
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2025, Vol. 167, No. 1,  pp.  110–123

110

1. INTRODUCTION

In recent decades, significant attention has been 
given to systems exhibiting “topologically nontrivial” 
properties. However, for practical applications, it is 
essential to assess the specific physical characteristics 
of such systems in addition to their mathematical 
interpretation of the ground state properties. One 
of the simplest models that demonstrates properties 
allowing for topological interpretation is the atomic 
chain with ppp-wave superconductivity of spinless 
particles, proposed by A. Kitaev [1]. The primary 
interest in this model in subsequent years was driven 
by the nontrivial topological interpretation of its 
ground-state properties. It was shown that, due to 

“topological reasons”, quantum states localized at the 
chain edges appear within the superconducting gap. 
These states, often referred to as “Majorana modes”, 
are commonly associated with the existence of 
quasiparticles [2] that bear resemblance to Majorana 
fermions [3].

Possible experimental realizations of this model 
are typically based on the proximity effect in 

semiconductor nanowires with strong spin-orbit 
interaction, placed on a superconducting substrate 
[4, 5, 6]. The latest experimental advances and 
discussions on the challenges encountered can be 
found in the review [7].

It is widely believed that further progress in this field 
may involve models with an effective Josephson action, 
accounting for Coulomb blockade-type effects [8, 9, 
10, 11, 12, 13]. There is hope that long-range Coulomb 
interactions could facilitate signal transmission in 
finite Kitaev chains using “Majorana states”. However, 
recharging effects inevitably involve charge transfer 
processes, so we must ensure that we accurately describe 
tunneling transport and charge transfer effects first in 
the simplest tunneling setup. Theoretical results can 
then be compared with tunneling experiments under 
various conditions [14, 15].

Some theoretical studies suggest that “Majorana 
states” could be utilized as an error-protected 
method for storing and transmitting information in 
quantum technology [16, 17]. However, if a state 
is protected from arbitrary changes due to external 
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noise, the same protection may make intentional 
changes to the system’s state equally diff icult, 
potentially rendering the system impractical for real-
world applications. One possible way to study how 
well a system responds to a signal is to investigate its 
nonstationary transport properties.

In [18], nonstationary effects related to tunnel 
barrier transparency modulation were considered 
in a quasiclassical approach. That work analyzed a 
three-terminal system, where one of the contacts 
was effectively used to fix the chemical potential 
of the superconductor. In this study, we consider a 
two-terminal geometry, where the superconductor is 
connected only to two external contacts. To explore 
the role of localized states in nonstationary transport 
properties, we employ the formalism of nonstationary 
Green’s functions for electrons.

Below, we will demonstrate that this approach 
enables us to derive explicit analytical expressions 
for both the tunnel current and nonstationary charge 
transport, in contrast to more complex methods 
based on density matrix equations, as discussed, 
for example, in [19]. Furthermore, this approach 
allows us to compare quasiclassical calculations with 
microscopic methods and establish a connection 
between the parameters used in these different 
approaches.

The exact electronic Green’s functions for 
the infinite Kitaev chain in equilibrium can be 
obtained analytically [20]. These functions can be 
used to derive the nonstationary Green’s functions 
for a finite chain, allowing us to understand how 
the system evolves over time when subjected to an 
external perturbation. The key idea in our approach 
is to treat the finite Kitaev chain as a cut segment 
of an infinite chain or as a chain with strong defects 
(for a single-cut chain, see, e.g., [21]). This trick 
enables us to use the Green’s functions of the 
infinite chain to study all single-particle states in the 
system. Our calculations do not require any special 
interpretation of singularities in the single-particle 
Green’s function as specific “states”. It is important 
to note that the poles of the single-particle Green’s 
function, which appear inside the superconducting 
gap in this model, can hardly be interpreted as 
single-particle excitations. True Majorana particles, 
as discussed in the pioneering works [3], are well-
defined particles (quasiparticles) with the usual 
algebra of creation and annihilation operators. In 
any physical problem, such real particles contribute 

to the single-particle Green’s function with a residue 
equal to one. It is well known that bound states 
localized around defects, such as paramagnetic 
impurities [22] or resonance impurities [23] with 
energies lying inside the superconducting gap, 
frequently appear in conventional superconductors. 
These states are genuine single-particle states. In 
the present case, we observe that the appearance of 
poles in the electronic Green’s function within the 
gap, with residues smaller than one, is more likely an 
artifact of the model, which has a degenerate (in the 
highly symmetric case) ground state, rather than the 
emergence of new quasiparticles.

