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Abstract. The phase diagrams (magnetic field H — single-ion anisotropy D) for three-sublattice SU(3)-
ferrimagnet on triangular lattice with mixed sublattice spins (8 = 1,1/2,1/2) at different values of exchange
parameters / (between spins S = 1 and S = 1/2) and J (between spins § = 1/2) are calculated. To correctly
account for the algebra of the SU(3) group generators, which includes quadrupole operators, the representation
of Hubbard operators was used. It is shown that depending on the system parameters there can be implemented
ferrimagnetic Y- or inverted Y (Y )-phase, canted V-phase (spins S = 1/2 are parallel), fan-shaped W-phase,
as well as collinear ferrimagnetic and ferromagnetic phases. In the case of / < J, a line appears on the phase
diagram on which SU(3)-ferrimagnet splits into two independent subsystems, one of which is paramagnetic
with spins §' = 1, and the second one is antiferromagnetic with spins § = 1/2 in a zero effective magnetic field.
In the spin-wave approximation, the dependences of the average values of the quadrupole moment and dipole
moments of the three sublattices on the magnetic field and the single-ion anisotropy are calculated. The spin-
wave excitation spectrum is analyzed both at /> J and at / < J. It is shown that at / =J in the SU(3)-ferrimagnet,
an accident degeneracy occurs, which can be lifted by taking into account quantum fluctuations.
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1. INTRODUCTION

In recent years, there has been a significant
increase in interest in materials where relativistic
spin-orbit interaction leads to the manifestation of
quantum effects on a macroscopic scale [1, 2]. These
materials are commonly referred to as quantum
magnets [3]. One of the most striking manifestations
of quantum effects is the significant reduction of the
average spin value in magnets with S >1/2 [4]. The
reason for the spin reduction lies in the consideration
of single-ion anisotropy (SIA) arising from spin-orbit
interaction or in the inclusion of pairwise interactions
associated with higher-order spin invariants of the
form (S, »*5 [5—15]. In magnetic systems where
such non-Heisenberg interactions are sufficiently
strong, spin-nematic phases have been observed.
These phases are characterized by zero magnetization
even at zero temperature (i.e., complete spin
reduction), but they exhibit spontaneous symmetry

91

breaking due to quadrupole order parameters (mean
values of operators bilinear in spin components)
[10]. The enhancement of such quantum effects is
facilitated by frustration [2], low temperature, low
system dimensionality [16], and multi-sublattice
structures.

For example, in multi-sublattice ferrimagnets with
different magnetic ions, the manifestation of quantum
effects can be significantly amplified due to the
possible compensation of the effective field acting on
the spins of magnetically active ions [17—26]. Indeed,
as shown in [27], in a two-sublattice ferrimagnet,
quantum spin reduction in the anisotropic sublattice
(with § = 1) at low temperatures can be substantially
suppressed by the exchange interaction field from
the isotropic sublattice (8§ =1/2). If there are
more than two sublattices, the total effective field
from two isotropically antiferromagnetically coupled
sublattices acting on the ions of the third anisotropic
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sublattice can be nullified, thereby eliminating the
mentioned mechanism of spin reduction suppression.

In this regard, one of the key objectives in the
theory of quantum magnets is to find a microscopic
model that could predict and study new quantum
effects with both experimental and practical
significance. As outlined above, one promising
approach is to investigate the combined action of
multiple factors that promote quantum magnetism
phenomena. In the context of this research
direction, studies such as [28—30] proposed a
model of a three-sublattice ferrimagnet with
mixed spins S =1,1/2,1/2 on a triangular lattice
with Ising exchange interaction and SIA in the
S = 1spin subsystem. In those studies, based on
Monte Carlo simulations, the main focus was on
constructing phase diagrams in the temperature—
SIA plane and searching for a technologically
significant compensation regime, where the total
magnetization reaches zero below the critical
temperature. Notably, alongside SIA in the
S =1 spin subsystem, the model proposed in
[28—30] possessed essential features such as low
dimensionality and geometric frustration, which,
as mentioned earlier, enhance quantum effects.

In a recent study [31], the authors investigated
the SU(3) ferrimagnet (SU3F) model, which closely
resembles the model proposed in [28—30] but
includes two crucial generalizations. First, instead of
Ising exchange interaction, the SU3F model employs
isotropic Heisenberg exchange. It is well known that
transverse components of exchange interaction in
noncollinear magnetic structures induce zero-point
quantum fluctuations, leading to antiferromagnetic
(AF) fluctuations. These AF fluctuations, like SIA,
can cause quantum spin reduction, and therefore,
the quantum effects driven by AF and SIA should
be distinguished. The second major difference
between SU3F and the model proposed in [28—30]
lies in the use of different exchange integrals / and
J for interactions between the S =1 and S =1/2
sublattices and between the two § = 1/2 sublattices,
respectively. As shown below, the phase diagrams
of SU3F differ qualitatively depending on the ratio
between the exchange integrals.

Furthermore, it is essential to highlight an
important conceptual feature of the SU3F model.
This feature is associated with the fact that significant
SIA, as known from previous studies [8—15, 32—36],
necessitates the inclusion of the full set of generators
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of the SU(3) algebra acting in the Hilbert space of
the § =1 spin states. Therefore, conventional spin
operators are insufficient for describing such systems.
To emphasize this aspect, the model proposed in [31]
was named the quantum SU(3) ferrimagnet model.

The general characteristic of the SU3F model is
the simultaneous consideration of several factors
that enhance quantum effects: SIA, AF fluctuations,
multi-sublattice structure, low dimensionality, and
exchange frustration.

The study of the SU3F model in [31] was
conducted in the absence of an external magnetic
field and at zero temperature. The dependence of
the sublattice spin moments and the quadrupole
moment on the SIA parameter was calculated for
different exchange integral ratios //J. It was found
that the critical value of the SIA parameter D, , at
which SU3F transitions to the quadrupole phase, can
be significantly smaller than both / and J. Moreover,
for I > J , a compensation point was observed in the
total moment M dependence on the SIA parameter,
ie., Mat D <D,.

This work represents a logical continuation of
the studies conducted in [31]. Its primary goal is to
construct the phase diagram of SU3F in the external
magnetic field—SIA parameter plane and to analyze
the modification of the magnetic structure and order
parameters when crossing the phase boundaries.
The ground state energy and the corresponding spin
configuration are calculated within the mean-field
approximation at zero temperature. This condition,
as is well known, is unachievable by the Monte Carlo
method used in the previously cited works [28—30].
To correctly account for the SU(3) algebra generators
in the S =1 spin subsystem, the Hubbard operator
formalism is employed [11, 35, 37]. In the calculation
of order parameters, spin operator bosonization is
applied: the Holstein—Primakoff transformation
for the S =1/2 spin subsystem and the indefinite
metric formalism for the § =1 subsystem [11, 14].

The remainder of this paper is organized as
follows. Section 2 formulates the SU3F Hamiltonian
in an external magnetic field lying in the easy-
plane direction. Section 3 presents the SU(2)
transformation of the S = 1/2S = 1/2S = 1/2 spin
operators, corresponding to the rotation of local
coordinate axes. Section 4 details the Holstein—
Primakoff transformation for the S=1/2 spin
subsystem. Section 5 describes the transition to the
Hubbard operator representation and their triple
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SU(3) transformation for diagonalizing the single-
ion Hamiltonian of the S =1 spin subsystem. The
bosonization of Hubbard operators and the derivation
of the dispersion equation are covered in Section
6. Sections 7 and 8 analyze the characteristics of
phase diagrams and the changes in order parameters
for 1<J and [>J, respectively. Section 9
demonstrates the degeneracy of the SU3F mean-
field ground state at / =J . Section 10 discusses
changes in the spin-wave excitation spectrum as the
magnetic field increases under different exchange
parameter ratios. The main conclusions of the study
are presented in Section 11.

