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1. INTRODUCTION

In recent years, there has been a significant 
increase in interest in materials where relativistic 
spin-orbit interaction leads to the manifestation of 
quantum effects on a macroscopic scale [1, 2]. These 
materials are commonly referred to as quantum 
magnets [3]. One of the most striking manifestations 
of quantum effects is the significant reduction of the 
average spin value in magnets with S > 1 / 2  [4]. The 
reason for the spin reduction lies in the consideration 
of single-ion anisotropy (SIA) arising from spin-orbit 
interaction or in the inclusion of pairwise interactions 
associated with higher-order spin invariants of the 
form ( )2S Sf g

S  [5–15]. In magnetic systems where 
such non-Heisenberg interactions are sufficiently 
strong, spin-nematic phases have been observed. 
These phases are characterized by zero magnetization 
even at zero temperature (i.e., complete spin 
reduction), but they exhibit spontaneous symmetry 

breaking due to quadrupole order parameters (mean 
values of operators bilinear in spin components) 
[10]. The enhancement of such quantum effects is 
facilitated by frustration [2], low temperature, low 
system dimensionality [16], and multi-sublattice 
structures.

For example, in multi-sublattice ferrimagnets with 
different magnetic ions, the manifestation of quantum 
effects can be significantly amplified due to the 
possible compensation of the effective field acting on 
the spins of magnetically active ions [17–26]. Indeed, 
as shown in [27], in a two-sublattice ferrimagnet, 
quantum spin reduction in the anisotropic sublattice 
(with S = 1) at low temperatures can be substantially 
suppressed by the exchange interaction field from 
the isotropic sublattice ( S = 1 / 2 ). If there are 
more than two sublattices, the total effective field 
from two isotropically antiferromagnetically coupled 
sublattices acting on the ions of the third anisotropic 
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sublattice can be nullified, thereby eliminating the 
mentioned mechanism of spin reduction suppression.

In this regard, one of the key objectives in the 
theory of quantum magnets is to find a microscopic 
model that could predict and study new quantum 
effects with both experimental and practical 
significance. As outlined above, one promising 
approach is to investigate the combined action of 
multiple factors that promote quantum magnetism 
phenomena. In the context of this research 
direction, studies such as [28–30] proposed a 
model of a three-sublattice ferrimagnet with 
mixed spins S = 1,1 2,1 2/ /  on a triangular lattice 
with Ising exchange interaction and SIA in the 
S = 1 spin subsystem. In those studies, based on 
Monte Carlo simulations, the main focus was on 
constructing phase diagrams in the temperature–
SIA plane and searching for a technologically 
significant compensation regime, where the total 
magnetization reaches zero below the critical 
temperature. Notably, alongside SIA in the 
S = 1  spin subsystem, the model proposed in 
[28–30] possessed essential features such as low 
dimensionality and geometric frustration, which, 
as mentioned earlier, enhance quantum effects.

In a recent study [31], the authors investigated 
the SU(3) ferrimagnet (SU3F) model, which closely 
resembles the model proposed in [28–30] but 
includes two crucial generalizations. First, instead of 
Ising exchange interaction, the SU3F model employs 
isotropic Heisenberg exchange. It is well known that 
transverse components of exchange interaction in 
noncollinear magnetic structures induce zero-point 
quantum fluctuations, leading to antiferromagnetic 
(AF) fluctuations. These AF fluctuations, like SIA, 
can cause quantum spin reduction, and therefore, 
the quantum effects driven by AF and SIA should 
be distinguished. The second major difference 
between SU3F and the model proposed in [28–30] 
lies in the use of different exchange integrals I and 
J for interactions between the S = 1  and  S = 1 2/  
sublattices and between the two S = 1 2/  sublattices, 
respectively. As shown below, the phase diagrams 
of SU3F differ qualitatively depending on the ratio 
between the exchange integrals.

Furthermore, it is essential to highlight an 
important conceptual feature of the SU3F model. 
This feature is associated with the fact that significant 
SIA, as known from previous studies [8–15, 32–36], 
necessitates the inclusion of the full set of generators 

of the SU(3) algebra acting in the Hilbert space of 
the S = 1  spin states. Therefore, conventional spin 
operators are insufficient for describing such systems. 
To emphasize this aspect, the model proposed in [31] 
was named the quantum SU(3) ferrimagnet model.

The general characteristic of the SU3F model is 
the simultaneous consideration of several factors 
that enhance quantum effects: SIA, AF fluctuations, 
multi-sublattice structure, low dimensionality, and 
exchange frustration.

The study of the SU3F model in [31] was 
conducted in the absence of an external magnetic 
field and at zero temperature. The dependence of 
the sublattice spin moments and the quadrupole 
moment on the SIA parameter was calculated for 
different exchange integral ratios I J/ .  It was found 
that the critical value of the SIA parameter D c , at 
which SU3F transitions to the quadrupole phase, can 
be significantly smaller than both I and J. Moreover, 
for I J> , a compensation point was observed in the 
total moment M dependence on the SIA parameter, 
i.e., M at D D c< .

This work represents a logical continuation of 
the studies conducted in [31]. Its primary goal is to 
construct the phase diagram of SU3F in the external 
magnetic field–SIA parameter plane and to analyze 
the modification of the magnetic structure and order 
parameters when crossing the phase boundaries. 
The ground state energy and the corresponding spin 
configuration are calculated within the mean-field 
approximation at zero temperature. This condition, 
as is well known, is unachievable by the Monte Carlo 
method used in the previously cited works [28–30]. 
To correctly account for the SU(3) algebra generators 
in the S = 1  spin subsystem, the Hubbard operator 
formalism is employed [11, 35, 37]. In the calculation 
of order parameters, spin operator bosonization is 
applied: the Holstein–Primakoff transformation 
for the S = 1 / 2  spin subsystem and the indefinite 
metric formalism for the S = 1  subsystem [11, 14].

The remainder of this paper is organized as 
follows. Section 2 formulates the SU3F Hamiltonian 
in an external magnetic field lying in the easy-
plane direction. Section 3 presents the SU(2) 
transformation of the S = 1/2S = 1/2S = 1/2 spin 
operators, corresponding to the rotation of local 
coordinate axes. Section 4 details the Holstein–
Primakoff transformation for the S = 1 / 2  spin 
subsystem. Section 5 describes the transition to the 
Hubbard operator representation and their triple 



	 QUANTUM SU(3)-FERRIMAGNET ON TRIANGULAR LATTICE IN MAGNETIC FIELD� 93

JETP,  Vol. 167,  No. 1,  2025

SU(3) transformation for diagonalizing the single-
ion Hamiltonian of the S = 1  spin subsystem. The 
bosonization of Hubbard operators and the derivation 
of the dispersion equation are covered in Section 
6. Sections 7 and 8 analyze the characteristics of 
phase diagrams and the changes in order parameters 
for I J<  and I J> , respectively. Section 9 
demonstrates the degeneracy of the SU3F mean-
field ground state at I J= . Section 10 discusses 
changes in the spin-wave excitation spectrum as the 
magnetic field increases under different exchange 
parameter ratios. The main conclusions of the study 
are presented in Section 11.

2. MODEL OF SU3-FERRIMAGNETISM

The crystal structure of the considered SU3F 
is shown in Fig. 1. The red circles mark the lattice 
sites of the sublattice with spin value S = 1 , further 
referred to as the L-sublattice. The green and blue 
circles mark the lattice sites of the sublattices with 
spin value S = 1 2/ ,  denoted further as F and G 
sublattices, respectively. The periodicity of the 
system is defined by the basis vectors a1 and a2, equal 
in magnitude. The vectors z and x connect the nodes 
of different sublattices.