2. PROPERTIES OF AN ISOLATED 
KITAEV CHAIN

In this section, we briefly reproduce some results 
related to the spectral properties of a finite Kitaev 
chain, using the Green’s function formalism, which 
we will employ in later sections.

We start with the free ideal Kitaev chain, which is 
completely isolated from any external systems.

The model Hamiltonian of such a system can be 
written as
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Here, ψn
  and ψn  are the creation and 

annihilation operators for a particle at site n, m is 
the chemical potential, t is the hopping parameter 
between neighboring sites, D is the superconducting 
order parameter, which in this study we consider as 
a fixed parameter, N is the total number of sites in 
the lattice.

To obtain exact solutions for the Green’s 
functions of the Hamiltonian (1), it is convenient to 
use the Green’s functions of an infinite Kitaev chain. 
Indeed, the behavior of a finite chain can be modeled 
by considering an infinite chain with infinitely strong 
point defects U→+∞ added at sites 0 and N+1 (see 
Fig. 1). As a result, the particles located between 
these two sites will be completely isolated from the 
outer parts of the chain, and the Green’s functions 
will be identical to those of a finite Kitaev chain of 
length N, as long as the node indices lie between 0 
and N+1.
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Thus, the behavior of the system is described by 
the following Hamiltonian, corresponding to the 
system shown in the figure:

	 H H V  = ,0 + � (2)
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This Hamiltonian (2) is identical to Hamiltonian 
(1) when U→∞. To determine the physical properties 
of the chain, we use the formalism of normal 
and anomalous Green’s functions, denoted as 
G t tnm ( , )¢ , F t tnm ( , )¢ , respectively. In this work, we 
use the following definitions of Green’s functions:
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where a b ab ba   , ={ } + ,  < >= ( )a a Tr ρ .  The indices 
R and A denote the retarded and advanced Green’s 
functions, respectively.

Using Dyson’s equation for Hamiltonian (2), 
we can express the retarded Green’s functions 
Γnm

R t t( , )¢  of the finite chain in terms of the Green’s 
functions Γnm

R t t0 ( , )¢  of the infinite Kitaev chain. In 
the Appendix, it is shown that the functions Γnm

R ( )ω  
have poles at points ω ω= 0± , where
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As | |< 1χ±  (see 52), expression (6) is written for the 
case χ±

N
 1. For sufficiently large N, the parameter 

ω0  is small compared to other system parameters and 
decays exponentially as the N chain length increases.

For the cases | D |   t and | D | <  t, | D | →  t, the 
“exponential smallness” of expression (6) in N can 
be explicitly demonstrated:
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The exponential decay of ω0  with increasing 
chain length is explained by the exponentially weak 
overlap of the two bound states at opposite edges of 
the chain. Using (8), we can estimate the localization 
length of the bound states as:

   l
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where a is the lattice constant.
Such an exponential dependence has been 

observed in tunneling experiments using Coulomb 
blockade methods, as described in [15].

In the limit N→∞, the states near each edge begin 
to behave as if the chain were semi-infinite. In this 
case, the two poles with residues equal to 1/2 together 
correspond to a single Fermi excitation, which is 
split between the two edges of the chain. Thus, the 
residue in terms of Bogoliubov excitations is equal to 
1, as it should be. However, when observing only one 
end of the chain, we “see” only half of this excitation. 
This Fermi excitation is very specific because it is 

D

DD

D
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the excitation that connects two degenerate ground 
states with different parity (i.e., a different number of 
electrons), but with the same energy.

