 1 and N to two
external reservoirs with a large number of degrees of
freedom, labeled by indices / and r, respectively.

The total Hamiltonian can then be written as
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A= H+YX (hj,*wl +Wh1’))+
p
+> 1 (h;+‘VN +\Vj\',h;) +
p

+>ELhyhy + > Eyhy Ty
)4 V4

The current flowing into the chain through site 1
is given by the standard expression ([24]):

1,@t)= iZ‘c}, < h1],+\;/1 - \urhll) >,
p

(1)

(12)

Using the nonstationary diagrammatic technique,
this expression can be rewritten as

Ln=-3% (GNZJJ(t,t) ~G{p (t,t)), (13)
where ’
Gpatn = [dng,@n)gGie.n +
+ [dngly (t.1)5G 0,0,
Gy = [anG nhen . +
+ f danG f et ty.0).

The parameter p corresponds to the density of
states inside both reservoirs, g,,(w) is the Green’s
function of reservoir o when it is disconnected from
the chain, where a takes values / and r, GX (¢, t1)
are the exact are the retarded and advanced Green’s
functions of the chain, accounting for tunneling
transitions into the reservoirs.

Crucially, the tunneling Hamiltonian (11) and
the tunneling current (12) are expressed in terms of
real electron operators, and they directly provide
the actual electric current in the system. It should be
noted that attempts to use effective Hamiltonians in
terms of Majorana quasiparticle operators often lead,
in our opinion, to questionable results, as handling
Majorana operators requires great caution and
precision. Due to the Clifford algebra commutation
relations, there is no Wick’s theorem directly applicable
to Majorana operators, and pair correlators do not
have the meaning of Green’s functions, which form
the basis of conventional diagrammatic techniques.
In the calculations presented in this paper, we do not
encounter any difficulties that we would have faced if we
had worked with Majorana operators. For the problem
of a finite Kitaev chain of arbitrary length, inserted
between two leads and described by Hamiltonian
(11), we have exactly computed the electronic current
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(12). It is not surprising that some discrepancies may
arise between our results and those of [26, 27, 25]
and other authors, as the latter were obtained using a
number of approximations in the Majorana operator
representation.

In what follows, we assume, as usual, that due
to the large number of particles and degrees of
freedom in each reservoir, the particle distribution
function does not significantly change throughout
the experiment, and thus each reservoir remains
practically in equilibrium. However, the system as a
whole is not in equilibrium, although in this section,
we consider it stationary, meaning the current does
not change over time. Thus, Equation (13) can
be rewritten using frequency-dependent Green’s
functions as follows:

== Z—:(G i@ =G @) (14)
P

where
G i@ = gp (@G (0)+ gh (TG (o),
Gt =G (@)thgn (@) +G (o)) (®).

We can simplify this expression by introducing the
irreducible part

2
510 = S 0
p

15)

(16)

Then, we can use the identity
25 (0) = 1, (0) (24 (@) — 2f (@),

where n,(w) are the Fermi-Dirac distribution
functions for the / and r reservoirs.

Thus, Equation (14) can be rewritten as:
T do A R
I = —[52(2 @ -=f @) >

(17)
x(n (@)(Ffy o) — FF ) - Fil(m)).
Here, the current /; is determined by the upper-
left element of the matrix /; (];1 ).

An expression of this type in terms of
nonequilibrium Green’s functions was first derived
in [24] and later applied in [28]. At first glance, this
expression appears asymmetric with respect to the
left and right contacts. However, in the stationary
case, a properly calculated current (17) can always
be rewritten in an explicitly symmetric form.
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In our case, Equation (17) can be further
simplified using the relations

710 = T ()] (@ (o) +

=R < =A (18)
+I N (@)Z, (@) (o),

7 1(0) = T (@) () (o) + (19)
+TTy (@2 (@I ().

where
() =T - T,
22 (0) = 2 (0) - =K ().

Using the wide-band approximation for the
reservoirs, we assume that for the considered values of
w, the condition Z;‘tr)(()\)) ~ i'Yl(r), Z;Er)((})) ~ —i'Yl(r),

holds, where vy, = chl(’)(r;(’))2 and v/") are the
densities of states in the rese rvoirs /(r) .

