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Abstract. Effect of sample boundaries on the spectrum of magnetoplasmons in the 2D electron gas was
investigated. using the example of a strip. As should be expected in the limit of the plasmon wave length far
exceeding the strip width the dispersion law of magnetoplasmons follows the one for 1D plasma waves however
the leading term in the dispersion relation depends on the magnetic field. The dispersion laws of intraband
plasmons in cases when one and two subbands are populated, depolarisation shift of the interband plasmon and
spatial distribution of the plasmon electric field are found. The concentration and magnetic field dependencies
of the plasmon frequency have been obtained numerically.
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1. INTRODUCTION

The edge magnetoplasmon (EMP) in a two-
dimensional (2D) electron system was first theoretically
studied in the works of Volkov and Mikhailov [1, 2].
The authors conducted both classical and quantum
analyses for a half-plane and found the EMP dispersion
relation as w(k) where k is the 1D wave vector of the
plasmon wave along the edge of the sample. Naturally,
a question arises about the role of boundaries in a real
experiment, particularly concerning plasma waves in a
finite-width strip, where the influence of the opposite
edge must also be taken into account. This formulation
of the problem was outlined in the introduction of the
paper by Balev and Vasilopoulos [3]. The authors
proposed a strip model with “soft” walls, described
by a parabolic potential for electrons near the strip
boundaries. However, in their analysis of plasma
oscillations, they effectively considered only one edge,
naturally obtaining the already known result for the
plasmon frequency. Meanwhile, the presence of the
second boundary leads to qualitatively new features
of the phenomenon: strictly speaking, one should not
consider an edge plasmon but rather the eigenmodes of a
planar plasma waveguide. It is important to note that in
such a “waveguide”, the electron motion is confined in
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one direction, while the electric field of the plasma wave
extends formally to infinity. Within the framework of the
classical hydrodynamic description of 2D plasma, this
problem was solved in [4, 5]. The plasmon spectrum for
a 2D electron strip under conditions of strong screening
by a metallic electrode was found in [6], using a classical
approach within the local capacitance approximation.

In the present study, we develop a quantum theory
of magnetoplasmon waves in a 2D electron gas strip
of finite width L = 2w. The boundary conditions
for the wave functions correspond to hard walls,
meaning the transverse electron motion (along the
x-axis) corresponds to a “truncated” harmonic
oscillator at x = +w with the cyclotron frequency
o, and a suspension point X = —pl? , where p is the
conserved y-component of the electron momentum
in the Landau gauge, and / is the magnetic length
(h =1). For the Landau level with index n, the wave
function has the form:

exp(ipy) .
Nz

Here N, y is the normalization coefficient, and
L, is the length of the strip. For the wave function
W, x (x), we have (see, for example, [7]):

\Ijn,X(x!y) :Nn,X(pn,X(x) (1)
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The first index of the confluent hypergeometric
function in Equation (2) determines the energy of
the Landau subbands:

9,(X)=E,(X) /o, —1/2

via the dispersion equation following from the
boundary conditions vy, y(x = +w) = 0. From the
same conditions, the constant B is determined.

The dispersion of the Landau subbands E, (X)
is well known, and its graphs have been repeatedly
presented in the literature in connection with studies
of the quantum Hall effect (edge channels, edge
states). The functions y, y(x) and E,(X) are
required to formulate the equation for plasma waves.

2. BASIC EQUATIONS

The problem considered here belongs to the
class of plasma oscillations in multicomponent low-
dimensional systems. The solution scheme, i.e.,
finding the eigenfrequencies of plasmons in such
systems through the matrix dielectric function in
the self-consistent field approximation, is described
in [8] for 2D systems, such as quantum well
structures with more than one populated transverse
quantization level, double quantum wells, or
multilayer superlattices.

In the case of magnetoplasmons in a 2D electron
gas strip, the plasma components correspond to groups
of electrons in different Landau levels (subbands
E, (X)), effectively forming 1D systems. Therefore,
the Green’s function of the Poisson equation takes
the form of G (x —x')=—Ky(| k(x —x")|) /2nm,
where K, is the Macdonald function.