The Hamiltonian of SU3F in an external magnetic 
field can be written as:

	    = ,A exch field+ + � (1)

where:

exch
fg

f g
fl

f l
gl

g lJ S S I S S I S S= ,
{ } { } { }
∑ ∑ ∑+ +

	 A
l

l
yD S= ,

2

∑( ) � (2)

field
f

f
z

g
g
z

L
l

l
zh S h S h S= .− − −∑ ∑ ∑

The operator exch  describes the pairwise 
exchange interaction between the nearest-neighbor 
spins from different sublattices. The lower indices f, 
g and l of the spin operators denote the lattice sites 
from the F-, G- and L sublattices, respectively. The 
exchange integral J determines the strength of the 
antiferromagnetic interaction between the nearest-
neighbor spins from the F- and G- sublattices, while 
the integral I  governs the interaction between the 
F(G)- and L- sublattices. The curly brackets under 
the summation symbols in (2) indicate that the 

summation is carried out only over nearest neighbors, 
with each pair of nodes counted only once.

The operator A  describes the effect of single-
ion anisotropy (SIA) of the easy-plane type acting on 
the spins S = 1  in the L- sublattice. The anisotropy 
parameter D is positive. The y axis is directed 
perpendicular to the ferrimagnet plane xz, which is, 
therefore, the easy magnetization plane.

The operator field  accounts for the Zeeman energy 
of the spins in the external magnetic field H, lying in 
the ferrimagnet plane (easy plane) and determining 
the parameters h g HB= ∝ , and h g HL L B= ∝ , where 
∝B  is the Bohr magneton, and g and gL are the Landé 
factors for the F(G)-sublattices, respectively. In general, 
the g-factors may differ for different sublattices. In this 
study, we assume that the moments are formed without 
the participation of orbital degrees of freedom, i.e., they 
are purely spin-related, so g gL = = 2 .

The direction of the magnetic f ield and the 
type of SIA ensure that the average moment of 
the L sublattice of RL, is oriented in the xz plane, 
perpendicular to the anisotropy axis y. Furthermore, 
considering the nature of the exchange interactions 
and the results of Ref. [38], it can be argued that 
the magnetic structure of the SU3F ground state for 
any values of D  and H  is characterized by a planar 

a2

͢

a1

͢

ξ

͢
ζ ͢

x

Z

Fig. 1. Crystal structure of the three-sublattice SU3F on 
a triangular lattice. Red, green, and blue circles indicate 
the positions of the nodes in the L-, F- and G- sublattices, 
respectively. | a1 | = | a2 | = a are the Bravais lattice vectors, while 
x and z represent the basis vectors.
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configuration of spin expectation values. Therefore, 
without loss of generality, we will assume that the 
spins of all three sublattices lie in the ferrimagnet 
plane xz, with the z axis of the original coordinate 
system conveniently directed along the magnetic 
field.

3. SU(3)-TRANSFORMATION  
OF THE HAMILTONIAN

To calculate the ground-state energy of SU3F, it 
is convenient to start with a unitary transformation of 
the Hamiltonian H:

	  ( , ) = ( , ) ( , ),2 2q q q q q qF G F G F GU U + � (3)

with the operator

	 U i S i S
f F

F f
y

g G
G g

y
2( ) = .q q q

∈ ∈
∏ ∏−( ) −( )exp exp � (4)

The transformation (3) allows one to switch to 
new local coordinates for the F - and G - sublattices, 
where the quantization axes ¢z  and ¢¢z  are rotated 
by the angles qF  and qG  around the y axis, aligning 
them along the equilibrium magnetizations RF  and 
RG , respectively (see Fig. 2).

The unitary transformation (3) of the Hamiltonian 
(1) corresponds to the following formal substitution of 
the spin operators for the F- and G- sublattices [39]:

S S S S Sf
x

f
x

F f
z

F f
y

f
y→ + →cos sinq q ,   ,

	 S S Sf
z

f
z

F f
x

F→ −cos sinq q , � (5)

S S S S Sg
x

g
x

G g
z

G g
y

g
y→ + →cos sinq q ,   ,

	 S S Sg
z

g
z

G g
x

G→ −cos sinq q . � (6)

As a result, the Hamiltonian operator (1) is 
transformed into the following form:

 = ( )2D S
l

l
y∑ +

+ + − +{∑J S S S S
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l
x

f
x

l
z

Fsinq

+ + + +{∑I S S S S S S
gl

g
x

l
x

g
z

l
z

G g
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l
y
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( )cosq

+ − }−( )S S S Sg
z

l
x

g
x

l
z

Gsinq

− −{ }−∑h S S
f

f
z

F f
x

Fcos sinq q

	 − −{ }−∑ ∑h S S h S
g

g
z

G g
x

G L
l

l
zcos sinq q , � (7)

where the operators Sf
β  and Sg

β  (β = , ,x y z ) relating 
to F- and G-subystems refer to the projections 
of the spin moments on the quantization axes 
corresponding to index β  in the new (rotated) local 
coordinate systems.

4. HOLSTEIN–PRIMAKOFF 
TRANSFORMATION

Following the strategy outlined in the introduction 
for calculating the ground-state energy of SU3F, we 
perform the Holstein–Primakoff transformation 
separately for the F- and G- sublattices:

	
S S a a a S S a a

S S b b b S S b b

f f f f f
z

f f

g g g g f
z

g g

+ + +

+ + +

− ⋅ −

− ⋅ −

= 2 , = ,

= 2 , = ,
� (8)

where the bosonic creation a bf g
+ +( )  and annihilation 

a bf g( )  operators describe spin transitions at site 
f g( )  of the F G( )  sublattice from the state | (| )′↑ 〉 ′′↑ 〉 ,  
corresponding to spin orientation along the ¢ ¢¢z z( )  

RL

RF

O

Z``

Z`Z

RG

θL

θG

θF

Fig. 2. Rotation of local coordinate axes during the unitary 
transformation (3). In the F- and G- sublattices with S = 1/2, the 
axes z are rotated by the angles qF and qG, taking new positions 
z′ and z″, respectively. The local coordinates in the L- subsystem 
with S = 1 remain unchanged, while the angle formed by the 
moment RLand the z axis is denoted by qL.
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axis, to the opposite orientation | (| )′↓ 〉 ′′↓ 〉 , and vice 
versa.

Substituting (8) into the Hamiltonian (7) gives the 
result:

	    = .0
(0) (1) (2)E + + + � (9)

where:

E J S N F G0 0
2= ( )cos q q- -

	 − +hSN F G( ),cos cosq q � (10)

Here, H n( )  ( n = 0,1,2 ) denotes the number 
of sites in the sublattice. The Hamiltonian H (0)  
represents the sum of the single-ion Hamiltonians 
for the L- subsystem:

 (0)
0= ( ),

l

lå
where:

	 0
2( ) = ( ) ,l D S H S H Sl

y
z l

z
x l

x+ + � (11)

The effective fields are defined as:

	
H I S h

H I S I I

z F G L

x F G

= ( ) ,

= ( ),   = 3 .

0

0 0

cos cos

sin sin

q q

q q

+ −

+
� (12)

The linear term in bosonic operators from the 
Hamiltonian (9) can be written as:

(1)

{ }

=
2

( )
fl

F l
x

F l
z

f fI
S

S S a a∑ −
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

+ ++cos sinq q

+ − +[ ] + +∑ +

f
G F F f f

S
J S h a a

2
( ) ( )0 sin sinq q q
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


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2

( )
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g gI
S

S S b bcos sinq q

+ − +[ ] + +∑ +
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l
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l
y
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( ) ( ) ,

{ } { }

� (13)

where:

J J0 = 3

The last term in expression (9) describes the 
excitations in the F- and G subsystems and has the form:

(2)

{ , }

=
2

( )( )J
S

a a b b
f g

f f g g∑ + +
{ −+ +

− + 


− −+ +2( )) ( )a a b bf f g g F Gcos q q

− − − }−+ +( )( )a a b bf f g g

− + −∑ +I S S a a
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F l
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x

f f
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( )cos sinq q

− + +∑ +I S S b b
g l

G l
z

G l
x

g g
{ , }

( )cos sinq q

	 + +∑ ∑+ +h a a h b bF
f

f f G
g

g gcos cosq q . � (14)

Next, the mean-field logic dictates replacing the 
spin operators H (1)  and H (2)  of the L- subsystems 
with their average values. In the considered zero-
temperature regime, averaging the operators Sl

α  
(α = , ,x y z ) is sufficient to perform based on the 
ground state of the single-site Hamiltonian (11).