Direct substitution gives:
~ do - .
1, = 4yp, f T:Fﬁ N (@O 1(©)(1)(0) — 1, (). (20)

A formula of this type was derived in [24]. It
should be noted that the obtained equation for
the current through the system is symmetric with
respect to its two edges. Naturally, this implies
that, in the stationary case, the current flowing
into the system equals the current flowing out
of it. The conservation of total current cannot
be violated in any system and does not require
additional conditions, such as equal tunneling
rates or symmetrically applied voltages at different
edges. Thus, the appearance of asymmetric
expressions for stationary tunneling current, as
obtained in some works on Kitaev chain-type
systems (e.g., [29]), signals the need to verify the
applied approximations. This statement remains
valid even for interacting systems, but deriving an
explicitly symmetric expression in such cases is
more challenging. Examples of such calculations
for systems with electron-phonon interactions can
be found, for example, in [30, 31]. We emphasize
that Equation (20) is exact and explicitly symmetric
for the left and right contacts.

Since we aim to study the low-energy bound state
corresponding to the “Majorana mode”, we consider
the case where the applied voltage is smaller than the
superconducting gap. In this case, we exclude the
influence of quasiparticle states from the continuous

JETP, Vol. 167, No. 1, 2025
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~R
spectrum. To express I'tn (o) through the Green’s
functions of the isolated chain F,If,m (w), we use

Dyson’s equation:

(@) = T, (@) + & (@K @) m ()

115
~R e ~ R R
v (o) = [I + 1Y, (I + lerl,l(w))rl,N (o) X

. -1
X(I +iy, TN v ((D))FZISI,I(@)} X

X(i + inrﬁl(w))FﬁN (03)(i +iy, TN § (CO)>-

where 1 is the identity matrix. The explicit form

. . <R (21)  of the Green’s functions Ty, (0) for |o| < |Al,f
+I N (@Z (O)T'N m (®). is derived in the Appendix. A simpler form can be
obtained for A%/ (ty) > 1. Retaining the leading
Simple algebraic transformations yield: terms in (55) for this parameter, we get:
o
~R C
Fiv () =g - (22)
o —oy + 2y, +7, Co—4yy,C7 1A
A
A4 - p? A4 - p?
co_ ||2( 2u)2 - 2 _ [AlC uz)_ 23)
240 —|A]) —p?) 2(t +|Al)
Substituting this result into (20), we obtain:
do 8y,v,C %o}
= [52 Y 2o S (1 (0) — 1,.(0). (24)

These and further calculations are performed for
the following parameter hierarchy: 7 > A >y, . For
the case y,, > A, we cannot exclude the influence of
the continuous part of the spectrum on conductivity,
and information about low-energy resonances is lost,
so this case is not considered here.

We see that the magnitude of the current (25) is
directly proportional to oa(z) , meaning that the current
decreases exponentially with increasing chain length.
Moreover, if oy = 0, which is typically associated
with Majorana particles, then no current flows
through the system at all. Note that Equation (25)
is symmetric with respect to the contact parameters
[ and r, as expected. A similar expression for the
normal component of the current was obtained in
the quasiclassical approach in [18], where it was
also noted that the zero-bias peak in tunneling
conductance is unlikely to be observed for a realistic
ratio between o, and v, ,.

The tunneling conductance peak associated with
Majorana states was also studied in [32]. That study
considered a single NS contact, where it was assumed
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‘co2 - 0)(2) +2i(y; + 7, )Co— 4y,er2‘

that the chemical potential of the superconductor
was somehow fixed. The problem was solved using
the effective transmission coefficient method for
quasiparticles, which, in the presence of a bound
state, always leads to formulas of type (25). However,
the peak amplitude for the two different systems —
a single NS contact and a superconductor between
two normal contacts — cannot be directly compared
due to the problem of fixing the superconducting
chemical potential. It is worth noting that results
similar to those in [32] for the current in an NS
contact, considering Majorana states, can also be
obtained using the methods from [33].