Another significant difference from [8] is the
dependence of the transverse wave functions
v, x (x) (Equation (2)) on the longitudinal electron
momentum p through the suspension point of the
oscillator. Accounting for these distinctions, the
equation for the matrix elements of the plasma wave
potential ¢(x)e iy takes the form (taking into account
the selection rules for the momentum along the strip,
which allow only transitions (n,X) — (m,X + ki 2) :
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gDn,)(;m X +k12

" f(Em,(X’+ kﬂ)) —f(E (X))
eLy . ry E (X' + k*) —E, (X') + o+ i3

xJ

m,n;m’n

(XX 3)

n' X'sm' X' +ki2’

Where ¢ is the average dielectric constant of the
two media separated by the 2D electron gas, f'is the
Fermi occupation factor, and Form factors J,, ...,/
are defined as:

J /

m,n;m ,n/(X’X/) =
w w

== /~ 7
J [, w0 %

—Ww—-w

X Ko ke =X Wy GWF (D ()

In Equation (4), ¥, x (x) = N, yv, x (x)represents
the normalized wave function of the transverse motion.
Thus, we obtain a system of linear homogeneous integral
equations for the functions ¢ » , which we will

n,X;m,X +kl
denote by ®,,, (X). Foranunbounded discrete electron
spectrum, the number of equations and, consequently,
the number of different plasmon modes is infinite, even
if only one level is populated, for example, Ey(X). The
off-diagonal terms in Equation (3) m = n correspond
to virtual transitions with an energy change of at
least o, , i.e., they are responsible for inter-subband
plasmons, whose spectrum has a gap A > o, at zero
wave vector k = 0. If one is interested only in the low-
frequency part of the plasmon spectrum o < o, , it is
necessary to restrict consideration to intra-subband
plasmons m = n and additionally require the long-
wavelength approximation k/ < 1. Inthe following, we
will consider both intra-subband plasmons, and inter-
subband plasmons from the lower part of the spectrum,
i.e., those associated with the levels Ey(X) and Ej(X).

3. INTRA-BAND PLASMON
OF THE ZERO SUBBAND

In this case, instead of Equation (3), we have:

Dyy(X) =
_ e [ax: S (Ey(X' + kI*)) — f(Ep(X"))
ne 12 Ey(X' + kI*) — Eg(X') + o + id
xJ 00,00 (X s X YD (X ). ®)
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Assuming k < p ~ pp (where pp is the Fermi
momentum), we expand the differences in Equation
(5) up to the linear term in k. In the form factors J,
we set k=0.

For T' = 0, the numerator becomes 8(Ey(X') — Ef)
(where Er is the Fermi energy), and the integral
reduces to the sum of two terms, corresponding to the
values of the integrand at the points X' = + X, , where
+X are the roots of the equation:

Ey(X) = Ep. Here (E,(X) isan even function of X.

By substituting variable X in left-hand side
of Equation (5) with +X,, we arrive at two

linear homogeneous equations for the quantities
D, = Dpy(+X,):

J J
o = Bk|l—=_ Tt P
+ ﬂ m—kVO B (D+kVO P (6)
J J
d® =8kl——p ————F @
B ﬂ [m—kVO - 0)+kV0 P

Where B = e’ / me,V, is Fermi velocity in the zero
subband, while

Jiv = Joo00(£X g, £Xp),
Sz = Jo0,00(FX 9, FXp)-

It is evident that J__ =J,__. In the Appendix,
it is shown that J__ =J, , . Thus, there are
two independent form factors. The roots of the
determinant of the system (6) determine the plasmon
frequency o\ (k):

k) = K2 (V3 + B2 =T+ 28V ) (D)

In the integrals defining J  , , the functions w%(x)
are localized near the points +X within a region
of order /. Therefore, for J, _, the argument K|, is
small under £k — 0, and we can use the asymptotic
form of the Macdonald function:

Ko(lk(x —=x") ) = ~In(| k(x —x") e/ 2),

where vy is the Euler constant. Then, for J__, we
obtain:

2 -7
Jo, = ln[e— T, (8)

| k|1

where

Ty = f dxdx i3 ¥, ()1

~2 !
|x_x/| WO,XO(X )' (9)
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The leading term in J,  is |In(| k | /) |. For the
form factor J, _, the argument y of the K, function
canbesetto 2| k | X, which may not be small, even
for kI < 1. In this case J,_ =K (2| k| X,) and
gives a significant contribution, provided the stronger
condition kX, < 1 is satisfied. Under this condition,
the plasmon frequency becomes

2e
|k |1

wp(k) =k lzﬁ[ﬂ(i++ —J1-)+ V]I

-2 —2
+VE+ B — T

+ 2BV0.7++}. (10)

Thus, we obtain the expected result for a one-
dimensional (1D) plasmon, as found in [9, 10]:

o ~ k/|In(|k| D).

