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1. INTRODUCTION

The edge magnetoplasmon (EMP) in a two-
dimensional (2D) electron system was first theoretically 
studied in the works of Volkov and Mikhailov [1, 2]. 
The authors conducted both classical and quantum 
analyses for a half-plane and found the EMP dispersion 
relation as ω( )k where k is the 1D wave vector of the 
plasmon wave along the edge of the sample. Naturally, 
a question arises about the role of boundaries in a real 
experiment, particularly concerning plasma waves in a 
finite-width strip, where the influence of the opposite 
edge must also be taken into account. This formulation 
of the problem was outlined in the introduction of the 
paper by Balev and Vasilopoulos [3]. The authors 
proposed a strip model with “soft” walls, described 
by a parabolic potential for electrons near the strip 
boundaries. However, in their analysis of plasma 
oscillations, they effectively considered only one edge, 
naturally obtaining the already known result for the 
plasmon frequency. Meanwhile, the presence of the 
second boundary leads to qualitatively new features 
of the phenomenon: strictly speaking, one should not 
consider an edge plasmon but rather the eigenmodes of a 
planar plasma waveguide. It is important to note that in 
such a “waveguide”, the electron motion is confined in 

one direction, while the electric field of the plasma wave 
extends formally to infinity. Within the framework of the 
classical hydrodynamic description of 2D plasma, this 
problem was solved in [4, 5]. The plasmon spectrum for 
a 2D electron strip under conditions of strong screening 
by a metallic electrode was found in [6], using a classical 
approach within the local capacitance approximation.

In the present study, we develop a quantum theory 
of magnetoplasmon waves in a 2D electron gas strip 
of finite width L w= 2 .  The boundary conditions 
for the wave functions correspond to hard walls, 
meaning the transverse electron motion (along the 
x-axis) corresponds to a “truncated” harmonic 
oscillator at x w= ±  with the cyclotron frequency 
ωc  and a suspension point X pl= 2- , where p is the 
conserved y-component of the electron momentum 
in the Landau gauge, and l is the magnetic length 
( = 1). For the Landau level with index n, the wave 
function has the form:

	 Ψn X n X n X
y

x y N x
ipy

L
, , ,( , ) = ( )

( )
.ϕ

exp � (1)

Here N n X,  is the normalization coefficient, and 
Ly  is the length of the strip. For the wave function 
ψn X x, ( ) , we have (see, for example, [7]):
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ψ n X
x X lx e,

( )2 /2 2
( ) = − − ×

× − −( )−

Φ q X x X ln ( ) / 2,1 / 2,( ) /2 2

− − − −( )B x X q X x X ln( ) (1 ( )) / 2,3 / 2,( ) /2 2Φ . �(2)

The first index of the confluent hypergeometric 
function in Equation (2) determines the energy of 
the Landau subbands:

q X E Xn n c( ) = ( ) / 1 / 2ω -

via the dispersion equation following from the 
boundary conditions ψn X x w, ( = ) = 0± . From the 
same conditions, the constant B is determined.

The dispersion of the Landau subbands E Xn ( )  
is well known, and its graphs have been repeatedly 
presented in the literature in connection with studies 
of the quantum Hall effect (edge channels, edge 
states). The functions ψn X x, ( )  and E Xn ( )  are 
required to formulate the equation for plasma waves.

2. BASIC EQUATIONS

The problem considered here belongs to the 
class of plasma oscillations in multicomponent low-
dimensional systems. The solution scheme, i.e., 
finding the eigenfrequencies of plasmons in such 
systems through the matrix dielectric function in 
the self-consistent field approximation, is described 
in [8] for 2D systems, such as quantum well 
structures with more than one populated transverse 
quantization level, double quantum wells, or 
multilayer superlattices.

In the case of magnetoplasmons in a 2D electron 
gas strip, the plasma components correspond to groups 
of electrons in different Landau levels (subbands 
E Xn ( ) ), effectively forming 1D systems. Therefore, 
the Green’s function of the Poisson equation takes 
the form of G x x K k x xk ( ) = (| ( ) |) / 20− ′ − − ′ ≠,  
where K 0  is the Macdonald function.