2. MODEL OF SU3-FERRIMAGNETISM

The crystal structure of the considered SU3F
is shown in Fig. 1. The red circles mark the lattice
sites of the sublattice with spin value § =1, further
referred to as the L-sublattice. The green and blue
circles mark the lattice sites of the sublattices with
spin value S =1/2, denoted further as F and G
sublattices, respectively. The periodicity of the
system is defined by the basis vectors a; and a,, equal
in magnitude. The vectors z and x connect the nodes
of different sublattices.

The Hamiltonian of SU3F in an external magnetic
field can be written as:

H= HA + Hexch + %eld’ (1)
where:
Hosen = JZSng + IZSfS, + IZSgS,,
{fg} {1} {gl}
2
Hy=DY (s ()
I

’Hﬁeld = —hZSZ — hZSg — hLZSlz.
f g /

The operator H,,,, describes the pairwise
exchange interaction between the nearest-neighbor
spins from different sublattices. The lower indices f,
g and / of the spin operators denote the lattice sites
from the F-, G- and L sublattices, respectively. The
exchange integral J determines the strength of the
antiferromagnetic interaction between the nearest-
neighbor spins from the F- and G- sublattices, while
the integral 7 governs the interaction between the
F(G)- and L- sublattices. The curly brackets under
the summation symbols in (2) indicate that the
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Fig. 1. Crystal structure of the three-sublattice SU3F on
a triangular lattice. Red, green, and blue circles indicate
the positions of the nodes in the L-, F- and G- sublattices,
respectively. |a,| = |a,| = a are the Bravais lattice vectors, while
&€ and C represent the basis vectors.

summation is carried out only over nearest neighbors,
with each pair of nodes counted only once.

The operator H, describes the effect of single-
ion anisotropy (SIA) of the easy-plane type acting on
the spins S =1 in the L- sublattice. The anisotropy
parameter D is positive. The y axis is directed
perpendicular to the ferrimagnet plane xz, which is,
therefore, the easy magnetization plane.

The operator Hp,; accounts for the Zeeman energy
of the spins in the external magnetic field H, lying in
the ferrimagnet plane (easy plane) and determining
the parameters 4 = gocp H ,and h; = g,z H , where
ocp is the Bohr magneton, and g and g; are the Landé
factors for the F(G)-sublattices, respectively. In general,
the g-factors may differ for different sublattices. In this
study, we assume that the moments are formed without
the participation of orbital degrees of freedom, i.e., they
are purely spin-related,so g; =g =2.

The direction of the magnetic field and the
type of SIA ensure that the average moment of
the L sublattice of R;, is oriented in the xz plane,
perpendicular to the anisotropy axis y. Furthermore,
considering the nature of the exchange interactions
and the results of Ref. [38], it can be argued that
the magnetic structure of the SU3F ground state for
any values of D and H is characterized by a planar
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configuration of spin expectation values. Therefore,
without loss of generality, we will assume that the
spins of all three sublattices lie in the ferrimagnet
plane xz, with the z axis of the original coordinate
system conveniently directed along the magnetic
field.

3. SU(3)-TRANSFORMATION
OF THE HAMILTONIAN

To calculate the ground-state energy of SU3F, it
is convenient to start with a unitary transformation of
the Hamiltonian H:

HOFp,0; ) =U,(0p,0; )HU;(QF,QG )s (3)

with the operator

U,0)= H exp(—iOFS;) H exp(—i@G Sy ) 4)
feF geCG
The transformation (3) allows one to switch to
new local coordinates for the F - and G - sublattices,
where the quantization axes z’ and z”’ are rotated
by the angles 6 and 0; around the y axis, aligning
them along the equilibrium magnetizations Ry and
R , respectively (see Fig. 2).
The unitary transformation (3) of the Hamiltonian
(1) corresponds to the following formal substitution of
the spin operators for the F- and G- sublattices [39]:

Sf — Sf cosOp + Sfsinbp, SY — S,

S§ — Sf cosOp — 87 sinbp, (5)
Sy — Sg cosg +Sgsinf;, Sy — Sy,
Sg — Sg cosOg — S, sinf . (6)

As a result, the Hamiltonian operator (1) is
transformed into the following form:

H=DY (S} +
/
+I3 {(sjfsg + 8552 )cos(Op — 05 ) +
iz}
+ SISy + (SFSE — SFSHsin@ —06)} +
+ I {(SFST + S7S7)costy +S)S) +
i1

(S} —SFSF)sin6y |+

Fig. 2. Rotation of local coordinate axes during the unitary
transformation (3). In the F- and G- sublattices with S = 1/2, the
axes z are rotated by the angles 6 and 0, taking new positions
7z and 7", respectively. The local coordinates in the L- subsystem
with § = 1 remain unchanged, while the angle formed by the
moment R;and the z axis is denoted by 6, .

+ I {(SEST + S5S7)cos +SyS) +
{el}

+(SEST — S557)sin6g }—
—hZ{Sf cosOp —S7 sin@F}—
S

th{Sg cos; — S sinfg } —hp >SS, (D)
g 1

where the operators Sﬁ and Sg (p = x,y,z ) relating
to F- and G-subystems refer to the projections
of the spin moments on the quantization axes
corresponding to index B in the new (rotated) local
coordinate systems.

4. HOLSTEIN—PRIMAKOFF
TRANSFORMATION

Following the strategy outlined in the introduction
for calculating the ground-state energy of SU3F, we
perform the Holstein—Primakoff transformation
separately for the F- and G- sublattices:

+ — , + — +
Sf = 2S—afaf'af, S; —S—afaf,
+ — + _ +
S{ =25 —bjb, -b,, S;=S—blb,,

where the bosonic creation a;f (b, ) and annihilation
as(bg) operators describe spin transitions at site
f(g) ofthe F(G) sublattice from the state [")(|"')),
corresponding to spin orientation along the z'(z'’)

8)
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axis, to the opposite orientation ||')(]|"")), and vice
versa.

Substituting (8) into the Hamiltonian (7) gives the
result:

H=Ey+H” + 1D + H?, 9)
where:
Ey = JoS>N cos(0p —05) —
—hSN (cosOr + cosb ), (10)

Here, H™ (n=0,1,2) denotes the number
of sites in the sublattice. The Hamiltonian H©
represents the sum of the single-ion Hamiltonians
for the L- subsystem:

HO =3 "Hy (),
/

where:
Hy(l) = D(SY)* + H,S§ + H,S7, (1)
The effective fields are defined as:
I?z = 1yS(cosOr +cosb; ) — h;, (12)

H, = 1,S(sin6; +sinf;), I, =3I.