However, it is important to note that in the
case considered here, the dependence of the
magnetoplasmon frequency on the electron
concentration and magnetic field cannot be
expressed analytically. Another important difference
is the change in the coefficient before the logarithmic
term: to the Fermi velocity V,, (for a 1D plasmon
without a magnetic field), the first term in the square
brackets of Equation (10) is added. This additional
term can significantly exceed V|, (for example, at
N, = 10 cm ™! , H=1.6 T, the enhancement is
more than an order of magnitude). The results of the
numerical calculation are presented below.

The formulas derived in this section are valid up
to the very beginning of the plasmon spectrum (k=0),
when the plasmon wavelength is much larger than
all characteristic lengths of the problem, including
the width of the strip L. In this limit, the system
effectively becomes one-dimensional. However, the
transition to the half-plane limit, studied in [1, 2], is
impossible, as it corresponds to an infinitely large
width L. The dispersion laws differ: in the half-plane
it is proportional to Ink , while in stripe it is Jink as
expected for one-dimensional systems [9, 10].

4. INTRA-SUBBAND PLASMONS
IN A TWO-SUBBAND SYSTEM

Let us now consider the case where the states
Ey(X) and E;(X) are populated, but we neglect the
off-diagonal contribution @ ;. The Fermi level lies
between E;(0) and E,(0), intersecting the curves
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Fig. 1. Electron spectrum of the strip. The figure shows the
two lowest Landau subbands. The horizontal line indicates the
position of the Fermi level, w/[ = 4.

Ey(X) and E|(X) at the points £X, and X,
respectively (Fig. 1).

The four equations for ®y,(+X,) and ®;;(+X,)
lead to a biquadratic equation for the plasmon
frequencies, the roots of which are equal (here, the
results are presented for infinitesimally small plasmon
momenta kX, < 1, in order to clarify the behavior
of w(k) at the very beginning of the spectrum):

(Dgc = k—;[Voz + V12 + ﬁ2 -7(2)+;0+ — -7§+;0— + .712+;1+ -
—.712+;1— + 2-73+;1+ - 2-7§+;1— +
+2B(V or0+ + Vi J1s1s)), (1)
@5y = @p +2k*In % (BWy + V) +
+B2 (.70+;0+ — -70+;07 + .71+;1+ -
—.71+;1— + 2~70+;1+ — 2'70+;17)}~ (12)

Here, V), are the Fermi velocities in the zero and
first subbands, respectively, while six independent
form factors such as Jo+,0+,J0+,1+ , etc. are defined
similarly to how it was done in the previous section.

It is important to emphasize that in Equation
(11), all logarithmic contributions exactly cancel.
The corresponding root of the dispersion equation
gives the linear dependence o, (k) as k — 0, which
justifies calling this branch acoustic. The second root

(optical branch, Equation (12)) exhibits the known
singularity at zero at k — 0:
@pp (k) ~ k* [In(lk] D).

opt

5. INTER-SUBBAND PLASMON
IN A TWO-LEVEL SYSTEM

The rank of the characteristic determinant,
considering N subbands, is N2, since the dielectric
function is a 4x4 matrix. Out of the N? roots,
N correspond to intra-subband plasmons, while in
the remaining N(N — 1) roots each pair gives rise to
one inter-subband branch, making the total number
of inter-subband branches equalto N(N —1) /2. We
focus on the lowest inter-subband branch, associated
with the E, and E; levels. The solution of the
problem in the general case (for arbitrary plasmon
momenta k) involves extremely complex numerical
calculations, as neither the dispersion relations
of electrons nor the form factors can be expressed
analytically. Therefore, we limit ourselves to
finding the threshold frequency (kK = 0) , which
determines the gap in the inter-subband plasmon
spectrum. The difference between this value and
the minimum energy gap between the E, and E;
subbands is known as the depolarization shift.

If we retain only the equations for m = 0,1 and
n = 0,1 in the system (3) and take the limit k — 0,
the right-hand side will only include the off-diagonal
element @, since the diagonal elements vanish due
to the difference in occupation numbers approaching
zero at y 0, X (x), v 1, X(x). In the same limit, the
function K (| k(x —x")|) simplifies to:

InQe™" /|k(x — x"))) = In2e™" /|k| 1) + In(l/|x — x]).