Another significant difference from [8] is the 
dependence of the transverse wave functions 
ψn X x, ( )  (Equation (2)) on the longitudinal electron 
momentum p through the suspension point of the 
oscillator. Accounting for these distinctions, the 
equation for the matrix elements of the plasma wave 
potential j( )x eiky takes the form (taking into account 
the selection rules for the momentum along the strip, 
which allow only transitions ( , ) ( , )2n X m X kl→ + :

2p,

j
n X m X kl, ; , 2 =

+

=
2 ( ) ( )

( ) (

2

, ,

2

2

e
L

f E X kl f E X

E X kl Ey m n X

m n

m n
ε ′ ′ ′

′ ′

′ ′
∑

′ +( )− ′( )
′ + − ′XX i)+ +

×
ω δ

	 × ′′ ′ ′ ′ ′ ′+
J X Xm n m n n X m X kl, ; , , ; , 2( , ) ,j � (3)

Where e is the average dielectric constant of the 
two media separated by the 2D electron gas, f is the 
Fermi occupation factor, and Form factors Jmn m n; ¢ ¢  
are defined as:

J X Xm n m n, ; , ( , ) =¢ ¢ ¢

= ( ) ( ), , 2

− −
+∫ ∫ ′ ×

w

w

w

w

n X m X kl
dxdx x x ψ ψ

	 × − ′ ′ ′′ ′ ′ ′+
K k x x x xn X m X kl0 , , 2(| ( ) |) ( ) ( ). ψ ψ � (4)

In Equation (4), ψ ψn X n X n Xx N x, , ,( ) = ( ) represents 
the normalized wave function of the transverse motion. 
Thus, we obtain a system of linear homogeneous integral 
equations for the functions j

n X m X kl, ; , 2+
, which we will 

denote by Φnm X( ) . For an unbounded discrete electron 
spectrum, the number of equations and, consequently, 
the number of different plasmon modes is infinite, even 
if only one level is populated, for example, E X0( ) . The 
off-diagonal terms in Equation (3) m n¹  correspond 
to virtual transitions with an energy change of at 
least ωc , i.e., they are responsible for inter-subband 
plasmons, whose spectrum has a gap ∆ > ωc  at zero 
wave vector k = 0 . If one is interested only in the low-
frequency part of the plasmon spectrum ω ω c , it is 
necessary to restrict consideration to intra-subband 
plasmons m n= and additionally require the long-
wavelength approximation kl  1 . In the following, we 
will consider both intra-subband plasmons, and inter-
subband plasmons from the lower part of the spectrum, 
i.e., those associated with the levels E X0( )  and E X1( ) .

3. INTRA-BAND PLASMON  
OF THE ZERO SUBBAND

In this case, instead of Equation (3), we have:

Φ00( ) =X

=
 

( ( )) ( ( ))

( ) ( )

2

2
0

2
0

0
2

0

e

l
dX

f E X kl f E X

E X kl E X iπε ω δ∫ ′
′ + − ′

′ + − ′ + +
×

	 × ′ ′J X X X00,00 00( , ) ( ).Φ � (5)
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Assuming k p pF� ∼  (where pF  is the Fermi 
momentum), we expand the differences in Equation 
(5) up to the linear term in k. In the form factors J, 
we set k=0.

For T = 0 , the numerator becomes δ( ( ) )0E X EF′ −  
(where EF  is the Fermi energy), and the integral 
reduces to the sum of two terms, corresponding to the 
values of the integrand at the points ′ ±X X= 0 , where 
±X 0  are the roots of the equation:

E X EF0( ) = .  Here ( E X0( )  is an even function of X.
By substituting variable X in left-hand side 

of Equation (5) with ±X 0 , we arrive at two 
linear homogeneous equations for the quantities 
Φ Φ± ≡ ±00 0( )X :

	
Φ Φ Φ

Φ Φ

+
+−

−
++

+

−
−−

−
−+

−
−
+











−
−

= ,

=

0 0

0

β

β

k
J

kV

J

kV

k
J

kV

J

ω ω

ω ωω+








+kV0
,Φ

� (6)