The linear term in bosonic operators from the
Hamiltonian (9) can be written as:

HD = Z]\/g[coseFSf - sineFSﬂ(af + a}‘) +
{1}
S . i
+zf:\g [JoSsin(0g —0p) + hsinO (@ +af) +
+Zl\/§[coseGSf — Sinecslz](bg +bg) +
{gh)

S . .
+Z\/;[JOSSIH(0F —0g )+ hsinbg; |(b, +b;) +
g

1S
+7\/;[ZS,y (af — af+) + ZS{ (bg —b;)], (13)
i1 {gl}
where:
Jo =3J

The last term in expression (9) describes the
excitations in the F- and G subsystems and has the form:

S
H? = Ja{%}{[(“f +af )by +b;) —
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~2afa, +b]b, ))] cos(Op — 05 ) —
— (@ —af )by b))} -
—1) (cosOrS} +sin0pS) )af ar —
i
— 1 (cosb; i +sinb; ST )b b, +
{g.0}

+hcosOp Y afar +hcosbg » bib,.
f g

(14)

Next, the mean-field logic dictates replacing the
spin operators HY and H® of the L- subsystems
with their average values. In the considered zero-
temperature regime, averaging the operators S}
(o =x,y,z ) is sufficient to perform based on the
ground state of the single-site Hamiltonian (11).

5. DIAGONALIZATION OF THE SINGLE-ION
HAMILTONIAN

To diagonalize the single-ion Hamiltonian (11),
we use the approach developed in [40]. We transition
from spin operators to Hubbard operators [37], where
X" =|m)(n|, where m,n ={-1,0,4+1} are the
eigenstates of the operator S} with corresponding

eigenvalues |m) and |n) of Sf|n)=n]|n).
Substituting
S = %(X}’O + X0y +X?’T),
S =£(—X}’°+X}’O+X?’l_X?’l)’ (15)
(57 =g (X3T+ x XX T xg,

Sf=xM_x T=-1,
Describing the transition to representation of the
Hubbard operators into the single-ion Hamiltonian

(11) gives:
D —
Hy(l) = [7+HZ]X}" +DXM 4
D

D = \,i1 1,1 11
+[?—H1]X, —5()(, +X) )+

ﬁ _ _
+_X(X;’° + x4 x)0 +Xf”1). (16)

2

In the absence of a magnetic field, the ground
state of the system is degenerate with respect to
rotations around the y axis. Choosing the x axis
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along the vector R; and assuming equivalence
between the F - and G -sublattices (6 = —6; ,),
the parameter ¢\phi¢p becomes zero, and the last
term in (16) vanishes. In this case, the Hamiltonian
H(I) couples only two of the three states (| +1)

and | —1)), and its diagonalization requires only
one unitary transformation (see [31]). However, the
presence of a magnetic field couples all three states
|n) (n=1{-1,0,+1}), requiring three consecutive
transformations for the diagonalization of the single-
ion Hamiltonian.

The unitary operator U,,(a,/) for each
transformation is defined by its generator
C,,(D=X/"—-X"" from the SU(3) group,
according to the expression:

U,,(,l)=expfal,,, ()} =

=1+ (coso— )(X]/™ + X["") +sinaT,, (). (17)

The new Hubbard operators X,’ws~ =|F,0{,1,
defined through the new basis states

|F,l> =U,, (ol r,l>,

(18)

are expressed via original Hubbard operators as
follows:
X85 =U, (—,DXPU} (—o,). (19)
Thus, the unitary transformation reduces to a
simple substitution in the single-site Hamiltonian:

X = U () XF UL (a,0). (20)

Explicit expressions for the right-hand side
of the last formula were derived in [40] and are
provided in Appendix A for completeness. The
variational parameter o in (17) is chosen such that

the off-diagonal terms X/ and X" vanish in the
transformed Hamiltonian.

Performing the three consecutive unitary
transformations with the operators U, (a,),
Uy_(a3) and U, _ (o), following the rule (20),
and retaining the original notation for the indices
of the new states n ={-1,0,+1} (i.e., without
tildes), we obtain the diagonal form of the single-ion
Hamiltonian H(/):

Ho()=> e, X", n=—1,0,+1. (21)

The eigenvalues ¢, of the single-ion Hamiltonian
can be expressed as (1 = —1):
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& =erg sin%o + euCOSZoc1 + e, 7sin2ay,
&1 = eT,T COSZOLI + el sin2a1 — elj sin 20(1, (22)
€y = €9,0

where

D —
e = Dsinz(x2 + [— + HZ ]cos2(12 +

2

H
+—%sin2a,,

\/5 2

D . .

ey = Dcoszoczsinzot3 - jsmaz sin 2013 +

D = .2 .
+ ?+HZ sin“d,sin‘o3 +

D —
—I—[? — H, |cos’a; — (23)

2

NG
D . .
€00 — D cos’oycos’oy + ~ sina, sin 20 +
D - D —
[t e

H . .
+—% (cosa, sin 2013 — sin 20, cos’at3),

J2

(cosa, sin2a; + sin2a., Sin2a3),

H, D). ,
= [Tz — Z]Sln(2a2)sm o3 —

— 5 Cosa, cosag +

+F[x (—cos2a, sino; + sina, cosay)
NG 2 3 2 3)

From the requirement of nullifying the coefficients
of the non-diagonal X-operators in the transformed
Hamiltonian, the following system of equations for
the angles o; (j =1,2,3) is obtained:

[g — HZ sin2o, + x/il-_lx cos2a,

tgo; = — ,
: D cosa, —\/EHX sina,
(€20, = \/ng cosa, +DSiIl£)L2 (24
2E —l—[—f_l c()sz(x — —Xsin2a
z 2 z 2 \/5 2
20(1 = 2€1j /(el’l —eLT).
JETP, Vol. 167, No. 1, 2025
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Similarly, by sequentially applying formula
(20) with the operators U, y(a;) , UO,T(O%) and
U,:1(a)), to the representation (15), the spin
operators S;, 87, Sf and (S} )> can be expressed
through the new (transformed) X-operators. The
expansion coefficients of the spin operators S}
in terms of the new Hubbard operators X ;" will
represent the matrix elements of the spin operators
in the new states: s,/ ,, = (n|S;" |m) (o =x,y,2).
Explicit expressions for these matrix elements are
given in Appendix B.

Within the mean-field approximation, the spin
operators in the Hamiltonian H® should be
replaced by their average values, i.e., the diagonal
matrix elements s, , , calculated for the ground
state | n) , corresponding to the minimum value of
g, . Below, we will choose the set of solutions of
equations (24) for the angles o; (j =1,2,3) such
that the state | +1) is the ground state.

Since s}, =0 for any n (see Appendix B), the
last two sums in formula (13) for H" vanish. The
reduction of the remaining terms in (13) occurs under
the conditions:

To(syjcosOp — s sinbp) +
+JgSsin(@; —0r)+ hsinOp =0,

0Ssin(6; —Or) r (25)
Io(syjcosf; — st sinf; )+

+JySsin(0p — 05 ) + hsinf; =0,

These conditions will be further used to determine
the equilibrium values of the angles 6 and 6. The
angle 0;, introduced in Fig. 2 for clarity, is not a
tuning parameter and can be determined through
the ratio of the average values of the spin projections
S; and S7.