The first term does not contribute to the form
factor Jy; o, due to the orthogonality of the wave
functions y 0,X(x), v 1,X(x). As a result, we arrive
at the equation

2p 0
oy, (x) =2 de’x
-X
AXY) / /
— 220X, XDy (X)), 13
T a2 ) (13)

where A(X)= E|(X) — Ey(X) and o’ is the desired
eigenvalue (its minimum vakue is required, i.e. co,2n in)s
and the kernel factor Q(X,X") is equal to

JETP, Vol. 167, No. 1, 2025
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Fig. 2. Dependence of the depolarization shift of the inter-
subband plasmon between levels 0 and 1 on the magnetic field;
D=Q/AX=0)—1, N, =0.47-10cm™!, L =0.1 um.
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Fig. 3. Distribution of the plasmon wave potential across the
transverse coordinate for two opposite propagation directions or
magnetic field orientations; N, = 10cm™!, L=02um, H=1T.

w w

X, X = [ [dxdxig (XD x (x) x

—Ww—-w

xin(l /|x = x')g o (x Wy o (x). (14)
2

The value of ®,,;, was found numerically. We
replaced the integral with the corresponding Riemann
sum by dividing the integration interval into a large
number of points, reducing the problem to finding
the eigenvalues of a system of linear homogeneous
equations, the number of which equals the number
of partition points. The depolarization shift Q is
defined as the difference between the minimum
plasmon frequency o and the minimum energy

min
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gap between the levels A(0). Its dependence on the
magnetic field is shown in Fig. 2.

As is known, the depolarization shift also
determines the frequency of IR absorption during
an inter-subband (inter-level in an infinite plane)
transition, which differs from the energy gap due
to the dynamic screening of the electric field of the
exciting wave.

6. SPATIAL DISTRIBUTION
OF THE PLASMON WAVE FIELD

In this section, we derive the expression for the
coordinate dependence of the plasmon potential
¢(x), corresponding to the zeroth subband, i.e., the
lowest-frequency branch of the plasmon spectrum.
Within the self-consistent field theory, ¢(x) satisfies
the Poisson equation (quasistatic approximation,
neglecting retardation), with the right-hand side
containing the electron density perturbation induced
by the plasmon wave. In the present case, we consider
only the contribution from the zeroth subband:

Ax,z(pO(xszak) - k2(00(vaak) =

4o f(EO(X + klz)) —f(Eo(X))
=7 8(z)z 5 -
eLy, S Ey(X + k%) — Eg(X) + o+ id

Do (X W7g x (x). (15)

Equation (15) corresponds to a plasmon in the
form of a plane wave Ce’® | and the matrix element
@, (X) on the right-hand side is evaluated in the
plane of the strip z = 0. The solution to Equation
(15) is written using the Green’s function G (x — x’),
already defined in Section 2 for the plane z = 0. The
resulting integral for ¢y(x) in the long-wavelength
limit and for T =0 is evaluated similarly to the
calculation of the plasmon frequency (k).

Now it is necessary to find the solutions of the system
of two equations (6) for the matrix elements @ ,(X) at
the points +X, . The result has the form (Cis the wave
amplitude determined by the excitation conditions):

I_(x) B RI, (x)

@y (x) =Ckp

1) = [ax'Ky (k(x —x])W5 x, &), (16)
_ (k) + kVy kB, — wg(k) + k¥,

R
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Fig. 4. Dependence of the plasmon frequency on the linear
electron concentration. Magnetic field H = 1 T, strip width
L=0.2pm.
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Fig. 5. Magnetic field dependence of the plasmon frequency;
N;=10cm™'; L=0.2um, k=0.4-10°cm™.,

Fig. 3 shows the plasmon field ¢,(x) for opposite
propagation directions. As can be seen, for a given
propagation direction, the maximum of ¢(x) is
located near one edge of the strip. This result was
previously obtained in [2] within the framework of
the hydrodynamic approach.

The same mirror reflection occurs when the
magnetic field direction is reversed: it is easy to see
that under X , one should understand —plzsign (H),
while /? = ¢/ | eH |. Therefore, when the sign of H
is changed, the points X, and —X are swapped.
This “reflection” of the plasmon field relative to the
midline of the strip when the magnetic field sign is
reversed is, in principle, accessible to experimental

observation. When / < w and the Fermi energy is
such that the points £X, are close to the strip edges,
the maximum of ¢(x) is also near one of the edges,
and in this sense, such a wave can be called an edge
magnetoplasmon.

7. DEPENDENCE ON CONCENTRATION
AND MAGNETIC FIELD

The electron dispersion Ey(p) (see Fig. 1)
differs significantly from the standard parabolic
law p?/2m. Accordingly, all characteristics of
the magnetoplasmon in the strip (the frequency
dependence on electron concentration and magnetic
field) appear unusual. For the intra-subband plasmon
of the zeroth subband, the system is effectively one-
dimensional, so pr =nN; /2, where N; is the
linear electron density (spin splitting is neglected),
and X, =nN;I?/2. The dependence of Ep on ¥,
is given by the right half of the lower curve in Fig. 1.
The dependence of the plasmon frequency ®, on the
linear density is determined by the Fermi velocity ¥V,
and the form factors X , appearing in formula (7).
The results are presented in Fig. 4.