Where β πε= / ,2
0e V  is Fermi velocity in the zero 

subband, while

J J X X±± ± ±= ( , ),00;00 0 0

J J X X± ±


= ( , ).00;00 0 0

It is evident that J J−+ +−= . In the Appendix, 
it is shown that J J−− ++= . Thus, there are 
two independent form factors. The roots of the 
determinant of the system (6) determine the plasmon 
frequency ω0( )k :

   ω0
2 2

0
2 2 2 2

0( ) = ( ) 2 .k k V J J V J+ − +( )++ +− ++β β � (7)

In the integrals defining J+± , the functions ψ0
2( )x  

are localized near the points ±X 0  within a region 
of order l. Therefore, for J++ , the argument K 0  is 
small under k ® 0 , and we can use the asymptotic 
form of the Macdonald function:

K k x x k x x e0(| ( ) |) = (| ( ) | / 2),− ′ − − ′ln γ

where γ  is the Euler constant. Then, for J++ , we 
obtain:

	 J
e
k l

J++

−

++










+=

2
| |

,ln
γ

� (8)

where

   J dxdx x
l

x x
xX X++ ∫ ′

− ′










′= ( )
| |

( ).0, 0

2
0, 0

2
 ψ ψln  �(9)

The leading term in J++ is | (| | ) |ln k l . For the 
form factor J+− , the argument y of the K 0  function 
can be set to 2 | | 0k X , which may not be small, even 
for kl  1 . In this case J K k X+− = (2 | | )0 0  and 
gives a significant contribution, provided the stronger 
condition kX 0 1  is satisfied. Under this condition, 
the plasmon frequency becomes

ω
γ

0
2 2

0( ) = 2 [ ( ) ]
2
| |

k k J J V
e
k l

β β ++ +−

−
− +











+








ln


	 + + −





 + }++ +− ++V J J V J0

2 2 2 2
02 .β β � (10)

Thus, we obtain the expected result for a one-
dimensional (1D) plasmon, as found in [9, 10]:

ω  k k lln( ) .

However, it is important to note that in the 
case considered here, the dependence of the 
magnetoplasmon frequency on the electron 
concentration and magnetic f ield cannot be 
expressed analytically. Another important difference 
is the change in the coefficient before the logarithmic 
term: to the Fermi velocity V0  (for a 1D plasmon 
without a magnetic field), the first term in the square 
brackets of Equation (10) is added. This additional 
term can significantly exceed V0  (for example, at 
N L = 106  cm -1 , H = 1.6  T, the enhancement is 
more than an order of magnitude). The results of the 
numerical calculation are presented below.

The formulas derived in this section are valid up 
to the very beginning of the plasmon spectrum (k=0), 
when the plasmon wavelength is much larger than 
all characteristic lengths of the problem, including 
the width of the strip L.  In this limit, the system 
effectively becomes one-dimensional. However, the 
transition to the half-plane limit, studied in [1, 2], is 
impossible, as it corresponds to an infinitely large 
width L. The dispersion laws differ: in the half-plane 
it is proportional to ln k , while in stripe it is ln k  as 
expected for one-dimensional systems [9, 10].

4. INTRA-SUBBAND PLASMONS  
IN A TWO-SUBBAND SYSTEM

Let us now consider the case where the states 
E X0( )  and E X1( )  are populated, but we neglect the 
off-diagonal contribution Φ0,1 . The Fermi level lies 
between E1(0)  and E2(0) , intersecting the curves 
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E X0( )  and E X1( )  at the points ±X 0  and ±X 1 , 
respectively (Fig. 1).

The four equations for Φ00 0( )±X  and Φ11 1( )±X  
lead to a biquadratic equation for the plasmon 
frequencies, the roots of which are equal  (here, the 
results are presented for infinitesimally small plasmon 
momenta kX 0 1 , in order to clarify the behavior 
of ω( )k  at the very beginning of the spectrum):

ω βac
k

V V J J J2
2

0
2

1
2 2

0 ;0
2

0 ;0
2

1 ;1
2

=
2

+ + − + −





 + + + − + +

− + − 


++ − + + + −J J J1 ;1

2
0 ;1
2

0 ;1
2

2 2

	 + + )+ + + +2 ( ) ,0 0 ;0 1 1 ;1β V J V J � (11)

ω ω
γ

opt ac k
e
k l

V V2 2 2
0 1= 2

2
| |

( )+










+ +[

−
ln β

+ − + −( + + + − + +β 2
0 ;0 0 ;0 1 ;1J J J

	 − + − )+ − + + + −J J J1 ;1 0 ;1 0 ;12 2 . � (12)

Here, V0,1  are the Fermi velocities in the zero and 
first subbands, respectively, while six independent 
form factors such as J J0 ,0 0 ,1,+ + + + , etc. are defined 
similarly to how it was done in the previous section.