This statement can be easily illustrated with a 
simple example of a two-site chain. The Hamiltonian 
(1) for two sites can be diagonalized using the 
Bogoliubov transformation. In terms of Bogoliubov 
operators, the Hamiltonian takes the form

	 H E c c c c
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For ∆ = 2 2t - µ  (which in the case m = 0 gives 
D = t), we obtain ε1 = 0  (the solution 53 for the case 

N = 2 , ω = 0 ). Then, | >=
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corresponds to the ground state and satisf ies 
c1,2 0| >= 0.Φ  At the same time, the state 
| >= | >= ( ) | 0 >1 1 0 1 2Φ Φc v u + + +ψ ψ  a l s o  h a s 
zero energy, which means that the ground state is 
degenerate. For the matrix elements between these 
ground states, we have

< | | >= / 2, < | | >= / 2.0 1 1 1 1 0Φ Φ Φ Φψ ψu v

This means that in the single-particle function G 11
at ω = 0 , a pole appears with a residue equal to 1/2.

3. TUNNELING CURRENT

We f irst consider the stationary tunneling 
properties of the Kitaev chain. To do this, we assume 
that the chain is connected at sites 1 and N to two 
external reservoirs with a large number of degrees of 
freedom, labeled by indices l and r, respectively.

The total Hamiltonian can then be written as

m
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The current flowing into the chain through site 1 
is given by the standard expression ([24]):
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Using the nonstationary diagrammatic technique, 
this expression can be rewritten as

	 I t G t t G t tl
p

p
l

lp lp( ) = ( , ) ( , ) ,,1
<

1,
<− −( )∑τ   � (13)

where
 G t t dt g t t G t t

dt g t t

lp lp p
l A

lp
R

,1
<

1
<

1 1,1 1

1 1

( , ) = ( , ) ( , )

( , )

∫
∫

+

+

τ

ττ

τ

p
l

lp p
l

lp
A

G t t

G t t dt G t t g t t



 

1,1
<

1

1,
<

1 1,1
<

1 1

( , ),

( , ) = ( , ) ( ,∫ ))

( , ) ( , ).1 1,1 1
<

1

+

+∫dt G t t g t tR
p
l

lp
 τ

The parameter p corresponds to the density of 
states inside both reservoirs, g pα ω( )  is the Green’s 
function of reservoir α when it is disconnected from 
the chain, where α takes values l and r, GR

n,m(t, t1) 
are the exact are the retarded and advanced Green’s 
functions of the chain, accounting for tunneling 
transitions into the reservoirs.

Crucially, the tunneling Hamiltonian (11) and 
the tunneling current (12) are expressed in terms of 
real electron operators, and they directly provide 
the actual electric current in the system. It should be 
noted that attempts to use effective Hamiltonians in 
terms of Majorana quasiparticle operators often lead, 
in our opinion, to questionable results, as handling 
Majorana operators requires great caution and 
precision. Due to the Clifford algebra commutation 
relations, there is no Wick’s theorem directly applicable 
to Majorana operators, and pair correlators do not 
have the meaning of Green’s functions, which form 
the basis of conventional diagrammatic techniques. 
In the calculations presented in this paper, we do not 
encounter any difficulties that we would have faced if we 
had worked with Majorana operators. For the problem 
of a finite Kitaev chain of arbitrary length, inserted 
between two leads and described by Hamiltonian 
(11), we have exactly computed the electronic current 

Fig. 1: Infinite Kitaev chain with two defects
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(12). It is not surprising that some discrepancies may 
arise between our results and those of [26, 27, 25] 
and other authors, as the latter were obtained using a 
number of approximations in the Majorana operator 
representation.