The magnetic structure of the SU3F ground state
is determined by the solutions of the five equations
(24) and (25) for the angles o; (j =1,2,3), 6y and
0, , followed by the selection of the solution set that
corresponds to the minimum value of the mean-field
energy of the entire system:

Eyr =Ey+Ng, (26)
where the values E, and ¢, are defined by equations
(10) and (22), respectively. In Section 7, the SU3F
phase diagrams in the # — D -coordinates, calculated
based on the methodology presented here, will be
presented.
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6. BOSONIZATION OF THE L- SUBSYSTEM
AND THE DISPERSION EQUATION

Within the chosen approximation, the ground
state energy E,,r is determined without considering
AF (antiferromagnetic) contributions. Therefore, the
contributions from the last term in the Hamiltonian
(9), quadratic in Bose operators, are absent in
expression (26) for E, . Nevertheless, when
calculating the dependencies of order parameters
on the magnetic field and single-ion anisotropy
(SIA), the energy spectrum of spin-wave excitations
is required, and to determine this spectrum, the
operator H® must be taken into account.

To compute the energy spectrum within the
spin-wave approximation, we first express the spin
operators through the new (transformed) X-operators.
Using (15) and the formulas from Appendix A, we
obtain expressions for the S-operators of the form:

Sl ZZSSmX?m, a=x),z,

n,m

(27)

where the matrix elements s, are given in Appendix
B.

Next, considering that the state spectrum H (/)
is characterized by three levels and the ground state
of the single-ion Hamiltonian is the state | +1), we
introduce, following [11, 14], two types of Bose
operators: ¢ and d . The creation of one ¢(d) boson
at site / is described by the creation operator c; (d}")
and corresponds to the system transitioning from
the “vacuum?” state | +1) to the state | 0)(| —1)) with
one c(d) boson. The Hermitian conjugate operator
c;(d;) , acting in the opposite direction, annihilates
the c¢(d) boson. States with more than one boson are
excluded by the metric operator as non-physical.

The representation of Hubbard operators
through Bose operators, proposed in [40] within the
framework of the indefinite metric formalism [41],
takes the form:

XY= —cfe,—dfd)e, X} =c,
Xpl=(—c¢fe,—djd)d,, X" =df, 08)
X?’T =c/d), XlT’O =dj¢, X?’O =c/c,

XM =did,, XM =1-cfe,—did).

We use the representation (28) in the formulas
(27) and substitute the resulting expressions for the
S-operators (see Appendix C) into the terms H M
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and H® of the Hamiltonian (9). As a result, an
expression arises in which only contributions up to
the second order in the a, b, ¢ and d - operators
should be retained. Performing the Fourier transform:

ikf a, b, ikg by,

_ 1 _ s
Y - 52 w2

1 ikl 1 ikl 29)
Cl:ﬁzk:e Ck» dl :Wzk:e dk’
we obtain the desired Hamiltonian, which can be
written as follows:
H=Eyr +Hgy. (30)

Here, the first term E,, corresponds to the
ground state energy in the mean-field approximation
(see formula (26)), while the second term H gy
describes spin-wave excitations and is defined by the
expression:

Hgy = {E,aifa; + Eybiby + E.cfc, + Egdfd; +
3

I (reagby +vibi g} +
(e @b b)) +
Hor (pcfay +yiaicy) +
Hop(eekay +vperay) +
L (vpdiay +vpaldy) +
Hp (i @’y + vida ) +
g (Veeibe +viebie,) +
Hlog (e by +veexb ) +
+I (Vrdibe + v b8d) +
e (e diib 5y + yedib_y). 30

In this expression, the following notations were
introduced:

E, =—JyScos(0p —0; )+ hcosOp —
—1(sficosOp + s7sinbf),
E, = —JyScos(0; —0p)+ hcosO; —

—Iy(sficosO; + s7;8in6; ),

4

Fig. 3. The Brillouin zone of the triangular lattice and three high-
symmetry points: I', K, M.

EC = &) — ¢, Ed =8T — &,
JoS
J. =%(cos(9F —0) £1),
y
IniA =[0 g SzICOSQA —SﬁlsineA Zl:s%l ,

n=1{0,1}, A={F,G},

k k.,

ws 1 k, 57 i
Ve = §Ze’ d = 3 ZCOSTZe 23 1 V3 (32)

In the sum defining the triangular lattice invariant
Y« > the vector & takes three values: {§,—C,C — &} (see
Fig. 1). The Brillouin zone, which bounds the region
of quasimomentum values, is shown in Fig. 3.

To obtain the dispersion equation, we define the
matrix retarded Green’s function ((X, | X))
where

® 2

— (ot Bt ot gt
Xy =(ag by e di,a_i by cpd_g).

From the requirement for nontrivial solutions
of the equation of motion for ((X, | X;7)),, , the
spectrum equation follows:

U)—Ak
By

_Bk

=0, (33
AR

where
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E, Jiove Iopvie vk
J.v. E, I I

A, = :Yk +b* 06Tk 1167k (34)
lorve logve  E. 0
I%_F'Yk ]%_G’Y/t 0 Ed

and

0 J_vi Torve Iipve
J v 0 I 15

B, = _—Yk . 0¥k TigYe| (35)
Lopve Togve O 0
IipYk Ii;v}l 0 0

7. SU3F PHASE DIAGRAM FOR /< J

We will discuss the SU3F phase diagram in
the magnetic field—anisotropy parameter (D)
coordinates separately for three cases of exchange
parameter ratios: I <J, I>J, I =J. In this
section, we consider the first case: 1 < J .

Fig. 4 shows the phase diagram of the SU3F
ground state, calculated according to the
methodology outlined in Section 5, for the exchange
parameter ratio / /J = 0.8. It is evident that three
phases are realized in the considered regime: the
inverted Y-phase (hereinafter referred to as Y ), the
W-phase, and the ferromagnetic phase.

In the Y phase, the average spin vector of the
L-sublattice, R; is aligned along the magnetic field
direction (the z-axis), while the average spin vectors
of the F- and G- sublattices, Ry and R, form equal
but opposite angles with the z-axis: 6 = —6;. The
magnitude of the angles 6 and 6 varies within the
range [r/2, «t].

In the symmetric W-phase, the angles 6 and
05 also have equal magnitudes and opposite signs.
However, unlike the Y phase, the range of these
angle magnitudes is different: [0,7t/2]. In this case,
the projections of all three vectors Rz, R; and R;
onto the z-axis are positive. The boundary between
the Y- and W-phases in Fig. 4 is marked by the
dashed line. To the right of the red line on the phase
diagram, the ferromagnetic phase is realized: the
average spin vectors of the L-, F- and G- sublattices
are aligned along the magnetic field.

The evolution of the magnetic structure as
the magnetic field at / <J is characterized by
a monotonic decrease in the absolute values of
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Fig. 4. The 4—D phase diagram of the SU3F ground state for
1/J = 0.8. The black dashed line corresponds to the boundary
between the Y- and W-phases, while the solid red line indicates
the boundary between the W phase and the ferromagnetic phase.
The pictograms illustrating the magnetic structure of SU3F
represent the R; vector with a red arrow, the RF( , vectors with
blue arrows, and the magnetic field /# directed upward. On the
dashed line, a phase is realized where the subsystems with spins
S =1 and 1/2 become effectively independent.

the angles 0y and 0; , as H increases which
vanish at a certain field value dependent on the
anisotropy parameter OA (see the red line in Fig. 4).
This behavior is illustrated by three pictograms
schematically depicting the magnetic structure in
each of the three regions of the phase diagram.

To further understand the presented phase
diagram, we will calculate the dependence of the
SU3F order parameters on the magnetic field for a
fixed anisotropy parameter OA and on the anisotropy
parameter OA for a fixed magnetic field A.