It is important to emphasize that in Equation 
(11), all logarithmic contributions exactly cancel. 
The corresponding root of the dispersion equation 
gives the linear dependence ωac k( )  as k ® 0 , which 
justifies calling this branch acoustic. The second root 

(optical branch, Equation (12)) exhibits the known 
singularity at zero at k ® 0 :

ωopt k k k l2 2( ) ( ) . ln

5. INTER-SUBBAND PLASMON  
IN A TWO-LEVEL SYSTEM

The rank of the characteristic determinant, 
considering N subbands, is N2, since the dielectric 
function is a 4x4 matrix. Out of the N2 roots, 
N correspond to intra-subband plasmons, while in 
the remaining N(N – 1) roots еаch pair gives rise to 
one inter-subband branch, making the total number 
of inter-subband branches equal to N N( 1) / 2- . We 
focus on the lowest inter-subband branch, associated 
with the E0  and E1  levels. The solution of the 
problem in the general case (for arbitrary plasmon 
momenta k) involves extremely complex numerical 
calculations, as neither the dispersion relations 
of electrons nor the form factors can be expressed 
analytically. Therefore, we limit ourselves to 
finding the threshold frequency ω01( = 0)k , which 
determines the gap in the inter-subband plasmon 
spectrum. The difference between this value and 
the minimum energy gap between the E0  and E1  
subbands is known as the depolarization shift.

If we retain only the equations for m = 0,1  and 
n = 0,1  in the system (3) and take the limit k ® 0 , 
the right-hand side will only include the off-diagonal 
element j, since the diagonal elements vanish due 
to the difference in occupation numbers approaching 
zero at  ψ 0, X (x), ψ 1, X(x). In the same limit, the 
function K k x x0(| ( ) |)− ′  simplifies to:

ln ln ln(2 ( ) ) = (2 ) ( ).e k x x e k l l x x− −− ′ + − ′γ γ/ / /

The first term does not contribute to the form 
factor J01,01  due to the orthogonality of the wave 
functions ψ 0,X(x),   ψ 1,X(x). As a result, we arrive 
at the equation

Φ01 2

0

0

( ) =
2

X
l

dX
X

X
β

−
∫ ′×

	 ×
′

− ′
′ ′∆

∆
Φ

( )

( )
( , ) ( ),

2 2 01
X

X
Q X X X

ω
� (13)

where D(X)∅( ) = ( ) ( )1 0X E X E X-  and ω2  is the desired 
eigenvalue (its minimum vakue is required, i.e. ωmin

2 ), 
and the kernel factor Q X X( , )¢  is equal to

Fig. 1. Electron spectrum of the strip. The figure shows the 
two lowest Landau subbands. The horizontal line indicates the 
position of the Fermi level, w/l = 4.



	 TWO-DIMENSIONAL MAGNETOPLASMONSIN THE STRIP OF FINITE WIDTH� 87

JETP,  Vol. 167,  No. 1,  2025

Q X X dxdx x x
w

w

w

w

X X( , ) = ( ) ( )0, 1,′ ′ ×
− −
∫ ∫  ψ ψ

	 × − ′ ′ ′′ ′ln( / ) ( ) ( ).0, 1,l x x x xX X ψ ψ � (14)

The value of ωmin
2  was found numerically. We 

replaced the integral with the corresponding Riemann 
sum by dividing the integration interval into a large 
number of points, reducing the problem to finding 
the eigenvalues of a system of linear homogeneous 
equations, the number of which equals the number 
of partition points. The depolarization shift W is 
defined as the difference between the minimum 
plasmon frequency ωmin  and the minimum energy 

gap between the levels D(0). Its dependence on the 
magnetic field is shown in Fig. 2.