5. DIAGONALIZATION OF THE SINGLE-ION 
HAMILTONIAN

To diagonalize the single-ion Hamiltonian (11), 
we use the approach developed in [40]. We transition 
from spin operators to Hubbard operators [37], where 
X m nl

m n, =| |〉〈 , where m n, = { 1,0, 1}− +  are the 
eigenstates of the operator Sl

z  with corresponding 
eigenvalues | mñ  and | nñ  of S n n nl

z | = |ñ ñ . 
Substituting

   

S X X X X

S
i

X X X X

l
x

l l l l

l
y

l l l

=
1

2
,

=
2

1,0 1,0 0,1 0,1

1,0 1,0 0,1

+ + +( )
− + + − ll

l
y

l l l l l

l
z

l

S X X X X X

S X

0,1

2 1,1 1,1 1,1 1,1 0,0

1,1

,

( ) =
1
2

,

=

( )
+ − −( )+

−− ≡ −X l
1,1 ,       1 1,

�(15)

Describing the transition to representation of the 
Hubbard operators into the single-ion Hamiltonian 
(11) gives:

0
1,1 0,0( ) =

2
l

D
H X DXz l l+







 + +

+ −






 − +( )+D

H X
D

X Xz l l l2 2
1,1 1,1 1,1

	 + + + +( )H
X X X Xx

l l l l2
.1,0 0,1 1,0 0,1 � (16)

In the absence of a magnetic field, the ground 
state of the system is degenerate with respect to 
rotations around the y axis. Choosing the x axis 
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along the vector RL  and assuming equivalence 
between the F - and G -sublattices ( q qF G= - ,), 
the parameter ϕ\phiϕ becomes zero, and the last 
term in (16) vanishes. In this case, the Hamiltonian 
H l0( )  couples only two of the three states ( | 1+ 〉  
and | 1− 〉 ), and its diagonalization requires only 
one unitary transformation (see [31]). However, the 
presence of a magnetic field couples all three states 
| nñ  ( n = { 1,0, 1}− + ), requiring three consecutive 
transformations for the diagonalization of the single-
ion Hamiltonian.

The unitary operator U lnm ( , )α  for each 
transformation is def ined by its generator 
Gnm l

nm
l
mnl X X( ) = -  from the SU(3) group, 

according to the expression:
U l lnm nm( , ) = { ( )} =            α αexp Γ

   = 1 ( 1)( )  ( ).+ − + +cos sinα αX X ll
nm

l
mn

nmΓ � (17)

The new Hubbard operators X r l s ll
rs

 =| , , |〉〈 , 
defined through the new basis states

	 r l U l r lnm, = ( , ) , ,-α � (18)

are expressed via original Hubbard operators as 
follows:

	 X U l X U ll
rs

nm l
rs

nm
 = ( , )  ( , ).− −+α α � (19)

Thus, the unitary transformation reduces to a 
simple substitution in the single-site Hamiltonian:

	 X U l X U ll
rs

nm l
rs

nm→ +
 



 

( , )  ( , ).α α � (20)

Explicit expressions for the right-hand side 
of the last formula were derived in [40] and are 
provided in Appendix A for completeness. The 
variational parameter α  in (17) is chosen such that 
the off-diagonal terms X l

nm   and X l
mn   vanish in the 

transformed Hamiltonian.
Performing the three consecutive unitary 

transformations with the operators U 1,0 2( )α ,  
U 0, 1 3( )- α  and U 1, 1 1( )- α , following the rule (20), 
and retaining the original notation for the indices 
of the new states n = { 1,0, 1}− +  (i.e., without 
tildes), we obtain the diagonal form of the single-ion 
Hamiltonian H l0( ) :

	 0( ) = ,   = 1,0, 1.l X n
n

n l
nn∑ − +ε � (21)

The eigenvalues εn  of the single-ion Hamiltonian 
can be expressed as ( 1 = 1- ):

ε α α α1 1,1
2

1 1,1
2

1 1,1 1= 2 ,e e esin cos sin+ +

	 ε α α α1 1,1
2

1 1,1
2

1 1,1 1= 2 ,e e ecos sin sin+ − � (22)

ε0 0,0= ,e

where

e D
D

H

H

e D

z

x

1,1
2

2
2

2

2

1,1
2

=
2

2
2 ,

=

sin cos

sin

cos

α α

α

α

+ +






 +

+

22
2

3 2 3

2
2

2
3

2
2

2

2

sin sin sin

sin sin

α α α

α α

− +

+ +






 +

+ −

D

D
H

D
H

z

zz

xH

e D







 −

− +

2
3

2 3 2
2

3

0,0
2

2
( 2 2 ),

=

cos

cos sin sin sin

α

α α α α

ccos cos sin sin

sin cos

α α α α

α α

2
2

3 2 3

2
2

2
3

2
2

2

+ +

+ +






 +

D

D
H

D
z 22

2
( 2 2 ),

2
3

2 3 2
2

3

−






 +

+ −

H
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x
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 (23)

e
H Dz

1,1 2 3=
2 4

(2 )−










−sin sinα α

− +
D
2 2 3cos cosα α

+ − +
H x

2
( 2 ).2 3 2 3cos sin sin cosα α α α

From the requirement of nullifying the coefficients 
of the non-diagonal X-operators in the transformed 
Hamiltonian, the following system of equations for 
the angles α j  ( = 1,2,3)j  is obtained:

tgα
α α

α α
3

2 2

2 2

=
2

2 2 2

2
,

D
H H

D H

z x

x

−





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−
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2

2
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2

,3
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2
2 2

α
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α α

H D

H
D

H
H

x

z z
x
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cos sin

+

+ −






 −

�(24)

2 = 2 / ( ).1 1,1 1,1 1,1α e e e-
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Similarly, by sequentially applying formula 
(20) with the operators U 1,0 2( )α , U 0,1 3( )α  and 
U 1,1 1( )α , to the representation (15), the spin 
operators Sl

x , Sl
y , Sl

z  and ( )2Sl
y  can be expressed 

through the new (transformed) X-operators. The 
expansion coefficients of the spin operators Sl

α  
in terms of the new Hubbard operators X l

nm  will 
represent the matrix elements of the spin operators 
in the new states: s n S mn m l, | |α α≡ 〈 〉  (α = , ,x y z ). 
Explicit expressions for these matrix elements are 
given in Appendix B.

Within the mean-field approximation, the spin 
operators in the Hamiltonian H (1)  should be 
replaced by their average values, i.e., the diagonal 
matrix elements sn n,

α , calculated for the ground 
state | nñ , corresponding to the minimum value of 
εn . Below, we will choose the set of solutions of 
equations (24) for the angles α j  ( = 1,2,3)j  such 
that the state | 1+ 〉  is the ground state.

Since snn
y = 0  for any n  (see Appendix B), the 

last two sums in formula (13) for H (1)  vanish. The 
reduction of the remaining terms in (13) occurs under 
the conditions:

	

I s s

J S h

I s

x
F

z
F

G F F

x

0 1,1 1,1

0

0 1,1

( )

( ) = 0,

(

cos sin

sin sin

q q

q q q

− +

+ − +

ccos sin

sin sin

q q

q q q
G

z
G

F G G

s

J S h

− +

+ − +
1,1

0

)

( ) = 0,

� (25)

These conditions will be further used to determine 
the equilibrium values of the angles qF  and qG. The 
angle qL, introduced in Fig. 2 for clarity, is not a 
tuning parameter and can be determined through 
the ratio of the average values of the spin projections 
Sl

z  and Sl
x.

The magnetic structure of the SU3F ground state 
is determined by the solutions of the five equations 
(24) and (25) for the angles α j  ( = 1,2,3)j , qF  and 
qG , followed by the selection of the solution set that 
corresponds to the minimum value of the mean-field 
energy of the entire system:

	 E E NMF = ,0 1+ ε � (26)

where the values E0  and ε1  are defined by equations 
(10) and (22), respectively. In Section 7, the SU3F 
phase diagrams in the h – D -coordinates, calculated 
based on the methodology presented here, will be 
presented.