If in Equation (25) the applied voltage is greater
than the width of localized states, but less than the
superconducting gap, meaning »n;(®) —n,(®) =1 for
|o| < v/,7, then we obtain a simple final expression
for the tunneling current associated with Majorana
modes:

2

. (25)
7 4y7,C* + of
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Thus, the magnitude of the current is always
determined by the smallest transfer rate present in
the system (the weakest link); in our case, these rates
are defined by the parameters o3 / (v, +7,),7,»7, -
If oa% >C 2y,y, , then the general equation (25) leads
to a current proportional to v,y, / (y; +v,), which
is the usual expression for tunneling through an
intermediate state. For the considered system, the
physically reasonable relation is o, < y;,y, . Using
this, we obtain:

o

- 0 26
I, TN (26)

If we use Equations (8) and (23), this formula
gives:

(v 2ﬁtv )eizN(Am’A <
I= ’2 . 27)
1 e—Nln(Qt/(t—A)),(t_A) <t
(Yl + Yr)

For arbitrary parameters u < A <t , the current
is always small in long chains. In the case of @, =0,
which is considered the most favorable scenario for
observing unusual topological properties, we will not
be able to observe a zero-bias peak in the tunneling
conductance at all. This observation holds true for the
model considered in this paper, where the chain has
two contacts at its edges. In any experiment measuring
stationary current, at least two external leads are
required, connected to the “left” and “right” edges of
the system. Of course, there are more complex multi-
contact configurations, but their analysis is beyond
the scope of this paper. Real hybrid semiconductor-
superconductor structures, which simulate the Kitaev
chain, require the consideration of a model Hamiltonian
that describes a semiconductor nanowire with strong
spin-orbit interaction, which is coupled due to the
proximity effect to an underlying superconducting layer.
In this case, the superconductor can be considered
as a reservoir with a fixed chemical potential, and
the “second contact” as the interface between the
semiconductor and the superconductor. Alternatively,
instead of edge connections, we could also consider a
Kitaev chain lying on a substrate, where all chain atoms
are weakly coupled to corresponding substrate atoms.
In this case, the “second contact” with the reservoir
becomes spatially distributed. This problem can be
solved, but it is different from the one considered in
this paper. Nevertheless, if the overlap of the localized
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state with the reservoir states is small, then the zero-
bias current peak should also be small. Its magnitude

in the case of a spatially distributed “second contact”
will not decay exponentially with chain length, but will

still be much smaller than what would be expected from

naive formulas. This may be a possible reason why the

zero-bias peak is often poorly observed in conventional

tunneling experiments [14].

We want to emphasize that naively applied general
formulas for the tunneling current between two contacts
often lead to misleading results when used for low-
dimensional systems, such as the Kitaev chain [21],
due to the possible appearance of localized states in
the contact region.

The lowest-order response (second order in
the tunneling coupling) of quantum mechanical
perturbation theory describes the current only at
the initial moment after the tunneling connection is

“switched on”. Howeyver, the stationary tunneling current
can only be calculated using the full system of kinetic
equations, or equivalently, the full system of equations
for the nonstationary Keldysh-Green’s functions. Only
in simple systems with a continuous spectrum, where
rapid electron relaxation to equilibrium is implicitly
assumed, is the formula based on the equilibrium local
density of states of the leads guaranteed to be valid.

To clarify this idea, let us consider a tunneling
contact with a localized state at the edge of one of the
leads. This localized state creates a sharp peak in the
local density of states and contributes to the simplest
formula for tunneling current. Suppose this state is
empty at the initial moment (i.e., lies above the Fermi
level). Then, immediately after applying a positive bias
voltage to the other lead, the current begins to flow
into this empty localized state. However, after some
relaxation time, determined by the tunneling rate, this
state becomes occupied, and from that point onward,
no more electrons can tunnel into it. The stationary
tunneling current then vanishes, even though the
simplest formula still predicts a “zero-bias peak” in
the tunneling conductance. For this localized state
to contribute to the stationary current, some inelastic
processes must be included, which are responsible for
removing (or adding) electrons from this localized state.
For a finite system, it is also possible that this localized
state at one edge has some overlap with the second
contact. (This corresponds to our case and the case of a
distributed “grounded contact” in a real system.)