As is known, the depolarization shift also 
determines the frequency of IR absorption during 
an inter-subband (inter-level in an infinite plane) 
transition, which differs from the energy gap due 
to the dynamic screening of the electric field of the 
exciting wave.

6. SPATIAL DISTRIBUTION  
OF THE PLASMON WAVE FIELD

In this section, we derive the expression for the 
coordinate dependence of the plasmon potential 
j( )x , corresponding to the zeroth subband, i.e., the 
lowest-frequency branch of the plasmon spectrum. 
Within the self-consistent field theory, j( )x  satisfies 
the Poisson equation (quasistatic approximation, 
neglecting retardation), with the right-hand side 
containing the electron density perturbation induced 
by the plasmon wave. In the present case, we consider 
only the contribution from the zeroth subband:

∆x z x z k k x z k, 0
2

0( , , ) ( , , ) =ϕ ϕ-

=
4

( )
( ) ( )

( ) ( )

2 0
2

0

0
2

0

−
+( )− ( )

+ − + +
×∑π

ε
δ

ω δ

e
L

z
f E X kl f E X

E X kl E X iy X

	 ´Φ00 0,
2( ) ( ).X xXψ � (15)

Equation (15) corresponds to a plasmon in the 
form of a plane wave C eiky , and the matrix element 
Φ00( )X  on the right-hand side is evaluated in the 
plane of the strip z = 0 . The solution to Equation 
(15) is written using the Green’s function G x x( )− ′ , 
already defined in Section 2 for the plane z = 0 . The 
resulting integral for j0( )x  in the long-wavelength 
limit and for T = 0  is evaluated similarly to the 
calculation of the plasmon frequency ω0( )k .

Now it is necessary to find the solutions of the system 
of two equations (6) for the matrix elements Φ00( )X  at 
the points ±X 0 . The result has the form (C is the wave 
amplitude determined by the excitation conditions):

ϕ β0
0 0 0 0

( ) =
( )

( )

( )

( )
,x C k

I x
k kV

RI x

k kV
− +

−
−

+









ω ω

	 I x dx K k x x x
w

w

X±
−

±∫ ′ − ′( ) ′( ) = ( ) ( ),0 0, 0

2
ψ � (16)

R
k kV
k kV

k J k kV

k J
=

( )
( )

 
( )

.0 0

0 0

0 0ω
ω

ω+
−

− +++

+−

β
β

Fig. 3. Distribution of the plasmon wave potential across the 
transverse coordinate for two opposite propagation directions or 
magnetic field orientations; NL = 106 cm–1, L = 0.2 µm, H = 1 T.

Fig. 2. Dependence of the depolarization shift of the inter-
subband plasmon between levels 0 and 1 on the magnetic field; 
D = W/D(X = 0) –1, NL = 0.47 ⋅ 106 cm–1, L = 0.1 µm.
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Fig. 3 shows the plasmon field j0( )x  for opposite 
propagation directions. As can be seen, for a given 
propagation direction, the maximum of j( )x  is 
located near one edge of the strip. This result was 
previously obtained in [2] within the framework of 
the hydrodynamic approach.

The same mirror ref lection occurs when the 
magnetic field direction is reversed: it is easy to see 
that under X , one should understand-pl sign H2 ( ) , 
while l c eH2 = / | | . Therefore, when the sign of H
is changed, the points X 0  and -X 0  are swapped. 
This “reflection” of the plasmon field relative to the 
midline of the strip when the magnetic field sign is 
reversed is, in principle, accessible to experimental 

observation. When l w  and the Fermi energy is 
such that the points ±X 0  are close to the strip edges, 
the maximum of j( )x  is also near one of the edges, 
and in this sense, such a wave can be called an edge 
magnetoplasmon.