In what follows, we assume, as usual, that due 
to the large number of particles and degrees of 
freedom in each reservoir, the particle distribution 
function does not significantly change throughout 
the experiment, and thus each reservoir remains 
practically in equilibrium. However, the system as a 
whole is not in equilibrium, although in this section, 
we consider it stationary, meaning the current does 
not change over time. Thus, Equation (13) can 
be rewritten using frequency-dependent Green’s 
functions as follows:

	 I
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We can simplify this expression by introducing the 
irreducible part
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where nα ω( )  are the Fermi-Dirac distribution 
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Thus, Equation (14) can be rewritten as:
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Here, the current Il  is determined by the upper-
left element of the matrix Il

  ( I l


11 ).
An expression of this type in terms of 

nonequilibrium Green’s functions was first derived 
in [24] and later applied in [28]. At first glance, this 
expression appears asymmetric with respect to the 
left and right contacts. However, in the stationary 
case, a properly calculated current (17) can always 
be rewritten in an explicitly symmetric form.

In our case, Equation (17) can be further 
simplified using the relations
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Using the wide-band approximation for the 
reservoirs, we assume that for the considered values of 
ω , the condition Σl r

A
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R
l ri( ) ( )( ) ,ω γ≈ −  
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l r

p
l r

( )
( ) ( ) 2= ( )  and νl r( )  are the 

densities of states in the rese rvoirs l r( ) .
Direct substitution gives:
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A formula of this type was derived in [24]. It 
should be noted that the obtained equation for 
the current through the system is symmetric with 
respect to its two edges. Naturally, this implies 
that, in the stationary case, the current flowing 
into the system equals the current f lowing out 
of it. The conservation of total current cannot 
be violated in any system and does not require 
additional conditions, such as equal tunneling 
rates or symmetrically applied voltages at different 
edges. Thus, the appearance of asymmetric 
expressions for stationary tunneling current, as 
obtained in some works on Kitaev chain-type 
systems (e.g., [29]), signals the need to verify the 
applied approximations. This statement remains 
valid even for interacting systems, but deriving an 
explicitly symmetric expression in such cases is 
more challenging. Examples of such calculations 
for systems with electron-phonon interactions can 
be found, for example, in [30, 31]. We emphasize 
that Equation (20) is exact and explicitly symmetric 
for the left and right contacts.

Since we aim to study the low-energy bound state 
corresponding to the “Majorana mode”, we consider 
the case where the applied voltage is smaller than the 
superconducting gap. In this case, we exclude the 
influence of quasiparticle states from the continuous 
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spectrum. To express Γ1, ( )N
R

ω through the Green’s 

functions of the isolated chain Γn m
R

, ( )ω , we use 

Dyson’s equation:
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Simple algebraic transformations yield:

Γ Γ Γ

Γ

� � �

�

1, 1,1 1,

,

( ) = ( ) ( )

(

N
R

l r l
R

N
R

r N N
R

i

i

ω γ γ γ ω ω

γ

I I

I

+ +( ) ×


× + ωω ω

γ ω ω γ ω

) ( )

( ) ( ) ( )

,1

1

1,1 1, ,

( ) 

×

× +( ) +

−
Γ

Γ Γ Γ

N
R

l
R

N
R

r N N
Ri iI I� �(( ).

where I  is the identity matrix. The explicit form 
of the Green’s functions Γn m

R
, ( )ω  for ω  ∆ ,t

is derived in the Appendix. A simpler form can be 
obtained for ∆2 / ( ) 1tγ  . Retaining the leading 
terms in (55) for this parameter, we get:
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Substituting this result into (20), we obtain:
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These and further calculations are performed for 
the following parameter hierarchy: t l r> > ,∆ γ . For 
the case γ l r, > ∆ , we cannot exclude the influence of 
the continuous part of the spectrum on conductivity, 
and information about low-energy resonances is lost, 
so this case is not considered here.

We see that the magnitude of the current (25) is 
directly proportional to ω0

2 , meaning that the current 
decreases exponentially with increasing chain length. 
Moreover, if ω0 = 0 , which is typically associated 
with Majorana particles, then no current f lows 
through the system at all. Note that Equation (25) 
is symmetric with respect to the contact parameters 
l and r, as expected. A similar expression for the 
normal component of the current was obtained in 
the quasiclassical approach in [18], where it was 
also noted that the zero-bias peak in tunneling 
conductance is unlikely to be observed for a realistic 
ratio between ω0  and γ l r, .