In the usual formula for tunneling current, which
relies on the local density of states of the contacts, it is

JETP, Vol. 167, No. 1, 2025
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implicitly assumed that at any moment, the chemical
potentials of all contact states are fixed. To maintain
a constant chemical potential, the system must be
connected to some reservoir via a contact that allows
for particle exchange. Thus, when we say that we fix the
chemical potential of localized states, we are implicitly
including some inelastic relaxation processes or a direct
connection to a reservoir for these states.

4. NONSTATIONARY CURRENT

Now, let us attempt to answer the question of what
the typical time scales are for current or charge transfer
from one edge of the chain to the other. We will pose
the problem differently than in [18], where the effect
of periodic modulation of tunnel barrier transparency
on zero-bias tunneling conductance was studied. An
interesting result in that study was the discovery and
analysis of resonance between the external driving
frequency and the splitting of Majorana states @y . In
our case, we are interested in the characteristic speeds
of transient processes. To do this, let us assume that
the system is initially in equilibrium at ¢ < 0, and then
at + = 0, avoltage is applied to one of the leads. This
additional voltage induces a nonstationary current,
which at t—oo reaches the stationary value (25).

The applied voltage shifts the energy levels in the
reservoirs by V, where the index o denotes the reservoir.
Thus, the reservoir Hamiltonian can now be written as

117

Ho@) = > (kg vy +wihy )+
! (28)
+Y0(Ep -+ Vo0 )y hy

p

The current flowing from the left reservoir into
the system is given by (for the “right” contact r, all
formulas can be written similarly):

I,(t) = —fdt’ (zf(t,z’)ﬁf’,l(r’,t) +

R ~<
+zl (tatl)Gl,l(t 5’)_

. (29)
—G 1t ) —
Gl (z,t’)zf(t’,z)).
Here, the irreducible part takes the form:
Rty =iy ()6 —1') x
8 (30)
t
x exp[—iE;‘ ¢ —t)—iV, ft ,dzle(tl)],
Sott') =iy (15)’ng x
’ 31

« exp[—iEg —1) =iV, [ dn o0, )].

In the frequency representation, these expressions
correspond to the following formulas:

T (0,0) = i) [dev* (@)

1

1 1
m—s—Va+2i6[_m’m2i6+m'03+Va]+

(32)

o' —¢&+2id

1

3

1 1
Co—o —V +co—0)’—2i6]

a

S5 (0,0) = i(t*)? f dsv“(a)n“(g)[
()]

where v*(g) is the density of states in the reservoir
o, 8 — +0. For simplicity, we assume that t* does

not depend on p. In the wide-band approximation,

where we assume that v(g) remains constant for
e ~ o,0,V,,, these expressions simplify to:

Zf (0,0) = —iy,2n6(co' — ),

=5 (0,0) = %fdsnl(s) X
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1 1 1
—s—Va+i5_m—s—i8][m’—s—VQ—iS_w’—s—H‘S

]. (33)

1 1
8 oo—a—V,+i5_c0—s—i8]X

X

1 1
o —e—V, is_co’s+i5}'
As a result, in the frequency representation,
Equation (29) simplifies to:
~ dQ ~3
hw=-[5 [siae-ofh@-o-
2
. (34)
—2i’Y1F1,1(Q,Q — (D))
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where 1 1
. X y Xo)—s—V,+i6_c0—s—i8x
MiQQ—0) = TLIQZ(QQ—o)l11(Q— o)+ 1 1 ] (36)
~R ~A X = =~ |
+ FI,N(Q)Z:(Q,Q—CO)FNJ(Q—Q)), (x)/—afV, —i8 o —c+id
~5 ~A ~R
Q- o) = ILi(Q — o) = (). We see that the first term in (35) exists only

Using Dyson’s equations for retarded and

advanced Green’s functions, we can show that:
~0 u R A
FiQ-w)= o) TT,(Qr(Q- o)+
n=I

~R . ~A
+I11(Q)2iy, T11(Q — ©) +
~R ~A
+ILN ()20, TN 1(Q — ).

Substituting these last expressions into (34), we

obtain:

@=-[2

N_RrR -4
0)21“1;, QI 1(Q — o)
n=1

><Z,<(Q,Q—0)) (35)
+2i(y,z,<(Q,Q — ) — 720 — ) x)
~R ~A
XTI N (I N,1(Q — co))
Here
_ Iy I
o) =2- [aen' )
. t ] -
— ) e “'Co

My y(telV)=— i0(—t)— .