6. BOSONIZATION OF THE L- SUBSYSTEM 
AND THE DISPERSION EQUATION

Within the chosen approximation, the ground 
state energy EMF  is determined without considering 
AF (antiferromagnetic) contributions. Therefore, the 
contributions from the last term in the Hamiltonian 
(9), quadratic in Bose operators, are absent in 
expression (26) for EMF . Nevertheless, when 
calculating the dependencies of order parameters 
on the magnetic field and single-ion anisotropy 
(SIA), the energy spectrum of spin-wave excitations 
is required, and to determine this spectrum, the 
operator H (2)  must be taken into account.

To compute the energy spectrum within the 
spin-wave approximation, we first express the spin 
operators through the new (transformed) X-operators. 
Using (15) and the formulas from Appendix A, we 
obtain expressions for the S-operators of the form:

	 S s X x y zl
n m

nm l
nmα α α= ,   = , , ,

,
å � (27)

where the matrix elements snm
α  are given in Appendix 

B.
Next, considering that the state spectrum H l0( )  

is characterized by three levels and the ground state 
of the single-ion Hamiltonian is the state | 1+ 〉 , we 
introduce, following [11, 14], two types of Bose 
operators: c  and d . The creation of one c d( )  boson 
at site l  is described by the creation operator c dl l

+ +( )  
and corresponds to the system transitioning from 
the “vacuum” state | 1+ 〉  to the state | 0 (| 1 )〉 − 〉  with 
one c d( )  boson. The Hermitian conjugate operator 
c dl l( ) , acting in the opposite direction, annihilates 
the c d( )  boson. States with more than one boson are 
excluded by the metric operator as non-physical.

The representation of Hubbard operators 
through Bose operators, proposed in [40] within the 
framework of the indefinite metric formalism [41], 
takes the form:

	

X c c d d c X c

X c c d d d

l l l l l l l l

l l l l l

1,0 0,1

1,1

= (1 ) ,  = ,

= (1 )

− −

− −
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+ +
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l

X d

X c d X d c X c c

X d

,  = ,

= , = , = ,

=

1,1

0,1 1,0 0,0

1,1

+

+ + +

ll l l l l l ld X c c d d+ + +− −, = (1 ).1,1

� (28)

We use the representation (28) in the formulas 
(27) and substitute the resulting expressions for the 
S-operators (see Appendix C) into the terms H (1)  
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and H (2)  of the Hamiltonian (9). As a result, an 
expression arises in which only contributions up to 
the second order in the a , b , c  and d - operators 
should be retained. Performing the Fourier transform:

	
a

N
e a b

N
e b

c
N

e c d
N

e d

f
k

ikf
k g

k

ikg
k

l
k

ikl
k l

k

ikl
k

=
1

, =
1

,

=
1

, =
1

,

å å

å å
�(29)

we obtain the desired Hamiltonian, which can be 
written as follows:

	 H E HMF SW= .+ � (30)

Here, the first term EMF  corresponds to the 
ground state energy in the mean-field approximation 
(see formula (26)), while the second term H SW  
describes spin-wave excitations and is defined by the 
expression:

H E a a E b b E c c E d dSW
k

a k k b k k c k k d k k= {∑ + + + ++ + + +

+ + ++
+ +J a b b ak k k k k k( )}*γ γ

+ + +−
+
−
+

−J a b a bk k k k k k( )*γ γ

+ + ++ + +I c a a cF k k k k k k0
*( )γ γ

+ + +− +
−
+

−I c a c aF k k k k k k0
*( )γ γ

+ + ++ + +I d a a d
F k k k k k k1

*( )γ γ

+ + +− +
−
+

−I d a d aF k k k k k k1
*( )γ γ

+ + ++ + +I c b b cG k k k k k k0
*( )γ γ

+ + +− +
−
+

−I c b c bG k k k k k k0
*( )γ γ

+ + ++ + +I d b b d
G k k k k k k1

*( )γ γ

	 + +− +
−
+

−I d b d bG k k k k k k1
*( ).γ γ � (31)

In this expression, the following notations were 
introduced:

E J S ha F G F= ( )0− − + −cos cosq q q

− +I s sz
F

x
F0 11 11( ),cos sinq q

E J S hb G F G= ( )0− − + −cos cosq q q

− +I s sz
G

x
G0 11 11( ),cos sinq q

E Ec d= , = ,0 1 1 1ε ε ε ε- -

J
J S
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( ) 1 ,0 cos q q

I I
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n A F G= {0,1}, = { , },
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.2 3 3∑ +
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
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−
cos � (32)

In the sum defining the triangular lattice invariant 
γk , the vector δ takes three values: { , , }ξ ζ ζ ξ- -  (see 
Fig. 1). The Brillouin zone, which bounds the region 
of quasimomentum values, is shown in Fig. 3.

To obtain the dispersion equation, we define the 
matrix retarded Green’s function 〈〈 〉〉+X Xk k| ω ,, 
where

X a b c d a b c dk k k k k k k k k
+ + + + +

− − − −= ( , , , , , , , ).

From the requirement for nontrivial solutions 
of the equation of motion for 〈〈 〉〉+X Xk k| ω , the 
spectrum equation follows:

ω
ω

− −
+

A B

B A
k k

k k
= 0,  (33)

where

K

kz

M

G

kx

Fig. 3. The Brillouin zone of the triangular lattice and three high-
symmetry points: G, K, M.
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and
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7. SU3F PHASE DIAGRAM FOR I < J

We will discuss the SU3F phase diagram in 
the magnetic f ield–anisotropy parameter (D) 
coordinates separately for three cases of exchange 
parameter ratios: I J< , I J> , I J= . In this 
section, we consider the first case: I J< .

Fig. 4 shows the phase diagram of the SU3F 
ground state, calculated according to the 
methodology outlined in Section 5, for the exchange 
parameter ratio I J/ = 0.8 . It is evident that three 
phases are realized in the considered regime: the 
inverted Y-phase (hereinafter referred to as Y ), the 
W-phase, and the ferromagnetic phase.

In the Y  phase, the average spin vector of the 
L-sublattice, RL  is aligned along the magnetic field 
direction (the z-axis), while the average spin vectors 
of the F- and G- sublattices, RF  and RG, form equal 
but opposite angles with the z-axis: q qF G= - .  The 
magnitude of the angles θF and θG varies within the 
range [π/2, π].

In the symmetric W-phase, the angles θF and 
θG also have equal magnitudes and opposite signs. 
However, unlike the Y phase, the range of these 
angle magnitudes is different: [0, 2]≠/ .  In this case, 
the projections of all three vectors RF, RG  and RL  
onto the z-axis are positive. The boundary between 
the Y -  and W-phases in Fig. 4 is marked by the 
dashed line. To the right of the red line on the phase 
diagram, the ferromagnetic phase is realized: the 
average spin vectors of the L-, F- and G- sublattices 
are aligned along the magnetic field.

The evolution of the magnetic structure as 
the magnetic field at I J<  is characterized by 
a monotonic decrease in the absolute values of 

p

the angles qF  and qG , as H increases which 
vanish at a certain field value dependent on the 
anisotropy parameter OA (see the red line in Fig. 4). 
This behavior is illustrated by three pictograms 
schematically depicting the magnetic structure in 
each of the three regions of the phase diagram.

To further understand the presented phase 
diagram, we will calculate the dependence of the 
SU3F order parameters on the magnetic field for a 
fixed anisotropy parameter OA and on the anisotropy 
parameter OA for a fixed magnetic field h.

The average spin values RF  and RG  in F- and 
G-sublattices can be calculated using the Holstein–
Primakoff representation (8), according to which:

	
R S S n

R S S n

F f
z

a

G g
z

b

= = ,

= = ,

〈 〉 −

〈 〉 −

′

′′
� (36)

where the boson occupation numbers n a aa f f= 〈 〉+  
and n b bb g g= 〈 〉+  are computed using the spectral 
theorem from the matrix Green’s function 
〈〈 〉〉+X Xk k| ω  introduced in Section 6.