The tunneling conductance peak associated with 
Majorana states was also studied in [32]. That study 
considered a single NS contact, where it was assumed 

that the chemical potential of the superconductor 
was somehow fixed. The problem was solved using 
the effective transmission coefficient method for 
quasiparticles, which, in the presence of a bound 
state, always leads to formulas of type (25). However, 
the peak amplitude for the two different systems – 
a single NS contact and a superconductor between 
two normal contacts – cannot be directly compared 
due to the problem of fixing the superconducting 
chemical potential. It is worth noting that results 
similar to those in [32] for the current in an NS 
contact, considering Majorana states, can also be 
obtained using the methods from [33].

If in Equation (25) the applied voltage is greater 
than the width of localized states, but less than the 
superconducting gap, meaning n nl r( ) ( ) = 1ω ω-  for 
ω γ γ l r, then we obtain a simple final expression 

for the tunneling current associated with Majorana 
modes:

	 I
C

C
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l r

l r l r
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2
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2
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γ γ ω
γ γ γ γ ω+ +
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Thus, the magnitude of the current is always 
determined by the smallest transfer rate present in 
the system (the weakest link); in our case, these rates 
are defined by the parameters ω γ γ γ γ0

2 / ( ), ,l r l r+ . 
If ω γ γ0

2 2³ C l r , then the general equation (25) leads 
to a current proportional to γ γ γ γl r l r/ ( )+ , which 
is the usual expression for tunneling through an 
intermediate state. For the considered system, the 
physically reasonable relation is ω γ γ0 , l r . Using 
this, we obtain:

	 I
Cl

l r
=

2
.0

2ω
γ γ+( )

� (26)

If we use Equations (8) and (23), this formula 
gives:
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For arbitrary parameters µ < <∆ t , the current 
is always small in long chains. In the case of ω0 = 0,  
which is considered the most favorable scenario for 
observing unusual topological properties, we will not 
be able to observe a zero-bias peak in the tunneling 
conductance at all. This observation holds true for the 
model considered in this paper, where the chain has 
two contacts at its edges. In any experiment measuring 
stationary current, at least two external leads are 
required, connected to the “left” and “right” edges of 
the system. Of course, there are more complex multi-
contact configurations, but their analysis is beyond 
the scope of this paper. Real hybrid semiconductor-
superconductor structures, which simulate the Kitaev 
chain, require the consideration of a model Hamiltonian 
that describes a semiconductor nanowire with strong 
spin-orbit interaction, which is coupled due to the 
proximity effect to an underlying superconducting layer. 
In this case, the superconductor can be considered 
as a reservoir with a fixed chemical potential, and 
the “second contact” as the interface between the 
semiconductor and the superconductor. Alternatively, 
instead of edge connections, we could also consider a 
Kitaev chain lying on a substrate, where all chain atoms 
are weakly coupled to corresponding substrate atoms. 
In this case, the “second contact” with the reservoir 
becomes spatially distributed. This problem can be 
solved, but it is different from the one considered in 
this paper. Nevertheless, if the overlap of the localized 

state with the reservoir states is small, then the zero-
bias current peak should also be small. Its magnitude 
in the case of a spatially distributed “second contact” 
will not decay exponentially with chain length, but will 
still be much smaller than what would be expected from 
naive formulas. This may be a possible reason why the 
zero-bias peak is often poorly observed in conventional 
tunneling experiments [14].

We want to emphasize that naively applied general 
formulas for the tunneling current between two contacts 
often lead to misleading results when used for low-
dimensional systems, such as the Kitaev chain [21], 
due to the possible appearance of localized states in 
the contact region.

The lowest-order response (second order in 
the tunneling coupling) of quantum mechanical 
perturbation theory describes the current only at 
the initial moment after the tunneling connection is 

“switched on”. However, the stationary tunneling current 
can only be calculated using the full system of kinetic 
equations, or equivalently, the full system of equations 
for the nonstationary Keldysh-Green’s functions. Only 
in simple systems with a continuous spectrum, where 
rapid electron relaxation to equilibrium is implicitly 
assumed, is the formula based on the equilibrium local 
density of states of the leads guaranteed to be valid.