(e+iC(y; +v,)) —0" |A

A
A
_ iCmoe(t)e—C(y,+yr)z—ia)t |A|
20 A |

Al
A
B iC(x)oe(t)e—C(y[+yr)t+i(Tat |A|
—2® A .

m _

if V; =0 and does not directly depend on the
properties of the right reservoir 7.

This means that this term corresponds to the
filling of states at the left edge of the chain due to a
change in its chemical potential.

Consequently, the second term represents the
current that flows from one reservoir to another
through the entire chain.

If we consider only the second term, we obtain:
- o) —~ —~
L= 200 [deav My e V)M y@eV))
- , )

b

x[n’(g)S(V — V) —n" ()5 —V,)

‘o ~R
d—Qef’Q’Fl,N (Q) x

M\LN(tag:V): '

1 1
X —_—
[Q—s—V+i8 Q—g—1id
Since our goal is to study the propagation of
perturbations through the chain, we assume that
at time ¢ = 0, the voltage changes only at the right
contact, and we observe the time-dependent current

at the left contact under the condition V; = 0. Then,
by direct calculations, we obtain that:

A 1 A
1Al 7i(a+Vr)tC 1Al
a — i6(r) : 1t als
. (e+V +iC(y, +7,)) —o"|A .

A

1 1
- - —+ - —
[ e+ V +iC(y;+v,)—o e+iC(y;+v,)—0

1 1
- ; — + ; =
[ e+ V +iC(y; +v,)+o® 8+1C(y,+yr)+m]
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2

4y,y,C %0} 1
1) = %e(n f den’ (s)|

e +iCy+7,)P —o|

2 2
,Me(t)fdgnr(g —V.)x
T

e*l&l‘ 1
X|— ——=e

. —2
E+iCy +7,)) —o 20

1 67C(yl+yr)t+i073t 1

7C(yl+yr)t7iat

1 1
=+ =
e+iC(y; +v,)—o =V, +iC(y;+v,)—o
2

1

+ =
20

Here

&= o3 —C2y —1,)%. (37)

As expected, if 7~oo, the current approaches its

stationary value (25):
4y,y,C %00}
I — ooy = HC00 g0
T

x [de(n' (e) = n" (e = V,)) x

2

y ! |
e +iCh, +1)7 o)

If + — 40, the current at the opposite edge of the
chain is not observed, illustrating the continuity of
the current change when passing through r = 0:

4yy,C 200}
I — +0) = =261 x

xfde(n[(s) —n"(g)) x

2
1

— =0
(6 +iC(y +7,)) — 0|

X

If now, as in the previous section, we are
interested in the role of “Majorana states,” we apply
an additional voltage to the right contact, which is
greater than the width of the localized states but
less than the value of the superconducting gap. This
means that the conditions

nle)=n"(e) =0, n"(e-V,)=1.
are satisfied for € < v,,v,
The current is defined as
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=+
e+iC(y; +v,)+o

e—V, +iC(y, +v,)+ 0

_ ZYIYrC 0‘)(2) 1

1) =
T of +4C 2y,

o) +

2yy,Co}
B0 =2 gy

(1) + 7)o
[0 o+ iC (Vl + yr)
C 2@(2) e—2C(yl +v, )t—2i<u‘e(t)

+iyy, — =
" o—iCy+y,)

(38)

We consider the case y,, v,>> o, under the assumption
that o, is always small. However, for very symmetric
tunneling coupling with the leads, we could have
03(2) > (v, — y,)z. This case appears unrealistic, but
it demonstrates an oscillating current signal at the left
edge:

e
2C(y; +v,)
1— e—2C(yl+yr)t _

1,@t) =

X

]
2

—2C(y;+vy,. )t
xe (Y[ Yr) .