The average spin magnetic moment of the 
L-sublattice RL can be found using the formula:

	 R R RL L
z

L
x= ,

2 2( ) + ( ) � (37)

where the quantities RL
z  and RL

x  are determined 
by the average occupation numbers of c - and  d

h/J

0

2

4

6

8

10

D
/J 4.8

3

2.410 2 4 6

Fig. 4. The h–D phase diagram of the SU3F ground state for 
I/J = 0.8. The black dashed line corresponds to the boundary 
between the Y

-
- and W-phases, while the solid red line indicates 

the boundary between the W phase and the ferromagnetic phase. 
The pictograms illustrating the magnetic structure of SU3F 
represent the RL vector with a red arrow, the RF(G), vectors with 
blue arrows, and the magnetic field h directed upward. On the 
dashed line, a phase is realized where the subsystems with spins 
S = 1 and 1/2 become effectively independent.
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-bosons: n c cc k k= 〈 〉+  and n d dd k k= 〈 〉+ , as well as 
correlators 〈 〉+c dk k  and  〈 〉+d ck k . The corresponding 
expressions are obtained by averaging the formulas 
given in Appendix C.

S i n c e  t h e  to t a l  m a g n e t i c  m om en t 
M R R RF G L= + +  is directed along the external 
magnetic field (i.e., along the z-axis), its transverse 
component must identically vanish:

R R RL
x

F F G G+ +sin sinq q = 0,

and the longitudinal component equals:

	 M R R RL
z

F F G G= .+ +cos cosq q � (38)

The average value of the quadrupole moment [42]:

	 Q l Sl
y

2
0 2
( ) = 3 2( ) − � (39)

is calculated similarly after averaging the 
corresponding formulas from Appendix C.

Fig. 5 shows the dependence of the total moment, 
the average spin magnetic moments RL , RF G( ) , M 
(black line), and the quadrupole moment | | /32

0Q  on 
the magnetic field h for the anisotropy parameter ОА 
D J/ = 3  and the exchange integral ratio I/J = 0.8.

The change in the magnetic field on this figure 
corresponds to the movement along the horizontal 

dashed line on the phase diagram in Fig. 4. It is 
evident that at the transition point from the W phase 
to the ferromagnetic phase, all curves in Fig. 5 exhibit 
a kink. The values of M  and RL  increase as expected 
with increasing field h, while the quadrupole moment 
decreases.

The dependencies of the order parameters M , 
RL , RF , RG  and Q 2

0  on the anisotropy parameter 
h J/ = 1  are shown in Fig. 6.

The change in the anisotropy parameter D in this 
figure corresponds to the movement along the vertical 
dashed line on the phase diagram in Fig. 4. It can be 
seen that when crossing the boundary between the 
Y - and W -phases, the dependencies of the order 
parameters on D exhibit a kink, while the quadrupole 
moment saturates. The average moment of L-sublattice 
rapidly decreases near the phase boundary but decreases 
more slowly with further increase in D.

Clearly, the reduction of RL  facilitates the upward 
reorientation of the RF G( ) , vectors, as it reduces the 
exchange energy loss between the spins S = 1  and 
S = 1 / 2 .

An important feature of the phase diagram 
presented in Fig. 4 is that along the entire boundary 
between the Y - and W -phases (black dashed line), 
the angle between the vectors RF  and RG  equals π. 
In this case, from expressions (12) for the effective 
fields, we find:

0 1 2 3 4 5 6
h/J

0

0.5

1

1.5

2

|Q 0
2

|/3

RL

M

RF(G)

0 2 4 6 8 10
D/J

0

0.2

0.4

0.6

0.8

1

|Q 0
2|/3

RL

M

RF(G)

Fig. 5. Dependence of the total moment RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 |/3 (green line) on the magnetic 
field h. The ratio between the exchange integrals is I/J = 0.8, 
while D/J = 3. The three pictograms composed of one red and 
two blue arrows have the same meaning as in Fig. 4.

Fig. 6. Dependencies of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 |/3 (green line) on the anisotropy 
parameter OA. The ratio between the exchange integrals is 
I/J = 0.8, and h/J = 1
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	 H h Hz L x= , = 0.- � (40)

Taking into account these relations and the 
condition hL ¹ 0 , the solutions of equations (24) 
for the angles α j  ( j = 1,2,3 ) take the form:

	 2 =
2

( 1) , = , = ,1 2 3α α π α π
D
h

n m
L

n m− + � (41)

where n and m are integers.
Substituting these solutions into the expressions 

for the matrix elements of the spin operators from 
Appendix B gives:

	 s sz x
11 1 11= 2 , = 0.cos α � (42)

Since s x
11 = 0  and θ θ πF G- = , from equations 

(25) for the angles qF  and qG , we find the condition:

	 s h Iz
11 0= , � (43)

which must be satisfied by the matrix element s z
11  at 

the boundary between the Y - and W -phases. The 
equation describing the boundary of these phases can 
be easily obtained from the compatibility condition 
of the three equations for the angle α1  and the matrix 
element s z

11  in formulas (41), (42), and (43).
As a result, the following relationship between the 

model parameters and the magnetic field is obtained:

	 D
g
g

I hL=
2

.0
2 2- � (44)

This expression analytically describes the dashed 
line in Fig. 4.

It is important to note that at the points of 
the phase diagram lying on this dashed line, the 
orientation of the (antiparallel) vectors RF  and  RG  
relative to the z-axis is not fixed. This fact implies 
the degeneracy of the SU3F ground state with respect 
to the simultaneous rotation of the spins from the F- 
and G- sublattices around the z-axis, provided that 
the vectors RF  and RG  remain antiparallel.

Indeed, substituting the solutions (41) for the 
angles α j  ( j = 1,2,3 ) into formulas (22) and (23), 
as well as fixing the difference in π in exprssion (10) 
between angles qF  and qG ,, we obtain:

ε1
2 2

0 0
2= 2 2 , = .D h D E J S NL/ /− +( ) −

Thus, at the points of the phase diagram lying 
strictly on the boundary between the Y - and 

W- phases (i.e., along the dashed line in Fig. 4), the 
ground-state energy E E NMF = 0 1+ ε  (see equation 
(26)) does not depend on the angles qF  and qG.

The physical reason for this behavior is that, 
at θ θ πF G- = , the two effective f ields acting 
on the spins in the L-sublattice from the F- and 
G-subsystems compensate each other (see equation 
(12)). As a result, the L-sublattice effectively 

“decouples” from both the F- and G-subsystems. 
Meanwhile, the external magnetic field hL continues 
to act on the L-subsystem, aligning the vector RL  
along the direction hL.

Simultaneously, the F- and G-sublattices 
also “lose connection” with the L-subsystem, as 
the effective fields generated by it in the F- and 
G-sublattices are fully canceled by the external 
magnetic field h. Indeed, as follows from expression 
(7), the quantities Ea  and Eb  (see (32)) are precisely 
the effective fields acting on the spins in the F- and 
G-sublattices, respectively. Since, at the points 
lying on the dashed line of the phase diagram in 
Fig. 4, the conditions (42) and (43) are satisfied, the 
contributions to effective fields Ea  and Eb  from 
the L- subsystem (-I s z

F G0 11 ( )cosq ), the external 
magnetic field ( h F Gcosq ( ) ) cancel each other out.

Thus, at the points belonging to the dashed line 
on the phase diagram in Fig. 4, the SU3F system 
decouples into two effectively non-interacting 
subsystems: one formed by the S=1 spins of 
L-sublattice and the other by the S = 1 2/  spins of F- 
and G-sublattice spins. In this case, the S=1 spins 
behave like a paramagnet in an external magnetic 
field, as they continue to experience the field hL, 
while the interaction between them vanishes. The 
S = 1 2/  spins behave like a two-sublattice (F and 
G) collinear antiferromagnet in an effective zero 
magnetic field. This condition, allowing for an 
arbitrary orientation of the antiferromagnetic vector 
in the zx -plane, leads to additional degeneracy of 
the ground state.