To clarify this idea, let us consider a tunneling 
contact with a localized state at the edge of one of the 
leads. This localized state creates a sharp peak in the 
local density of states and contributes to the simplest 
formula for tunneling current. Suppose this state is 
empty at the initial moment (i.e., lies above the Fermi 
level). Then, immediately after applying a positive bias 
voltage to the other lead, the current begins to flow 
into this empty localized state. However, after some 
relaxation time, determined by the tunneling rate, this 
state becomes occupied, and from that point onward, 
no more electrons can tunnel into it. The stationary 
tunneling current then vanishes, even though the 
simplest formula still predicts a “zero-bias peak” in 
the tunneling conductance. For this localized state 
to contribute to the stationary current, some inelastic 
processes must be included, which are responsible for 
removing (or adding) electrons from this localized state. 
For a finite system, it is also possible that this localized 
state at one edge has some overlap with the second 
contact. (This corresponds to our case and the case of a 
distributed “grounded contact” in a real system.)

In the usual formula for tunneling current, which 
relies on the local density of states of the contacts, it is 
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implicitly assumed that at any moment, the chemical 
potentials of all contact states are fixed. To maintain 
a constant chemical potential, the system must be 
connected to some reservoir via a contact that allows 
for particle exchange. Thus, when we say that we fix the 
chemical potential of localized states, we are implicitly 
including some inelastic relaxation processes or a direct 
connection to a reservoir for these states.

4. NONSTATIONARY CURRENT

Now, let us attempt to answer the question of what 
the typical time scales are for current or charge transfer 
from one edge of the chain to the other. We will pose 
the problem differently than in [18], where the effect 
of periodic modulation of tunnel barrier transparency 
on zero-bias tunneling conductance was studied. An 
interesting result in that study was the discovery and 
analysis of resonance between the external driving 
frequency and the splitting of Majorana states ω0 . In 
our case, we are interested in the characteristic speeds 
of transient processes. To do this, let us assume that 
the system is initially in equilibrium at t < 0 , and then 
at t = 0 , a voltage is applied to one of the leads. This 
additional voltage induces a nonstationary current, 
which at t→∞ reaches the stationary value (25).

The applied voltage shifts the energy levels in the 
reservoirs by Va, where the index a denotes the reservoir. 
Thus, the reservoir Hamiltonian can now be written as
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The current flowing from the left reservoir into 
the system is given by (for the “right” contact r, all 
formulas can be written similarly):
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Here, the irreducible part takes the form:
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In the frequency representation, these expressions 
correspond to the following formulas:
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where ν εα( )  is the density of states in the reservoir 
a, δ→ +0 . For simplicity, we assume that τα  does 
not depend on p. In the wide-band approximation, 
where we assume that ν ε( )  remains constant for 
ε ω ω , , ,¢ V l r ,  these expressions simplify to:
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As a result, in the frequency representation, 
Equation (29) simplifies to:
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where
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Using Dyson’s equations for retarded and 

advanced Green’s functions, we can show that:
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Substituting these last expressions into (34), we 

obtain:
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We see that the first term in (35) exists only 
if V l ¹ 0  and does not directly depend on the 
properties of the right reservoir r.

This means that this term corresponds to the 
filling of states at the left edge of the chain due to a 
change in its chemical potential.

Consequently, the second term represents the 
current that f lows from one reservoir to another 
through the entire chain.