The average spin values Rp and R; in F- and
G-sublattices can be calculated using the Holstein—
Primakoff representation (8), according to which:

Rp =(Sf)=S—n,,

y (36)
Rg =(8g )=S5—ny,

where the boson occupation numbers n, = <ajﬁr ar)
and n, = (b; b,) are computed using the spectral
theorem from the matrix Green’s function
(X, | X)), introduced in Section 6.

The average spin magnetic moment of the

L-sublattice R; can be found using the formula:
2 2
Ry =\(Ri) +(RE), (37)

where the quantities R; and Rj are determined
by the average occupation numbers of ¢ - and d
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Fig. 5. Dependence of the total moment R; (red line), R Fc) (blue
line), M (black line), and | 03|/3 (green line) on the magnetic
field 4. The ratio between the exchange integrals is //J = 0.8,
while D/J = 3. The three pictograms composed of one red and
two blue arrows have the same meaning as in Fig. 4.

-bosons: n, = {cfc,) and n, = (dd,), as well as
correlators {(c;d,) and (d;c,). The corresponding

expressions are obtained by averaging the formulas
given in Appendix C.

Since the total magnetic moment
M = Rp + R; + R, is directed along the external
magnetic field (i.e., along the z-axis), its transverse
component must identically vanish:

Ry + RpsinOr + R sinfy =0,
and the longitudinal component equals:

M =R} + RpcosOr + Rg cosb; . (38)

The average value of the quadrupole moment [42]:
2
0%() = 3(5{) —2 (39)

is calculated similarly after averaging the
corresponding formulas from Appendix C.

Fig. 5 shows the dependence of the total moment,
the average spin magnetic moments R; , Rpg), M
(black line), and the quadrupole moment | Qg | /3 on
the magnetic field 4 for the anisotropy parameter OA
D /J = 3 and the exchange integral ratio //J = 0.8.

The change in the magnetic field on this figure
corresponds to the movement along the horizontal
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Fig. 6. Dependencies of the quantities R; (red line), Ry, (blue
line), M (black line), and | 0Y|/3 (green line) on the anisotropy
parameter OA. The ratio between the exchange integrals is
I/J=0.8,and h/J =1

dashed line on the phase diagram in Fig. 4. It is
evident that at the transition point from the W phase
to the ferromagnetic phase, all curves in Fig. 5 exhibit
a kink. The values of M and R; increase as expected
with increasing field 4, while the quadrupole moment
decreases.

The dependencies of the order parameters M ,
R;, Rr, R; and Qg on the anisotropy parameter
h /J =1 are shown in Fig. 6.

The change in the anisotropy parameter D in this
figure corresponds to the movement along the vertical
dashed line on the phase diagram in Fig. 4. It can be
seen that when crossing the boundary between the
Y - and W -phases, the dependencies of the order
parameters on D exhibit a kink, while the quadrupole
moment saturates. The average moment of L-sublattice
rapidly decreases near the phase boundary but decreases
more slowly with further increase in D.

Clearly, the reduction of R; facilitates the upward
reorientation of the Ry, vectors, as it reduces the
exchange energy loss between the spins S =1 and
S=1/2.

An important feature of the phase diagram
presented in Fig. 4 is that along the entire boundary
between the Y - and W -phases (black dashed line),
the angle between the vectors Ry and R; equals m.
In this case, from expressions (12) for the effective
fields, we find:
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H,=—h,, H, =0. (40)

X
Taking into account these relations and the
condition 4; = 0, the solutions of equations (24)
for the angles a; (j =1,2,3) take the form:
D

_(_I)I’H-m’ az

2&1 = 2/’1L

=nn, az=mm, (41)

where n and m are integers.

Substituting these solutions into the expressions
for the matrix elements of the spin operators from
Appendix B gives:

st = cos2ay, si; =0. (42)
Since sj; =0 and 6 —6; = =, from equations
(25) for the angles 6 and 6 , we find the condition:

st =h/ly, (43)
which must be satisfied by the matrix element sf; at
the boundary between the Y - and W -phases. The
equation describing the boundary of these phases can
be easily obtained from the compatibility condition
of the three equations for the angle a; and the matrix
element sf,; in formulas (41), (42), and (43).

As a result, the following relationship between the
model parameters and the magnetic field is obtained:

p =282 )2, (44)

This expression analytically describes the dashed
line in Fig. 4.

It is important to note that at the points of
the phase diagram lying on this dashed line, the
orientation of the (antiparallel) vectors Rr and Rg
relative to the z-axis is not fixed. This fact implies
the degeneracy of the SU3F ground state with respect
to the simultaneous rotation of the spins from the F-
and G- sublattices around the z-axis, provided that
the vectors Ry and R; remain antiparallel.

Indeed, substituting the solutions (41) for the
angles a; (j =1,2,3) into formulas (22) and (23),
as well as fixing the difference in 7 in exprssion (10)
between angles 0, and 6, ,, we obtain:

6, =D/2—hi +(D/2), Ey=—JyS’N.

Thus, at the points of the phase diagram lying
strictly on the boundary between the Y - and
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W- phases (i.e., along the dashed line in Fig. 4), the
ground-state energy E,r = E, + Ng; (see equation
(26)) does not depend on the angles 6 and 6.

The physical reason for this behavior is that,
at 0 —6; = n, the two effective fields acting
on the spins in the L-sublattice from the F- and
G-subsystems compensate each other (see equation
(12)). As a result, the L-sublattice effectively
“decouples” from both the F- and G-subsystems.
Meanwhile, the external magnetic field 4, continues
to act on the L-subsystem, aligning the vector R;
along the direction 4;.

Simultaneously, the F- and G-sublattices
also “lose connection” with the L-subsystem, as
the effective fields generated by it in the F- and
G-sublattices are fully canceled by the external
magnetic field /. Indeed, as follows from expression
(7), the quantities E, and E, (see (32)) are precisely
the effective fields acting on the spins in the F- and
G-sublattices, respectively. Since, at the points
lying on the dashed line of the phase diagram in
Fig. 4, the conditions (42) and (43) are satisfied, the
contributions to effective fields £, and E, from
the L- subsystem (—/;sf,cosOp ), the external
magnetic field (4 cosOp ) cancel each other out.

Thus, at the points belonging to the dashed line
on the phase diagram in Fig. 4, the SU3F system
decouples into two effectively non-interacting
subsystems: one formed by the S=I1 spins of
L-sublattice and the other by the § = 1/2 spins of F-
and G-sublattice spins. In this case, the S=1 spins
behave like a paramagnet in an external magnetic
field, as they continue to experience the field 4;,
while the interaction between them vanishes. The
S =1/2 spins behave like a two-sublattice (F and
G) collinear antiferromagnet in an effective zero
magnetic field. This condition, allowing for an
arbitrary orientation of the antiferromagnetic vector
in the zx -plane, leads to additional degeneracy of
the ground state.