Cly +v,)
2

— sin(2wgyt) — (1 —cos(Cmyt))

(39)

If oy<]vy,—v,| and >0, Equation (38)
simplifies to:
2
%
2C(y; +v,)
4Ylyr

¥ -,

) (e yrewv,rﬂ,
(YI - Yr)

1) =

e’zc(le“’r)t (40)

x 14+
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Note that the negative sign indicates that the
current flows from r to /. For significantly different
tunneling rates, for example, y, > v,, the time
evolution of the leading contribution to the current
is determined by the slowest rate:

03(2) ‘1 B e—4Cylt}
2Cy, '

[,@t) = — (41)

The final formula shows that if y; — 0, the
current signal at the other end of the chain increases
very slowly.

5. CONCLUSION

This paper demonstrates that the transport
properties of a finite-length Kitaev chain can be
fully investigated using the conventional Green’s
function technique. For any nonstationary
problem, this formalism appears much more
convenient than the language of Majorana
fermions or other methods, allowing for the exact
analytical results. Our calculations bridge the
gap between phenomenological parameters for
quasiparticles in quasiclassical calculations and the
microscopic description of quasi-one-dimensional
superconductors.

It has been shown that the stationary tunneling
current through a finite chain is always determined
by the lowest transfer rate among the parameters
03(2) /(v; +v,),v,Y, » provided the applied voltage
is less than the superconducting gap. For arbitrary
u<|/A|<t, the stationary current is always
exponentially small for long chains. It should be
noted that for a finite Kitaev chain placed between
two external thermostat contacts, no significant peak

can be observed at ®, in the tunneling conductance.

Furthermore, in the case of o, =0, the stationary
current completely vanishes.

We have also obtained the time-dependent
behavior of the tunneling current following a sudden
change in the bias voltage at one of the leads. It was
shown that the typical timescales of tunneling current
evolution are primarily determined by the tunneling
rates vy,,y, from the left and right edge sites of the
chain to the corresponding leads. Although the
results presented here are for an ideal system, we can

be confident — based on the conclusions of [34, 35]—

that weak disorder does not significantly affect the
properties of the ideal Kitaev chain. Therefore, only
strong disorder can completely alter our results.

BILINSKII et al.

In conclusion, it is worth noting that when
considering systems of multiple Kitaev chains, an
effective description based on Coulomb blockade
effects is often constructed. However, such an
effective description is sensitive to charge transfer
rates, which may be important for modern proposals
related to signal transmission, quantum information
exchange, and storage using Kitaev chains.
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APPENDIX ANALYTICAL DESCRIPTION
OF THE ISOLATED KITAEV CHAIN

In this section, we present the formulas for the
Green’s functions of the isolated Kitaev chain.

As shown in [20], the exact solution for the Green’s
functions of the infinite chain can be written as:

@) = .
AA" =) A, —A)

(42)

X

X‘:_m‘ﬂl - X‘f_mb‘?z}

Here
©-p-24, 2Asign(n —m)
A% 1
W = +
! . (:0+u—|—2tA+ ’
—2Asign(n —m) ————+
JA2 -1
O—pu—2A4_ .
ﬁ 2A51gn(n—m)
M\ _ —
’ —2A*sign(n—m) ofpt2d. '
JA2 -1

The complex value of the square root \/Ai -1
is defined such that it has a branch cut along the

interval \JA2 —1 and takes positive values when
AL >1.
2 ® +id)’
TS p? + 4(A| —1%) 1—%
) 4
£ = 3 )
28" = (43)
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L =A, — A2 -1 (44)

We assume 6 — +0. The Green’s function for
the Hamiltonian (2) can be written in terms of the
Green’s function of the infinite chain, using Dyson’s
equation with the perturbation V',

R (@)= IR (w)—T8

121

IR (@) =0k (0) + TO (@)U o, T, (©) + 45)
+F0N+1(‘”)U0 TN 41 (©).

If we solve Equation (45) for F . (@) and take the
limit U — oo, we can find the exact solution for the
Green’s functions TR (o) :

1
X(@)(Fglf)(ﬂ)) - Fglzev +1(03)(F?VR+1,N +1(03))71F9VR+1,0(03)) X

X0 @) = TOR 4 @Ry (@) TRy (@) -

(46)

0 0R -1
I @[Ty (@)~ T @@ @) T @) >

XT3, 1 (©) = TR o (@)(TE (@) TE (@)).