If we consider only the second term, we obtain:
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Since our goal is to study the propagation of 
perturbations through the chain, we assume that 
at time t = 0 , the voltage changes only at the right 
contact, and we observe the time-dependent current 
at the left contact under the condition V l = 0 . Then, 
by direct calculations, we obtain that:
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As expected, if t→∞, the current approaches its 
stationary value (25):
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If t → +0 , the current at the opposite edge of the 
chain is not observed, illustrating the continuity of 

the current change when passing through t = 0 :
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If now, as in the previous section, we are 
interested in the role of “Majorana states,” we apply 
an additional voltage to the right contact, which is 
greater than the width of the localized states but 
less than the value of the superconducting gap. This 
means that the conditions

n n n Vl r r
r( ) = ( ) = 0, ( ) = 1.ε ε ε-

are satisfied for ε γ γ l r,

The current is defined as
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We consider the case γr, γl  ω0 under the assumption 
that w0 is always small. However, for very symmetric 
tunneling coupling with the leads, we could have 
ω γ γ0

2 2( ) r l- .  This case appears unrealistic, but 
it demonstrates an oscillating current signal at the left 
edge:
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If ω γ γ0 | | r l-  and t > 0,  Equation (38) 
simplifies to:
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Note that the negative sign indicates that the 
current flows from r to l. For significantly different 
tunneling rates, for example, γr  γl, the time 
evolution of the leading contribution to the current 
is determined by the slowest rate:

	 I t
C

el
r

C lt( ) =
2

1 .0
2

4
− −








−ω
γ

γ � (41)

The final formula shows that if γ l ® 0 , the 
current signal at the other end of the chain increases 
very slowly.

5. CONCLUSION

This paper demonstrates that the transport 
properties of a finite-length Kitaev chain can be 
fully investigated using the conventional Green’s 
function technique. For any nonstationary 
problem, this formalism appears much more 
convenient than the language of Majorana 
fermions or other methods, allowing for the exact 
analytical results. Our calculations bridge the 
gap between phenomenological parameters for 
quasiparticles in quasiclassical calculations and the 
microscopic description of quasi-one-dimensional 
superconductors.

It has been shown that the stationary tunneling 
current through a finite chain is always determined 
by the lowest transfer rate among the parameters 
ω γ γ γ γ0

2 / ( ), ,l r l r+ , provided the applied voltage 
is less than the superconducting gap. For arbitrary 
µ <| |<∆ t , the stationary current is always 
exponentially small for long chains. It should be 
noted that for a finite Kitaev chain placed between 
two external thermostat contacts, no significant peak 
can be observed at ω0  in the tunneling conductance. 
Furthermore, in the case of ω0 = 0 , the stationary 
current completely vanishes.

We have also obtained the time-dependent 
behavior of the tunneling current following a sudden 
change in the bias voltage at one of the leads. It was 
shown that the typical timescales of tunneling current 
evolution are primarily determined by the tunneling 
rates γ γl r,  from the left and right edge sites of the 
chain to the corresponding leads. Although the 
results presented here are for an ideal system, we can 
be confident – based on the conclusions of [34, 35]—
that weak disorder does not significantly affect the 
properties of the ideal Kitaev chain. Therefore, only 
strong disorder can completely alter our results.

In conclusion, it is worth noting that when 
considering systems of multiple Kitaev chains, an 
effective description based on Coulomb blockade 
effects is often constructed. However, such an 
effective description is sensitive to charge transfer 
rates, which may be important for modern proposals 
related to signal transmission, quantum information 
exchange, and storage using Kitaev chains.
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APPENDIX ANALYTICAL DESCRIPTION 
OF THE ISOLATED KITAEV CHAIN

In this section, we present the formulas for the 
Green’s functions of the isolated Kitaev chain.

As shown in [20], the exact solution for the Green’s 
functions of the infinite chain can be written as:
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∆
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R
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The complex value of the square root A± −
2 1  

is defined such that it has a branch cut along the 
interval A± −

2 1  and takes positive values when 
A± > 1 .
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	 χ± ± ±− −= 1.2A A � (44)

We assume δ→ +0 . The Green’s function for 
the Hamiltonian (2) can be written in terms of the 
Green’s function of the infinite chain, using Dyson’s 
equation with the perturbation 

?
V ,
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+ + + (( ).ω
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If we solve Equation (45) for Γnm
R ( )ω  and take the 

limit U → ∞ , we can find the exact solution for the 
Green’s functions Γnm

R ( )ω :
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The matrix elements of Γnm
R ( )ω  describe the 

Green’s functions of the finite chain, provided the 
indices satisfy the condition 0 < , < 1n m N + . It 
can be directly verified that Γnm

R ( ) = 0ω  if one of 
the arguments n  or m  is positive, while the other 
is negative, giving us direct proof that our procedure 
effectively removes the site n = 0 from the system. 
The same is true for the site n N= 1+ .