8. PHASE DIAGRAM OF SU3F AT 1/J > 1

When [ > J, the phase diagram of SU3F under a
magnetic field changes qualitatively. Fig. 7 presents
the phase diagram calculated for the exchange
parameter ratio //J =1.2. It is evident that four
magnetic phases are realized in this case: the Y-phase,
the collinear ferrimagnetic phase, the ¥ (V) phase,
and the ferromagnetic phase.
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Fig. 7. Phase diagram of the SU3F ground state at //J = 1.2.
The green line denotes the boundary between the Y-phase and
the collinear ferrimagnetic phase, the blue line separates the
collinear ferrimagnetic and Vphases, the black line separates the
ferromagnetic and collinear ferrimagnetic phases, the red line
separates the ferromagnetic and M phases, and the dashed line
marks the boundary between the V- and V- phases (on this line,
0; =—mn/2).

In the Y phase, the vector R; , representing the
average spin in the L-sublattice (red arrow in the
pictograms of Fig. 7), is directed opposite to the
magnetic field (along the — z axis), while the average
spin vectors Ry and R; (blue arrows) in F- and
G-sublattices form equal but opposite angles with the
z-axis: z: Op = —0g , while [ 05 l€ [0,7/2].

When transitioning from the Y phase to the
collinear ferrimagnetic phase, the angles 6, and 6,
simultaneously become zero, and all three vectors Rp,
R; and R; become collinear: the first two align with
the magnetic field, while the third opposes it.

Beneath the blue and red curves in Fig. 7 lies
the so-called V' phase, where the vector R; forms a
nonzero angle 8; with the z-axis, while the vectors
Rr and R; form equal angles 6 and 6. These
angles vary within the range 0, 7t/2.

This region can be further divided by a dashed line
(shown in Fig. 7) into two subregions. To the right
of this line, | 6; |< n/2, while to the left, | 6, |> n/2.
We retain the V designation for the first region and
label the second as the ¥ phase for distinction.
Along the entire dashed line, the angle 0, strictly
equals 7t/2.

In the ferromagnetic phase, all three vectors Rp,
R; and R; align with the magnetic field.

As in the previous section, to understand the
magnetic structure, we examine the changes in
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Fig. 8. Dependence of the quantities R; (red line), Ry, (blue
line), M (black line), and | Q%] (green line) on the external
magnetic field 4 at I/J = 1.2 and D/J = 6.

order parameters along two directions on the phase
diagram: along the horizontal dashed line at a fixed
value D /J =6 and along the vertical dashed line at
a fixed field 4/J =1 (see Fig. 7).

Fig. 8 shows the dependence of the quantities R;,
Rp@y, M and 09 on the external magnetic field
h at D /J = 6. This corresponds to movement along
the horizontal dashed line in Fig. 7.

It is evident that the changes in Ry, and o)
with increasing field 4 are minor, and the reduction in
the average spin value Ry, due to AF interactions
is insignificant. In contrast, the average moment of
L-sublattice is significantly suppressed due to both
AF and OA interactions. In the ferrimagnetic phase,
the vector R is directed opposite to the field, and its
magnitude decreases with increasing /4, as expected.
In the ferromagnetic phase, the vector R; aligns with
the field, causing its magnitude to increase.

A crucial observation from the graphs in Fig. 8
is that the evolution of the magnetic structure
follows the same sequence as in a triangular-
lattice antiferromagnet (TLAF) with § =1/2, but
without OA [38, 43]. However, while the extended
ferrimagnetic (or uud) phase in TLAF can only
be explained by quantum fluctuations (which lift
accidental degeneracy), in SU3F, this phase arises
solely due to OA. Moreover, the behavior of the total
moment M qualitatively reproduces the key stages of
the TLAF’s evolution: the monotonic increase of M
in the Y-, V- and V-phases; a plateau-like region in
the ferrimagnetic (uud) phase (commonly referred
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Fig. 9. Dependence of the quantities R; (red line), Ry (blue
line), M (black line), and | QY| (green line) on the parameter D
for I/J=1.2and D/J = 6.

to as the 1/3 plateau in TLAF); and the saturation
region of M in the ferromagnetic phase, which,
however, is less pronounced due to anisotropy.

It is also worth noting that as the anisotropy
parameter increases, the existence interval of the ¥
and V phases in Fig. 8 shrinks. As follows from the
phase diagram in Fig. 7, this interval collapses to a
point when D /J 2 7.

Fig. 9 presents the dependence of the quantities
Ry, Rpgy, M and |QY| on the anisotropy
parameter D at a fixed magnetic field #/J = 1. These
dependencies correspond to movement along the
vertical dashed line in Fig. 7.

It can be seen that the quadrupole moment
increases as the anisotropy parameter 4 increases,
while the spin moment R; from the L-sublattice first
slightly increases in the region of low fields and then
monotonically decreases. The spin moments Ry
from the F- and G-sublattices do not significantly
change throughout the entire range of D. Therefore,
the noticeable increase in the total moment M in
the ferromagnetic phase is not due to changes in the
orientation or absolute values of Ry, but rather
due to the decrease in R; caused by the anisotropy.
Upon transition to the Y-phase, the total moment M
begins to decrease, as the rotation of the vectors Ry
and R; around the y-axis reduces their projection
onto the z-axis.

The three vertical lines in Fig. 9 divide the four

previously described phases. During the transitions
from the V-phase to the ferromagnetic phase and
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from the ferromagnetic phase to the Y-phase, all
order parameter dependencies exhibit a kink. At the
same time, the transition from the V-phase to the V
-phase is not accompanied by any anomalies in the
presented dependencies.

9. GROUND-STATE DEGENERACY AT I=J

The case I =J is special because the classical
analog of the SU3F Hamiltonian, as we will now
show, exhibits continuous accidental degeneracy.

Indeed, let us define the Hamiltonian dependent
on the parameter A :

H, = IS8, + MY S8, + 03,8, +
) ) (el

+D3 (St )2 — (S8, + 338, #0308 | (45)
! f g !

where the direction of the magnetic field h = gocg H
is generally arbitrary. All the notations in Equation
(45) are the same as in the Hamiltonian (1). It is
evident that if the conditions A = I/J = g, /g are met
for A and the field 4 is directed along the z-axis, the
Hamiltonian (45) coincides with the operator H
defined by Equation (1).

On the other hand, it is easy to verify that the
Hamiltonian (45), up to the constant

v |3azs, s e S s =1 s

2 L\°L 4 6.]2 s L >

can be represented as
2
H,=DY(S}) +
/
J S S S hy 47
+ZZ pF T9pG T rL 37 (47)
p

where the sum p runs over all triangular plaquettes,
and the lower indices F, G and L of the spin operators
indicate their belonging to the corresponding
sublattices in the p-th plaquette.

Thus, if the SU3F parameters satisfy the condition

I _8
7=k, (48)
then the SU3F Hamiltonian in Equation (1) can be
represented in the form of Equation (47) with the
field 4 directed along the z-axis.
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If we now consider classical moments instead of
spin operators in Equation (47), i.e., ordinary vectors
of fixed length, it is easy to see that the minimum
value of the Hamiltonian (47) will be achieved when
both of its terms vanish. The vanishing of the first
term implies that the spins of the L-sublattice lie in
the easy-plane zx . The requirement for the second
term in (47) to vanish reduces to the equation

h

SF +SPG +}\'SPL ——=0

’ 3J 49)

It is evident that, for certain values of the
magnetic fields /4, this equation can be satisfied by
an infinite set of solutions, i.e., different orientations
of the three vectors R;, Rr and R, even when the
field 4 does not lie in the zx-plane. Moreover, if the
magnetic field is parallel to the zx-plane (as in our
case), the orientation of the vectors R;, Ry and R,
which minimizes the Hamiltonian (47), may not
necessarily be coplanar with the zx-plane.