The dashed line in this figure is drawn to highlight
the superlinear character of the dependence. Recall
in this context that the classical 2D plasmon has a
frequency that depends sublinearly on the surface
density N :

o= (cof + (x)lz,)l/z,

where oof, x Ny.

The magnetic dispersion of the plasmon is even
more unusual: the curve in Fig. 5 has a minimum
at H ~ 2T. This occurs because, as seen from (10),
the dependence of the plasmon frequency on the
magnetic field is due to two types of contributions.
The terms containing the Fermi velocity V|, provide
the descending part of the curve in Fig. 5, as at a
given density, the Fermi level rapidly decreases with
increasing H and approaches the flat region of the
electronic dispersion E,(p) where V|, vanishes. Then
the main contribution remains the first (Coulombic)
term in (10), which leads to a logarithmically slow
increase in the frequency.

For the depolarization shift (see Fig. 2), a rapid
decrease is characteristic with a relatively small
increase in H : more than an order of magnitude
decrease at 6H / H =75%. As the field increases, the
behavior of the electron wave functions approaches

JETP, Vol. 167, No. 1, 2025
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that realized in an infinite plane, as the influence
of the strip boundaries decreases. However, in an
infinite plane, 2 = 0, because in a strong magnetic
field, screening (at least linear screening) is absent,
along with the electron density perturbations linear
in the perturbing potential.

8. CONCLUSION

We have demonstrated that the consideration
of sample boundaries significantly affects the
magnetoplasmonic oscillations of a two-dimensional
electron gas. Mathematically, the problem becomes
considerably more complex due to the non-standard
dispersion law of “magnetized” electrons — the
dependence of energy on the conserved momentum
component in the Landau gauge. In the simple
case of a straight strip, it is possible to analytically
obtain only the dispersion of intra-subband plasmons
in the long-wavelength limit, corresponding to
the lower part of the plasmon spectrum, which
generally contains an infinite number of branches.
The dependence of the plasmon frequency on
concentration and magnetic field was determined
using numerical methods.
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APPENDIX

Here we demonstrate the validity of the
relationship J__ =J_ .. For this, we need the
expression for y, y(x), which already accounts for
the boundary conditions. It has the form:

Vo () = e AT
x[qn(—qn (X)/2,1/2,(x = X2 /%) -
—0((1- g, (X))/2,3/2,(x = X /17 ) x
(x = X)D(~q,(X)/2,1/ 2,00 = X)*/P%)

x . (17)
(v = X)D((1 =, (X))/2,3/2,0w = X)* /1’

Furthermore, we need the explicit form of the
equation defining the electron spectrum, i.e., the
parameter g, (X). For it, we have:
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F(q,(X)) =0, (18)

CI)(—q/2,1/2,(w —X)? /12)

F(g) = ——
W —X)q>((1—q)/2,3/2,(w X))/ )

®(-q/2,1/2,w + X)*/P%)
+ .
W + X)cb((l —9)/2.3/2,(w + X)2/12)

(19)

Using the explicit expressions for the form factors

J. . , we write the difference J__ —J_ as:
w w
Jo—J,, = f f dxdx'K o (k(x — x"))) x

—W—w
X[ NG _xws—x Wi _x ) =

NG v Wy (), (20)

Here, v, x (x) is defined in (17). By changing the
integration variable in the first term within the square
brackets, we arrive at the expression:

w w
J_—J = [ [axdx'Ky(ktx = x))

—Ww—-w

X[N(A)',fxl//(ifx (—X)l//g,fx (—x')—
(21)

4 2 P
—Noxwox ywgx(x /)}-

It is evident that to prove the equality J__ =J, ,

it is sufficient to show that the relationships
Vo, x (=x) =g x(x)and Ny _x = N y.hold. Using
(17), we obtain:

Vo _x (=X) =y x(x) = e =102 /2 (x —X)x
><<1>((1 — qo(X))/2,3/2,(x — X)2/12) X

CD(—qO(X)/2,l/2,(w —X)2/12)

x 2 72 T
(w = X)((1-q9(X))/2,3/2,00 = X)* /1)

® [~y (X)/2,1/2,(w + X) /1)
0+ X)D((1-g5(X))/2,3/2,w + X)*/17)|

Thus, the expression under the square brackets in
(22) is the function F(gy(X)), defined in (19), and
therefore:

L 22)

wo_x (=X) =y x (). (23)

For N _x , we have:
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