8. PHASE DIAGRAM OF SU3F AT I J/ > 1

When I J> , the phase diagram of SU3F under a 
magnetic field changes qualitatively. Fig. 7 presents 
the phase diagram calculated for the exchange 
parameter ratio I J/ = 1.2.  It is evident that four 
magnetic phases are realized in this case: the Y-phase, 
the collinear ferrimagnetic phase, the V (V ) phase, 
and the ferromagnetic phase.
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In the Y phase, the vector RL , representing the 
average spin in the L-sublattice (red arrow in the 
pictograms of Fig. 7), is directed opposite to the 
magnetic field (along the – z axis), while the average 
spin vectors RF  and RG  (blue arrows) in F- and 
G-sublattices form equal but opposite angles with the 
z-axis: z: q qF G= - , while | | [0, 2]( )θ πF G Î / .

When transitioning from the Y phase to the 
collinear ferrimagnetic phase, the angles qF  and qG  
simultaneously become zero, and all three vectors RF, 
RG  and RL become collinear: the first two align with 
the magnetic field, while the third opposes it.

Beneath the blue and red curves in Fig. 7 lies 
the so-called V phase, where the vector RL forms a 
nonzero angle qL  with the z-axis, while the vectors 
RF  and RG  form equal angles qF  and qG. These 
angles vary within the range 0, p/2.

This region can be further divided by a dashed line 
(shown in Fig. 7) into two subregions. To the right 
of this line, | |< 2θ πL / ,  while to the left, | |> 2θ πL / .  
We retain the V designation for the first region and 
label the second as the V  phase for distinction. 
Along the entire dashed line, the angle qL  strictly 
equals p/2.

In the ferromagnetic phase, all three vectors RF, 
RG  and RL align with the magnetic field.

As in the previous section, to understand the 
magnetic structure, we examine the changes in 

order parameters along two directions on the phase 
diagram: along the horizontal dashed line at a fixed 
value D J/ = 6  and along the vertical dashed line at 
a fixed field h J/ = 1  (see Fig. 7).

Fig. 8 shows the dependence of the quantities RL, 
RF G( ) , M  and Q 2

0  on the external magnetic field 
h at D J/ = 6.  This corresponds to movement along 
the horizontal dashed line in Fig. 7.

It is evident that the changes in RF G( )  and Q 2
0  

with increasing field h are minor, and the reduction in 
the average spin value RF G( )  due to AF interactions 
is insignificant. In contrast, the average moment of 
L-sublattice is significantly suppressed due to both 
AF and OA interactions. In the ferrimagnetic phase, 
the vector RL is directed opposite to the field, and its 
magnitude decreases with increasing h, as expected. 
In the ferromagnetic phase, the vector RL aligns with 
the field, causing its magnitude to increase.

A crucial observation from the graphs in Fig. 8 
is that the evolution of the magnetic structure 
follows the same sequence as in a triangular-
lattice antiferromagnet (TLAF) with S = 1 2/ ,  but 
without OA [38, 43]. However, while the extended 
ferrimagnetic (or  uud) phase in TLAF can only 
be explained by quantum f luctuations (which lift 
accidental degeneracy), in SU3F, this phase arises 
solely due to OA. Moreover, the behavior of the total 
moment M qualitatively reproduces the key stages of 
the TLAF’s evolution: the monotonic increase of M 
in the Y-, V -  and V-phases; a plateau-like region in 
the ferrimagnetic (uud) phase (commonly referred 
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Fig. 7. Phase diagram of the SU3F ground state at I/J = 1.2. 
The green line denotes the boundary between the Y-phase and 
the collinear ferrimagnetic phase, the blue line separates the 
collinear ferrimagnetic and V-phases, the black line separates the 
ferromagnetic and collinear ferrimagnetic phases, the red line 
separates the ferromagnetic and М phases, and the dashed line 
marks the boundary between the V-- and V- phases (on this line, 
qL = –p/2).

Fig. 8. Dependence of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 | (green line) on the external 
magnetic field h at I/J = 1.2 and D/J = 6.
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to as the 1/3 plateau in TLAF); and the saturation 
region of M in the ferromagnetic phase, which, 
however, is less pronounced due to anisotropy.

It is also worth noting that as the anisotropy 
parameter increases, the existence interval of the V
and V phases in Fig. 8 shrinks. As follows from the 
phase diagram in Fig. 7, this interval collapses to a 
point when D J/  7.

Fig. 9 presents the dependence of the quantities 
RL, RF G( ) , M  and | |2

0Q  on the anisotropy 
parameter D at a fixed magnetic field h J/ = 1.  These 
dependencies correspond to movement along the 
vertical dashed line in Fig. 7.

It can be seen that the quadrupole moment 
increases as the anisotropy parameter h increases, 
while the spin moment RL  from the L-sublattice first 
slightly increases in the region of low fields and then 
monotonically decreases. The spin moments RF G( )  
from the F- and G-sublattices do not significantly 
change throughout the entire range of D. Therefore, 
the noticeable increase in the total moment M in 
the ferromagnetic phase is not due to changes in the 
orientation or absolute values of RF G( ) , but rather 
due to the decrease in RL  caused by the anisotropy. 
Upon transition to the Y-phase, the total moment M 
begins to decrease, as the rotation of the vectors RF  
and RG  around the y-axis reduces their projection 
onto the z-axis.

The three vertical lines in Fig. 9 divide the four 
previously described phases. During the transitions 
from the V-phase to the ferromagnetic phase and 

from the ferromagnetic phase to the Y-phase, all 
order parameter dependencies exhibit a kink. At the 
same time, the transition from the V-phase to the V

-phase is not accompanied by any anomalies in the 
presented dependencies.

9. GROUND-STATE DEGENERACY AT I = J

The case I J=  is special because the classical 
analog of the SU3F Hamiltonian, as we will now 
show, exhibits continuous accidental degeneracy.

Indeed, let us define the Hamiltonian dependent 
on the parameter l :

H J S S J S S J S S
fg

f g
fl

f l
gl

g ll l l=
{ } { } { }
∑ ∑ ∑+ + +

	 + ( ) − + +











∑ ∑ ∑ ∑D S h S S S

l
l
y

f
f

g
g

l
l

2
,l � (45)

where the direction of the magnetic field h g HB= ∝
is generally arbitrary. All the notations in Equation 
(45) are the same as in the Hamiltonian (1). It is 
evident that if the conditions l = I/J = gL/g are met 
for l and the field h is directed along the z-axis, the 
Hamiltonian (45) coincides with the operator H 
defined by Equation (1).

On the other hand, it is easy to verify that the 
Hamiltonian (45), up to the constant

	 − + + +










JN S S

h

J
SL L L

3
2

( 1)
9
4 6

, = 1,2
2

2
l �(46)

can be represented as

H D S
l

l
y

l =
2

∑( ) +

	 + + + −






∑J

S S S
h
J

p
pF pG pL4 3

,
2

l � (47)

where the sum p runs over all triangular plaquettes, 
and the lower indices F, G and L of the spin operators 
indicate their belonging to the corresponding 
sublattices in the p-th plaquette.

Thus, if the SU3F parameters satisfy the condition

	 I
J

g
g
L= , � (48)

then the SU3F Hamiltonian in Equation (1) can be 
represented in the form of Equation (47) with the 
field h directed along the z-axis.
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Fig. 9. Dependence of the quantities RL (red line), RF(G) (blue 
line), M (black line), and | Q0

2 | (green line) on the parameter D 
for I/J = 1.2 and D/J = 6.
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If we now consider classical moments instead of 
spin operators in Equation (47), i.e., ordinary vectors 
of fixed length, it is easy to see that the minimum 
value of the Hamiltonian (47) will be achieved when 
both of its terms vanish. The vanishing of the first 
term implies that the spins of the L-sublattice lie in 
the easy-plane zx . The requirement for the second 
term in (47) to vanish reduces to the equation

	 S S S
h
JpF pG pL+ + −l

3
= 0. � (49)

It is evident that, for certain values of the 
magnetic fields h, this equation can be satisfied by 
an infinite set of solutions, i.e., different orientations 
of the three vectors RL, RF  and RG, even when the 
field h does not lie in the zx-plane. Moreover, if the 
magnetic field is parallel to the zx-plane (as in our 
case), the orientation of the vectors RL, RF  and RG, 
which minimizes the Hamiltonian (47), may not 
necessarily be coplanar with the zx-plane.