The above analysis of the classical limit of
the Hamiltonian (47) suggests that the observed
(continuous) degeneracy of the SU3F ground state
should also hold in the quantum case when the
condition (48) is satisfied. Our calculations using
the mean-field approximationat / =J and g; =g
confirmed that this is indeed the case.

Similar degeneracy occurs in other quantum
magnets, such as the antiferromagnet on a triangular
lattice (AFTL) with §=1/2 [43]. As was first
demonstrated in [38], this degeneracy can be lifted by
considering zero-point quantum fluctuations. This
approach requires taking into account higher-order
terms (compared to the harmonic approximation
used in this work) when bosonizing spin operators
within the Holstein—Primakoff representation for
the F - and G -subsystems and within the indefinite
metric formalism for the L-subsystem.

For this reason, constructing the phase diagram of
SUS3F at critical parameters satisfying the condition
(48) will be carried out by the authors in a separate
study.

10. SPIN-WAVE EXCITATIONS
IN SU3F UNDER A MAGNETIC FIELD

The spectral properties of SU3F in the absence
of a magnetic field were thoroughly studied in [31].
In this section, we analyze changes in the spectrum
under a nonzero magnetic field while keeping the
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Fig. 10. Spin-wave excitation spectra at //J = 0.8, D/J = 3, and
four external magnetic field strengths: 4/J =1 (a), 1.87 (b), 3 (c),
5.5 (d). The wave vector k traverses the triangular path TKM in
the Brillouin zone (see Fig. 3).

anisotropy parameter OA fixed. Four dispersion
curves &, (j =1,...,4) were calculated for each set
of model parameters based on equation (33) derived
in Section 6.

Fig. 10 shows the results of numerical calculations
of the dispersion curves for four different magnetic
field strengths with the model parameters / /J = 0.8
and D /J = 3. On the phase diagram in Fig. 4, the
four black dots along the horizontal dashed line
correspond to these four field values. It is evident
that at # /J =1, the system is in the Y phase;
at h /J =1.87, the system is in the antiparallel
phase for the F - and G -sublattices; at 7 /J =3
the system transitions into the W phase; and at
h /J =15.5, the system reaches the ferromagnetic
phase. Each of the four panels in Fig. 10 displays four
dispersion curves corresponding to the four types of
introduced bosons. However, only one curve (black
in all graphs) can be confidently associated with the
high-energy d-bosons. The other three branches are
formed through the hybridization of the a-, b- and
c-boson states.

Crucial observation is that in the first three
graphs (a, b, c¢), there is at least one Goldstone
mode (blue curves) associated with the breaking of
symmetry in the ground state due to the collective
rotation of spins in the F- and G-sublattices around
the magnetic field direction. In the ferromagnetic
phase (Fig. 10d), the ground state does not break
this symmetry, and thus, the Goldstone (gapless)
mode is absent.
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Fig. 11. Spin-wave excitation spectra at I/J = 1.2, D/J = 6 and
four external magnetic field strengths: 4/J = 0.3 (a), 1 (b), 4 (c),
6 (d). The wave vector k traverses the triangular path T KM in the
Brillouin zone (see Fig. 3).

In Fig. 10b, two Goldstone modes appear
(coincident blue and red curves). The origin of the
second mode relates to the phase diagram feature
discussed in Section 7, specifically the dashed curve
(see Fig. 4). In this scenario, the moments Ry and
R align along the zx -plane in opposite directions,
causing the system’s energy to degenerate with
respect to the rotation of the Ry and R, vector line
around the y-axis.

As mentioned in Section 7, this behavior is due to the
vanishing of effective fields and the effective decoupling
of the L-subsystem from the F- and G-subsystems. In
such a case, the nodes of the L-sublattice become
effectively isolated (even from each other), which
explains the flat dispersion of the two high-energy
branches (black and brown) in Fig. 10b.

The dispersion dependencies ¢ shown in Fig. 11
were calculated with the following model parameters:
1/J =1.2, D/J =6, for four values of the external
magnetic field: 4/J = 0.3, 1, 4 and 6. On the phase
diagram in Fig. 7, these four field values correspond
to the four black dots along the horizontal dashed
line. As the magnetic field 4 increases, the system
sequentially transitions through the following four
phases: the Y phase at #/J = 0.3; the ferrimagnetic
phase at h/J = 1; the V- phase at #/J = 4.3; and the
ferromagnetic phase at 4/J = 6.

From the graphs presented in Fig. 11, it is evident
that the Goldstone mode appears only in the first
case (Fig. 10a), as the breaking of ground-state
symmetry (relative to rotations around the z-axis)
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occurs exclusively in the Y-phase. In all other
regions of the phase diagram (Fig. 7), the spin-wave
excitation spectrum remains gapped.

11. CONCLUSION

The main outcome of this study is the construction
of the phase diagram of the SU3F ferrimagnet on a
triangular lattice, plotted in the coordinates of the
magnetic field # (applied in the easy-plane anisotropy
plane) and the single-ion anisotropy parameter D at
zero temperature. Among the key features of the SU3F
model, the following three stand out: 1) different spin
magnitudes in magnetic sublattices: two sublattices
(Fand G) have spin § = 1/2, while the third L-sublattice
has spin $ = 1; 2) single-ion anisotropy: easy-plane
anisotropy acts on the L-sublattice with spin S=1; 3)
different exchange integrals: The exchange interactions
differ between the F- and G-sublattices (/) and between
the L- F(G) sublattices (/).

Numerical calculations under the mean-field
approximation revealed two qualitatively distinct
types of SU3F phase diagrams depending on the
ratio between the exchange integrals / and J. These
phase diagrams differ both in the number of realized
phases and in the nature of their magnetic structures.

For I <J, the ground state of SU3F can be
characterized by three magnetic configurations: the
Y , W phase, and the ferromagnetic phase (see Fig.
4). Notably, along the boundary between the Y - and
W -phases (dashed line in Fig. 4), the SU3F system
effectively splits into two independent magnetic
subsystems/ The first subsystem consists of spin-1 sites
on a triangular lattice and behaves as a paramagnet.
Another one consists of S =1/2 spins forming a
planar hexagonal lattice in a collinear two-sublattice
antiferromagnetic phase under an effective zero
magnetic field. This decoupling leads to an additional
degeneracy of the ground state, associated with the free
rotation of the antiferromagnetic vector within the easy-
plane. This degeneracy manifests as an extra Goldstone
mode in the spin-wave excitation spectrum.

For the reverse exchange ratio (/ > J ), the SU3F
the h—D- phase diagram undergoes significant
changes. It now features four distinct regions
characterized by different magnetic ground-
state structures, i.e. the Y- phase, two collinear
ferrimagnetic and ferromagnetic phases, as well as the
V-phase. The V-phase can further be subdivided into
two sub-phases (¥ and V), depending on whether
the angle 6; exceeds the critical value r/2.
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For both 7 <J and I > J, the quadrupole and
dipole order parameters were analyzed as functions
of both the magnetic field (at fixed anisotropy OA)
and the anisotropy parameter OA (at fixed magnetic
field /#). One significant result of this study is the
dependence of the total moment M on the external
magnetic field. For 7 > J and a specific finite value
of OA, this dependence qualitatively reproduces
the well-known behavior observed in quantum
antiferromagnets on a triangular lattice with uniform
spin § =1/2 and without anisotropy [38, 43].
Specifically, within a certain magnetic field range, the
magnetization curve exhibits a plateau (albeit with
a slight tilt in our case). In conventional quantum
triangular-lattice antiferromagnets (QTAFMs), this
plateau arises due to quantum antiferromagnetic
fluctuations, while in SU3F, it emerges due to the
presence of single-ion anisotropy.