We can see that the function Γnm
R ( )ω  may have a 

set of poles at values ω  determined by the equation:

det Γ Γ Γ Γ00
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1,0
0

00
0 1

0, 1
0( ) ( )( ( )) ( ) = 0.R

N
R R

N
Rω ω ω ω−( )+

−
+ �(47)

Since Γnm
R0 ( )ω  has no poles inside the 

superconducting gap, it can be assumed that 
the solutions of this equation correspond to the 
energies of states localized at the chain edges. Direct 
substitution of the Green’s functions (42) allows us to 
find the solution for ω  at arbitrary parameter values.

For the semi-infinite chain, if N → ∞ , the 
situation simplifies significantly. Equation (47) 
simplifies to:

	 det Γ0,0
0 ( ) = 0,R ω( ) � (48)

and it has only one solution in the gap ω = 0.  This 
solution does not arise if | m | > 2t. This pole at ω = 0  
exists in the Green’s function Γnm

R ( )ω  only if both n  
and m  are positive or both are negative, for any set 
of parameters t, ,µ ∆  satisfying the condition

t 2 2 2> ( / 2) ,µ + ∆

the condition that separates the topologically 
nontrivial and trivial phases. This means that the 
system described by the Hamiltonian (2) has two 
states with energy ω = 0 : one to the left and one to 
the right of the defect, which cuts the chain into two 
subsystems.

If we now consider a long finite chain of length Т, 
we can write the equation for localized states as
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where ΓN N
X R
+ +1, 1

( ) ( )ω  is the Green’s function for the 
semi-infinite chain:
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Since we are interested in bound states within the 
gap with energies close to zero, the calculations can 
be simplified using the following fact. For ω® 0 , 
the values of χ  satisfy the condition χ± < 1 . Indeed, 
for ω = 0 , Equation (44) gives
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As a result,
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This means that χ < 1 for t 2 2 2> (( / 2) )µ + ∆
and ω ∆ . Thus, quantities like χN appearing in 
the Green’s functions Γ0N , are small parameters for 
large N. Henceforth, we will refer to such quantities 
as “exponentially small,” implying exponential decay 
with chain length (or number of sites).

Expanding Equation (49) in terms of ω  and 
χ±

N , which we treat as small, as explained above, we 
obtain
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where I  is the identity matrix. The solution ω = 0  
corresponds to the pole of the Green’s function, 

which exists only on the semi-infinite chain segments. 
The other pair of solutions has finite but small 
energies ω ω= ,0±  where

ω
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µ
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Here we see that this solution satisf ies the 
approximations we made, if χ±

+N 1 1 . Considering 

Equation (51), the condition t 2 2 2= (( / 2) )µ + ∆  

separates the two regions with oscillating and non-
oscillating solutions for ω0 . If ω0  crosses zero with 
varying μ, this implies a change in fermion parity, as 
discussed in [36].

The leading term in the expansion of the Green’s 
function Γnm

R ( )ω  near ω ω→ ± 0 , which in quantum 
mechanics would describe the spatial structure of the 
wavefunctions of the two localized states, takes the 
following form:
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Diagonal elements Γnn  show the spatial 

distribution of density in localized states. In the limit 

D =  t, only Γ11  and ΓNN  remain non-zero, since 

Equation (52) gives

χ χ+ −∝ ∝ −n n n
t | | .

/2∆

In the high-symmetry case m = 0 and | D | → t, the 
energy levels are equal:
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As noted earlier (see, for example, [37]), for an 
odd number of sites is equal to zero for any values 
of t and D.
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