The above analysis of the classical limit of 
the Hamiltonian (47) suggests that the observed 
(continuous) degeneracy of the SU3F ground state 
should also hold in the quantum case when the 
condition (48) is satisfied. Our calculations using 
the mean-field approximation at I J=  and g gL =  
confirmed that this is indeed the case.

Similar degeneracy occurs in other quantum 
magnets, such as the antiferromagnet on a triangular 
lattice (AFTL) with S = 1 / 2  [43]. As was first 
demonstrated in [38], this degeneracy can be lifted by 
considering zero-point quantum fluctuations. This 
approach requires taking into account higher-order 
terms (compared to the harmonic approximation 
used in this work) when bosonizing spin operators 
within the Holstein–Primakoff representation for 
the F - and G -subsystems and within the indefinite 
metric formalism for the L-subsystem.

For this reason, constructing the phase diagram of 
SU3F at critical parameters satisfying the condition 
(48) will be carried out by the authors in a separate 
study.

10. SPIN-WAVE EXCITATIONS  
IN SU3F UNDER A MAGNETIC FIELD

The spectral properties of SU3F in the absence 
of a magnetic field were thoroughly studied in [31]. 
In this section, we analyze changes in the spectrum 
under a nonzero magnetic field while keeping the 

anisotropy parameter OA fixed. Four dispersion 
curves ε jk  ( j = 1, ,4 ) were calculated for each set 
of model parameters based on equation (33) derived 
in Section 6.

Fig. 10 shows the results of numerical calculations 
of the dispersion curves for four different magnetic 
field strengths with the model parameters I J/ = 0.8  
and D J/ = 3 . On the phase diagram in Fig. 4, the 
four black dots along the horizontal dashed line 
correspond to these four field values. It is evident 
that at h J/ = 1 , the system is in the Y phase; 
at h J/ = 1.87 , the system is in the antiparallel 
phase for the F - and G -sublattices; at h J/ = 3  
the system transitions into the W  phase; and at 
h J/ = 5.5 , the system reaches the ferromagnetic 
phase. Each of the four panels in Fig. 10 displays four 
dispersion curves corresponding to the four types of 
introduced bosons. However, only one curve (black 
in all graphs) can be confidently associated with the 
high-energy d-bosons. The other three branches are 
formed through the hybridization of the a-, b- and 
c-boson states.

Crucial observation is that in the first three 
graphs (a, b, c), there is at least one Goldstone 
mode (blue curves) associated with the breaking of 
symmetry in the ground state due to the collective 
rotation of spins in the F- and G-sublattices around 
the magnetic field direction. In the ferromagnetic 
phase (Fig. 10d), the ground state does not break 
this symmetry, and thus, the Goldstone (gapless) 
mode is absent.

0

4

8

0

4

8

0

4

8

0

4

8

b)a)

c) d)

K M K

K M K KMK

K M K

Fig. 10. Spin-wave excitation spectra at I/J = 0.8, D/J = 3, and 
four external magnetic field strengths: h/J = 1 (a), 1.87 (b), 3 (c), 
5.5 (d). The wave vector k traverses the triangular path GKM in 
the Brillouin zone (see Fig. 3).
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In Fig. 10b, two Goldstone modes appear 
(coincident blue and red curves). The origin of the 
second mode relates to the phase diagram feature 
discussed in Section 7, specifically the dashed curve 
(see Fig. 4). In this scenario, the moments RF  and 
RG  align along the zx -plane in opposite directions, 
causing the system’s energy to degenerate with 
respect to the rotation of the RF  and RG  vector line 
around the y-axis.

As mentioned in Section 7, this behavior is due to the 
vanishing of effective fields and the effective decoupling 
of the L-subsystem from the F- and G-subsystems. In 
such a case, the nodes of the L-sublattice become 
effectively isolated (even from each other), which 
explains the flat dispersion of the two high-energy 
branches (black and brown) in Fig. 10b.

The dispersion dependencies ε jk  shown in Fig. 11 
were calculated with the following model parameters: 
I J/ = 1.2,  D J/ = 6,  for four values of the external 
magnetic field: h J/ = 0.3,  1, 4 and 6. On the phase 
diagram in Fig. 7, these four field values correspond 
to the four black dots along the horizontal dashed 
line. As the magnetic field h increases, the system 
sequentially transitions through the following four 
phases: the Y  phase at h J/ = 0.3;  the ferrimagnetic 
phase at h J/ = 1;  the V- phase at h J/ = 4.3;  and the 
ferromagnetic phase at h J/ = 6.

From the graphs presented in Fig. 11, it is evident 
that the Goldstone mode appears only in the first 
case (Fig. 10a), as the breaking of ground-state 
symmetry (relative to rotations around the z-axis) 

occurs exclusively in the Y
--phase. In all other 

regions of the phase diagram (Fig. 7), the spin-wave 
excitation spectrum remains gapped.

11. CONCLUSION

The main outcome of this study is the construction 
of the phase diagram of the SU3F ferrimagnet on a 
triangular lattice, plotted in the coordinates of the 
magnetic field h  (applied in the easy-plane anisotropy 
plane) and the single-ion anisotropy parameter D at 
zero temperature. Among the key features of the SU3F 
model, the following three stand out: 1) different spin 
magnitudes in magnetic sublattices: two sublattices 
(F and G) have spin S = 1 2/ , while the third L-sublattice 
has spin S = 1;  2) single-ion anisotropy: easy-plane 
anisotropy acts on the L-sublattice with spin S=1; 3) 
different exchange integrals: The exchange interactions 
differ between the F- and G-sublattices (J) and between 
the L- F(G) sublattices (I).

Numerical calculations under the mean-field 
approximation revealed two qualitatively distinct 
types of SU3F phase diagrams depending on the 
ratio between the exchange integrals I and J. These 
phase diagrams differ both in the number of realized 
phases and in the nature of their magnetic structures.

For I J< , the ground state of SU3F can be 
characterized by three magnetic configurations: the 
Y , W phase, and the ferromagnetic phase (see Fig. 
4). Notably, along the boundary between the Y - and 
W -phases (dashed line in Fig. 4), the SU3F system 
effectively splits into two independent magnetic 
subsystems/ The first subsystem consists of spin‑1 sites 
on a triangular lattice and behaves as a paramagnet. 
Another one consists of S = 1 2/  spins forming a 
planar hexagonal lattice in a collinear two-sublattice 
antiferromagnetic phase under an effective zero 
magnetic field. This decoupling leads to an additional 
degeneracy of the ground state, associated with the free 
rotation of the antiferromagnetic vector within the easy-
plane. This degeneracy manifests as an extra Goldstone 
mode in the spin-wave excitation spectrum.

For the reverse exchange ratio ( I J> ), the SU3F 
the h–D- phase diagram undergoes significant 
changes. It now features four distinct regions 
characterized by different magnetic ground-
state structures, i.e. the Y- phase, two collinear 
ferrimagnetic and ferromagnetic phases, as well as the 
V-phase. The V-phase can further be subdivided into 
two sub-phases (V  and V), depending on whether 
the angle qL exceeds the critical value p/2.
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For both I J<  and I J> , the quadrupole and 
dipole order parameters were analyzed as functions 
of both the magnetic field (at fixed anisotropy OA) 
and the anisotropy parameter OA (at fixed magnetic 
field h). One significant result of this study is the 
dependence of the total moment M on the external 
magnetic field. For I J>  and a specific finite value 
of ОА, this dependence qualitatively reproduces 
the well-known behavior observed in quantum 
antiferromagnets on a triangular lattice with uniform 
spin S = 1 2/  and without anisotropy [38, 43]. 
Specifically, within a certain magnetic field range, the 
magnetization curve exhibits a plateau (albeit with 
a slight tilt in our case). In conventional quantum 
triangular-lattice antiferromagnets (QTAFMs), this 
plateau arises due to quantum antiferromagnetic 
fluctuations, while in SU3F, it emerges due to the 
presence of single-ion anisotropy.