A notable finding is the qualitative difference
between the two phase diagrams for / <J and
I >J . There is no continuous transformation
at I — J from one diagram to the other. This is
because, when the exchange integrals become equal
(I =J), accidental degeneracy arises, leading to
an ambiguity in the magnetic configuration within
the mean-field approximation for given magnetic
field and anisotropy values. We hypothesize that,
as with QTAFMs, quantum fluctuations should lift
the observed accidental degeneracy (as well as the
additional degeneracy noted for 7 <J ). However,
a detailed investigation of this issue requires further
study and will be addressed in future research.

In conclusion, we emphasize that in the present
study, the magnetic field 4 applied to the quantum
SU3F system was oriented within the easy-plane
anisotropy plane. If the magnetic field were instead
applied perpendicular to this plane, the behavior
of the magnetic order parameters could differ
qualitatively.
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APPENDIX A. UNITARY TRANSFORMATION
OF HUBBARD OPERATORS

As a result of the unitary transformations of the
Hubbard operators according to formula (20), with
the unitary operator U;;(a) (n = m )defined by
formula (20), the following expressions are obtained
[40]:

X" = cos?aX™ + sin’a X" —
—lsin2oc(XM +X”~”5),
2
XM = cos20 X ™ 4 ginla X" +
+1sin2a(x""’“ +X’“),
2
X" = cos2a X — ginlaX™ +
+%sin2oc()('m _ xm )
mn = P X o2 X

+%sin2oc(Xﬁﬁ —X’W’),

X" =cosaX? —sina X",

X" = cosaX?" —sinaXP",

XP" = cosa X + sinaXP",

X" =cosaX™ +sinaX",
xPa =X17!?’

where all four state indices p, ¢, n and m are
different, and the site indices are omitted. In the
main text, for brevity, the tilde notation, indicating
the new (transformed) states, is not used for the
indices of the thrice-transformed Hubbard operators.

APPENDIX B. MATRIX ELEMENTS
OF SPIN OPERATORS

This appendix presents the explicit form of the
matrix elements s, =(n|S;'|m) (a={x,y,z}
and n,m ={1,0,1}),, used in the decomposition
(27). These elements were obtained from the three
successive transformations of the Hubbard operators
using the three unitary operators U, (—a;),

Uy_i(—o3) and U y(—a,), followed by substituting
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the transformed results into the representation (15)

for the spin operators of the L -sublattice.

Matrix elements for the spin operator S} :
sf, = (cosa, cosa, + sinay sino, sinas)? —
—sin206100520t3,
si< = (cosay sina, sino; — sina; coso,)? —
11 1 2 3 1 2
—cos’0 cos L3,

z - .2 2 . 2
Sgo = sin“0,cos 03 — sin“03,

1 1 . .
sto = S61 = —581na1(1+51n2(12)51n20t3 -
1 .
—5 080y sin(2a,)cosa,
£ = 57 = —pcosoy(1 4 sino)sin 2o +
Slo SO] —ZCOS(Xl SIn (12 sin (1,3

. .
+§sm o, sin(2a,)cos a3,

1
. ) )
7= 500520(1 sin2a,sinaz +
1. . .
+§sm 20 (sin %0ty sin0t; — coscty — cos20ty)-
For the operator S7 :

57, = v2(cosaysino, —
—sino, sinoz cosa, )(cosoy coso, +
+sino, sinos sina,, + sino, cosal),

si7 = V2(sina sina, +

~+coso, sinaz cosa, )(sina, cosa, —

—coso, sinoy sina, — cosa, cosay),

1 . .
S0 = ﬁ(cos o, sin 203 — sin 20, cos’03),

x _ cos2ay , . .
51 = T(s1n 0, Cosa3 — sinay cos2a,) —

sin 204 . .
— (cosa, sin2a; + sin2a, (1 + sin03)),
NG 2 3 2 3

x _ cosoy

Sl = 75 (cos2a, cosay + sina, sinoag) +

+ 513;1 (cosa, cos2o; + %Siﬂ 20, sin 2ai3),

x _ singy

570 5 (cos2a, cosay + sina, sinag) +
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+ C(jgl (cosa, cos2az + %sin 20,5 sin2013),

i .
S0 = E(—smal cosa, +
+coso,(cosaz + sina, sinag)),
sL = L(cosoc cosal,y +
10 \/5 1 2
+sina,(cosasz + sina, sinays)),
y o b .
571 ﬁ(smaz cosaz — sinoy),
¢ =_¢

SR R S
Tl 172 10 Sorr STo S0t

For the operator (S} )%

A1) =24 ]

+ Ecos2a1sin2a2 +

N —

1 . .
+§Sin20tl(coszot2 sin2(13 —sina, sin2o3) —

l . . .
—5sin 20 cosa,(sino, sinay + cosag),

- - 1 1
(1] (S/y )2 | 1) = 3 + Esinzotlsinzotz +

+§coszotl (cos’aysin%ol; — sina., sin2013) +
1. . .
+§sm 20, cosay(sina, sinoy + cosay),
1 . .
01](SY)*0)= 5 (sin o, sin o +
+1+ cos’0ycos’03),
- 1
(T1S7)? 1) = 5 (cosasin’as; —
—sina., sin 20,3 — sin’a,)sin 20 —
1 . .
—§c0s2ocl cosa,(sina, sinoz + cosag),
- 1. . .
(1](Sy ) | 0) = 5sinay cosa,(sina; — sina, cosoz) +
. 1 .
+§cosoc1 sina,, cos20; — 5(;052(12 sin(2a3) |,

1Sy )| 0) = %cos a, cosa,(sina, cosoy —sino) +
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I . . 1 .
—i—ism o, |sina, cos2o; — Ecoszaz sin(a3) |,

(ST Y IT) = (TISY )P, (0IGSY )*[T) = (11(SY )*[0),
OS> 11)=1(11(S])*|0).

APPENDIX C. BOSONIZATION
OF SPIN OPERATORS FOR $=1

Using the representation (28) in formulas (27) and

retaining only terms up to the second order in boson
operators, the following spin operator expressions
through bosonic operators are obtained:

1
Sf = —=l(sgi(e/ +ep)+s7,d +dp)+

2
+57 (] ¢; +ejd)) + sty + (550 —sief e, +

st —stod; ),

1
—[sf)',l(c;r —¢))+ s{](df —d))+

V2

—i—S{O(d/JrC[ — Cfd/)],

s =

S; =s§,(c/ +ep)+s3d +d)+
+si0(d1+c, +efd) + sty + (s —stefe, +
+Hst _Slz,l)d;rdl’

(57 = 3152~ & e e +
HGY ) = gD d) —

—s% $ou(d]” +d)) + 5% s¥ (e +ep)+

T0°T,1
2 2
+H(sp,)" + (7)) + sg,ls%l(dfc, +cfd))).

The presented expressions, after averaging and

applying the spectral theorem to compute the boson

operator expectations, were used to derive the

formulas for calculating the order parameters R;, M
0

and Q, .
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