The matrix elements of FR (0) describe the
Green’s functions of the finite cham, provided the
indices satisfy the condition O <mm<N+1.1t
can be directly verified that F ', (©) =0 if one of
the arguments n or m is pos1t1ve, while the other
is negative, giving us direct proof that our procedure
effectively removes the site #» = 0 from the system.
The same is true for the site n = N +1.

We can see that the function FR (®) may have a
set of poles at values o determmed by the equation:

det (TG (@) = T 1 (@) (@) To 11(@)) = 0.(47)

Since FOR (w) has no poles inside the
superconductmg gap, it can be assumed that
the solutions of this equation correspond to the
energies of states localized at the chain edges. Direct
substitution of the Green’s functions (42) allows us to
find the solution for ® at arbitrary parameter values.

For the semi-infinite chain, if ¥ — oo, the
situation simplifies significantly. Equation (47)
simplifies to:

det(rgfg(@)) =0, (48)
and it has only one solution in the gap o = 0. This
solution does not arise if || > 2z. This pole at @ = 0
exists in the Green’s function FR (®) only ifboth n
and m are positive or both are negative, for any set
of parameters f,u,A satisfying the condition

2> (n/2)? + A%
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the condition that separates the topologically
nontrivial and trivial phases. This means that the
system described by the Hamiltonian (2) has two
states with energy o = 0: one to the left and one to
the right of the defect, which cuts the chain into two
subsystems.

If we now consider a long finite chain of length 7,
we can write the equation for localized states as

det|T{% L (@) = (49)

where Fg\ﬂf v +1(®) is the Green’s function for the
semi-infinite chain:

F%)R () =

= TR (@) — TOR (m)(rgf)(m))‘l IO (@).  (50)

Since we are interested in bound states within the
gap with energies close to zero, the calculations can
be simplified using the following fact. For ® — 0,
the values of y satisfy the condition |X jE| < 1. Indeed,
for o = 0, Equation (44) gives

—uil\/4t u —I—4|A|2)
= 51
e = 2( +1A) D
As a result,
2[4
=|—F"]. 52
I 1 +1A| (52)
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This means that || <1 for 12> ((n/2)?+ A%
and o < |A|. Thus, quantities like |y|" appearing in
the Green’s functions I’y , are small parameters for
large N. Henceforth, we will refer to such quantities
as “exponentially small,” implying exponential decay
with chain length (or number of sites).

Expanding Equation (49) in terms of ® and

XJI , which we treat as small, as explained above, we
obtain

o t
0 = det lo———
S @ =)
A
A 2 2
* Al |Ajer 2“) . (53)
AP 2@e - (A - u)
4]
N+l N+1)
=]

where 1 is the identity matrix. The solution ® =0
corresponds to the pole of the Green’s function,

R o A4 —p?)
" (@ +8)” — (09)” 24> —|A") — 1)
A
A
<\ = A =A™ + o -
m 1
B @ Al — )
(o +8)* — (w)” 24> — [A]') — n?)
'
| =TT =N
2
A

Diagonal elements T show the spatial

nn
distribution of density in localized states. In the limit
A =t, only T'|; and T'yy remain non-zero, since
Equation (52) gives

1 ocq ocli— A"
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which exists only on the semi-infinite chain segments.
The other pair of solutions has finite but small
energies ® = twm,, where
LTS

it\/4(t2 —[AP) =2

g )

Here we see that this solution satisfies the
approximations we made, if ‘XN “‘ < 1. Considering

N+1

N+1
X\ X+

—x- (34)

Equation (51), the condition #* = W/ 2)? + A?)

separates the two regions with oscillating and non-
oscillating solutions for o, . If @, crosses zero with
varying u, this implies a change in fermion parity, as
discussed in [36].

The leading term in the expansion of the Green’s
function FR (w) near o — +w,, which in quantum
mechanics would describe the spatial structure of the
wavefunctions of the two localized states, takes the
following form:

;A
A
A
Al
(35)
"
+(XN+1 n N+1 n)(x+ . r_n) . .

2
A

In the high-symmetry case u = 0 and |A| — ¢, the
energy levels are equal:

N
_ 4Afr (1 =1a))2
DAl
xsin Tw —0 (56)
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As noted earlier (see, for example, [37]), for an

odd number of sites is equal to zero for any values

of rand A.
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