A notable finding is the qualitative difference 
between the two phase diagrams for I J<  and 
I J> . There is no continuous transformation 
at I J®  from one diagram to the other. This is 
because, when the exchange integrals become equal 
( I J= ), accidental degeneracy arises, leading to 
an ambiguity in the magnetic configuration within 
the mean-field approximation for given magnetic 
field and anisotropy values. We hypothesize that, 
as with QTAFMs, quantum fluctuations should lift 
the observed accidental degeneracy (as well as the 
additional degeneracy noted for I J< ). However, 
a detailed investigation of this issue requires further 
study and will be addressed in future research.

In conclusion, we emphasize that in the present 
study, the magnetic field h applied to the quantum 
SU3F system was oriented within the easy-plane 
anisotropy plane. If the magnetic field were instead 
applied perpendicular to this plane, the behavior 
of the magnetic order parameters could differ 
qualitatively.
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APPENDIX A. UNITARY TRANSFORMATION 
OF HUBBARD OPERATORS

As a result of the unitary transformations of the 
Hubbard operators according to formula (20), with 
the unitary operator U nm  ( )α  ( n m¹ )defined by 
formula (20), the following expressions are obtained 
[40]:

X X Xnn nn mm= 2 2cos sinα α  + −

− +( )1
2

2 ,sin α X Xnm mn   

X X Xmm mm nn= 2 2cos sinα α  + +

+ +( )1
2

2 ,sin α X Xnm mn   

X X Xnm nm mn= 2 2cos sinα α   − +

+ −( )1
2

2 ,sin α X Xnn mm  

X X Xmn mn nm= 2 2cos sinα α   − +

+ −( )1
2

2 ,sin α X Xnn mm  

X X Xnp np mp= ,cos sinα α  -

X X Xpn pn pm= ,cos sinα α  -

X X Xpm pm pn= ,cos sinα α  +

X X Xmp mp np= ,cos sinα α  +

X Xpq pq= ,

where all four state indices p , q , n  and m  are 
different, and the site indices are omitted. In the 
main text, for brevity, the tilde notation, indicating 
the new (transformed) states, is not used for the 
indices of the thrice-transformed Hubbard operators.

APPENDIX B. MATRIX ELEMENTS  
OF SPIN OPERATORS

This appendix presents the explicit form of the 
matrix elements s n S mnm l

α α≡ 〈 〉| |  ( α = { , , }x y z  
and n m, = {1,0,1} ),, used in the decomposition 
(27). These elements were obtained from the three 
successive transformations of the Hubbard operators 
using the three unitary operators U 1 1 1( )- -α , 
U 0 1 3( )- -α  and U 10 2( )-α , followed by substituting 
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the transformed results into the representation (15) 
for the spin operators of the L -sublattice.

Matrix elements for the spin operator Sl
z :

s z
11 1 2 1 2 3

2= ( )cos cos sin sin sinα α α α α+ −

- 2
1

2
3,sin cosα α

s z
1 1 1 2 3 1 2

2= ( )cos sin sin sin cosα α α α α- -

- 2
1

2
3,cos cosα α

s z
00

2
2

2
3

2
3= ,sin cos sinα α α-

s sz z
10 01 1

2
2 3= =

1
2

(1 ) 2− + −sin sin sinα α α

-
1
2

(2 ) ,1 2 3cos sin cosα α α

s sz z
10 0 1 1

2
2 3= =

1
2

(1 ) 2− + +cos sin sinα α α

+
1
2

(2 ) ,1 2 3sin sin cosα α α

s sz z
11 1 1 1 2 3= =

1
2

2 2cos sin sinα α α +

+ − −
1
2

2 ( ).1
2

2
2

3
2

3
2

2sin sin sin cos cosα α α α α

For the operator Sl
x :

s x
11 1 2= 2(cos sinα α -

− +sin sin cos cos cosα α α α α1 3 2 1 2)(

+ +sin sin sin sin cosα α α α α1 3 2 1 3),

s x
1 1 1 2= 2(sin sinα α +

+ −cos sin cos sin cosα α α α α1 3 2 1 2)(

- -cos sin sin cos cosα α α α α1 3 2 1 3),

s x
00 2 3 2

2
3=

1

2
( 2 2 ),cos sin sin cosα α α α-

s x
11

1
2 3 3 2=

2

2
( 2 )
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sin cos sin cos
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2 3 2
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α α α α
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( 2 )

cos
cos cos sin sin

α
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α α α α
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1
2

2 2 ),

s s s s s sx x x x x x
11 1 1 10 01 10 0 1= , = , = .

For the operator Sl
y :

s s sy y y
11 1 1 00= = = 0,

s
iy

01 1 2=
2

(− +sin cosα α

+ +cos cos sin sinα α α α1 3 2 3( )),

s
iy

10 1 2=
2

(cos cosα α +

+ +sin cos sin sinα α α α1 3 2 3( )),

s
iy

11 2 3 3=
2

( ),sin cos sinα α α-

s s s s s sy y y y y y
11 1 1 10 01 10 0 1

= , = , = .- - -

For the operator ( )2Sl
y :

〈 〉 + +1 | ( ) | 1 =
1
2

1
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2 2
1

2
2Sl

y
cos sinα α

+ − −
1
2

( 2 )2
1

2
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2
3 2 3sin cos sin sin sinα α α α α
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2
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2
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2 3Sl

y sin sinα α

+ +1 ),2
2

2
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2 ( ),1 2 2 3 3cos cos sin sin cosα α α α α
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1 2 3 2 3Sl
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+ −


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(2 ) ,1 2 3
2
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〈 〉 〈 〉0 | ( ) | 1 = 1 | ( ) | 0 .2 2S Sl
y

l
y

APPENDIX C. BOSONIZATION  
OF SPIN OPERATORS FOR S=1

Using the representation (28) in formulas (27) and 
retaining only terms up to the second order in boson 
operators, the following spin operator expressions 
through bosonic operators are obtained:

S s c c s d dl
x x

l l
x

l l=
1

2
[( ( ) ( )0,1 1,1

+ ++ + + +

+ + + + − ++ + +s d c c d s s s c cx
l l l l

x x x
l l1,0 1,1 0,0 1,1( ) ( )

+ − +( ) ],1,1 1,1s s d dx x
l l

S
i

s c c s d dl
y y

l l
y

l l=
2

[ ( ) ( )0,1 1,1
+ +− + − +

+ −+ +s d c c dy
l l l l1,0

( )],

S s c c s d dl
z z

l l
z

l l= ( ) ( )0,1 1,1
+ ++ + + +

+ + + + − ++ + +s d c c d s s s c cz
l l l l

z z z
l l1,0 1,1 0,0 1,1( ) ( )

+ − +( ) ,1,1 1,1s s d dz z
l l

( ) =
1
2

[(( ) ( ) )2
1,0

2
1,1

2S s s c cl
y y y

l l− ++

+ − −+(( ) ( ) )
1,0

2
0,1

2s s d dy y
l l

− + + + ++ +s s d d s s c cy y
l l

y y
l l1,0 0,1 1,0 1,1

( ) ( )

+ + + ++ +(( ) ( ) ) ( )].0,1
2

1,1
2

0,1 1,1
s s s s d c c dy y y y

l l l l

The presented expressions, after averaging and 
applying the spectral theorem to compute the boson 
operator expectations, were used to derive the 
formulas for calculating the order parameters RL, M 
and Q 2

0 .
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