7. DEPENDENCE ON CONCENTRATION 
AND MAGNETIC FIELD

The electron dispersion E p0( )  (see Fig. 1) 
differs significantly from the standard parabolic 
law p m2 2/ .  Accordingly, all characteristics of 
the magnetoplasmon in the strip (the frequency 
dependence on electron concentration and magnetic 
field) appear unusual. For the intra-subband plasmon 
of the zeroth subband, the system is effectively one-
dimensional, so p NF L= 2≠ / ,  where N L  is the 
linear electron density (spin splitting is neglected), 
and X N lL0

2= 2≠ / .  The dependence of EF  on V0
is given by the right half of the lower curve in Fig. 1. 
The dependence of the plasmon frequency ω0  on the 
linear density is determined by the Fermi velocity V0  
and the form factors X 0 , appearing in formula (7). 
The results are presented in Fig. 4.

The dashed line in this figure is drawn to highlight 
the superlinear character of the dependence. Recall 
in this context that the classical 2D plasmon has a 
frequency that depends sublinearly on the surface 
density N s :

ω ω ω= ( ) ,2 2 1/2
c p+

where ωp sN2 µ .
The magnetic dispersion of the plasmon is even 

more unusual: the curve in Fig. 5 has a minimum 
at H » 2 T. This occurs because, as seen from (10), 
the dependence of the plasmon frequency on the 
magnetic field is due to two types of contributions. 
The terms containing the Fermi velocity V0  provide 
the descending part of the curve in Fig. 5, as at a 
given density, the Fermi level rapidly decreases with 
increasing H and approaches the flat region of the 
electronic dispersion E p0( )  where V0  vanishes. Then 
the main contribution remains the first (Coulombic) 
term in (10), which leads to a logarithmically slow 
increase in the frequency.

For the depolarization shift (see Fig. 2), a rapid 
decrease is characteristic with a relatively small 
increase in H : more than an order of magnitude 
decrease at δH H/  = 75%. As the field increases, the 
behavior of the electron wave functions approaches 

p

p

Fig. 4. Dependence of the plasmon frequency on the linear 
electron concentration. Magnetic field H  =  1  T, strip width 
L = 0.2 μm.

Fig. 5. Magnetic field dependence of the plasmon frequency; 
NL = 106 cm–1; L = 0.2 μm, k = 0.4 ⋅ 106 cm–1.
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that realized in an infinite plane, as the influence 
of the strip boundaries decreases. However, in an 
infinite plane, W = 0, because in a strong magnetic 
field, screening (at least linear screening) is absent, 
along with the electron density perturbations linear 
in the perturbing potential.

8. CONCLUSION

We have demonstrated that the consideration 
of sample boundaries signif icantly affects the 
magnetoplasmonic oscillations of a two-dimensional 
electron gas. Mathematically, the problem becomes 
considerably more complex due to the non-standard 
dispersion law of “magnetized” electrons  – the 
dependence of energy on the conserved momentum 
component in the Landau gauge. In the simple 
case of a straight strip, it is possible to analytically 
obtain only the dispersion of intra-subband plasmons 
in the long-wavelength limit, corresponding to 
the lower part of the plasmon spectrum, which 
generally contains an infinite number of branches. 
The dependence of the plasmon frequency on 
concentration and magnetic field was determined 
using numerical methods.
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APPENDIX

Here we demonstrate the validity of the 
relationship J J−− ++= . . For this, we need the 
expression for ψn X x, ( ) , which already accounts for 
the boundary conditions. It has the form:
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Furthermore, we need the explicit form of the 
equation defining the electron spectrum, i.e., the 
parameter q Xn ( ) . For it, we have:
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Using the explicit expressions for the form factors 
J±± , we write the difference J J−− ++−  as:
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Here, ψn X x, ( )  is defined in (17). By changing the 
integration variable in the first term within the square 
brackets, we arrive at the expression:
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It is evident that to prove the equality J J−− ++= ,  
it is suff icient to show that the relationships 
ψ ψ0, 0,( ) = ( )- -X Xx x  and N NX X0, 0,=- . hold. Using 
(17), we obtain:
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Thus, the expression under the square brackets in 
(22) is the function F q X( ( ))0 , defined in (19), and 
therefore:

	 ψ ψ0, 0,( ) = ( ).- -X Xx x � (23)

For N X0,- , we have:
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Performing the variable change x x→ −  in the 
integral over x  and considering (23), the evenness 
of the normalization coefficient with respect to X  is 
thus proven.
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