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1. INTRODUCTION

Since the advent of General Relativity (GR),
attempts have been made to construct models of
elementary particles in curved spacetime. Notable
contributors to such models include G.B. Jeffery
(1921), P. A.M. Dirac (1962), W. Israel (1970),
C.A. Lépez (1984), O. Gron (1984), A. Burinskii
(1974—2023), and others. Unfortunately, none of the
proposed models have found practical application in
classical and quantum field theory calculations.

Another longstanding problem, which has engaged
many researchers and is the focus of this paper, is the
issue of the infinite self-energy of a charged particle
in classical and quantum electrodynamics. Efforts to
eliminate the linear divergence of self-energy in classical
electrodynamics were made by H. Poincaré, M. Born,
L. Infeld, P. A.M. Dirac, J. Wheeler, R. Feynman, and
others. In quantum field theory, the renormalization
procedure for fermion masses was developed to address
the logarithmic divergence of self-energy.

Such efforts continue today. For example, in [1,
2], quantum electrodynamics demonstrates that the
self-energy of a point charge converges when the
nonlinearity of the theory is considered in any finite
order of the Euler—Heisenberg Lagrangian expansion
in powers of the electric field.

In this paper, using the electron as an example, we
propose two quantum models of charged elementary
particles with zero self-energy. By employing the
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quantum geometry of the Reissner—Nordstrom (RN)
metric and neglecting extremely small gravitational
coeflicients, all practical calculations in classical and
quantum electrodynamics can be conducted within
the paradigm of elementary particles as point masses
with electric charges.

Our approach is based on the phenomenological
description of quantum black holes for modified
Schwarzschild (Sq) and Reissner—Nordstrom (RNq)
geometries |3, 4]. In this framework, black holes contain
quantum cores described by coherent states of gravitons.
The coherent-state-averaged solutions of the massless
Klein—Gordon equation for longitudinal gravitons are
equated, with certain coefficients, to classical potentials.
Short wavelengths are eliminated by a graviton energy
cut-off, introducing a maximum graviton energy:

he
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kyy Ry (1)
For convenience, as in [3, 4], we introduce the
parameter Rg. The primary quantity in this theory
is the maximum graviton energy k. The presence
of a quantum core gives rise to quantum ‘“hairs.”

Quantum black holes thus possess quantum hairs.

In a future quantum theory of gravity, the
graviton energy cut-off & will be replaced by strict
integration, and the absence of short wavelengths in
graviton coherent states will naturally result from the
application of a more advanced quantum theory.
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In our previous work [5], we extended the
approach of [3, 4] to modified M and Kerr—Newman dsi Ng =
(KNq) geometries, describing regular uncharged and
charged quantum rotating collapsars. As with the
RNq geometry, this term includes either black holes
with quantum cores and event horizons or rotating p
quantum cores without event horizons.
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In [5], for charged rotating collapsars with mass A dr” —pd® p2 de”, 3)

M, charge Q, and angular momentum J, we obtained . ) )
full regularization of the KNq quantum metrics at Where m§y, (r) is the mass function,

the following parameter value: pz =2 ae2 cos20, 4)
_preg _ T Q2 ) 2 e 2

RS_RS _gM_cz () A=r —2rmKNq(r)+ae, (5)

This regularization yielded finite values for key Y= (r2 +a? )2 — a?Asin, (6)

GR quantities, such as the mass function m gy, (r),

R} (r,0), the Kretschmann scalar K, (r,0), and
others.
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For Rg = R¢® |, the total energy of the quantum
charged rotating collapsar equals E = Mc?, meaning
its self-energy is zero. Due to the presence of a
quantum core, the electromagnetic forces responsible In general, for a black hole with mass M, charge

for the collapsar’s self-energy are counterbalanced by &> and angular momentum J, the mass functions
gravitational forces. m (r) for both classical and quantum Kerr (K) and

Kerr—Newman (KN) metrics do not depend on the
spin parameter a = J/M and are therefore equal
to the mass functions for the classical and quantum
In Section 2, we propose two quantum electron  Schwarzschild and Reissner—Nordstrém metrics.
models with zero self-energy based on RNq and

KNq quantum geometries. Section 3 compares these
models, favoring the RNg-based electron model. The Mg (1) =mgy, (r) =
conclusion summarizes the key findings of this paper.

In equation (7), m, is the electron mass, and
|J,| = 1/2 is the electron spin.

Similar results are obtained for the RNg quantum
metric [4].

For the electron, the quantum mass function is

2.kEy | Ge? k&

The Appendix provides the procedure for =Gm,—=Si we Tl 1—cos e T
calculating the energy of a charged rotating black T
hole with a quantum core (see [3]). ) )

r Ge r
_Gme—S7—71—COS—e]. (8)

2. QUANTUM MODELS OF THE ELECTRON S Ry

Based on regular quantum models of charged X i

: s . o .
rotating and non-rotating black holes [4, 5], we Where Si(x) = f o dx' is the sine integral function.

propose two quantum models of the electron with _ (U
modified KNq and RNq metrics. According to equation (2),
2
e _
2.1 Modified Kerr—Newman geometry R§ =g - =1.11-10 Bem. 9)
m,c

e
For the electron model, we will use the Clirses-

Ciirsey metric [6]1): According to equation (1), the maximum (cut-off)

energy of gravitons is

1) Below we will use units with the velocity of light ¢ = 1. When he

calculating the numerical values of the theory parameters, we kgV =_— =178 MeV.
will use the value ¢ = 3-10'0 cm/s. Rgv
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The asymptotics of the quantum mass function (8)
are

MmN, o =Gm,, (10)
1Gm,| r
MkNal, o T 18 R 0. (1)

According to equation (10), the quantum KN
metric becomes asymptotically flat as » — oo.

For the classical KN metric, the mass function
m$y =0atr, =e* /2m,,ie.at r = r,, the classical
metric is flat in this limit [7]. For the quantum Kq
and KNq metrics, the spacetime curvature persists
throughout the entire interval r € (0,00) [5].

2.2 Modified Reissner—Nordstrom Geometry

The quantum RNq metric [4] can be obtained
from equation (3) by setting a, = 0:

2 e
dspng = 1——mR’rV" ") |g2
1 2 2(an2 . 2
- drf —r(de° + smzed(D , (12)
_ 2m5€Nq (r) ( )

1
’

where m%y, (r) is given in equation (8).
The quantum RNq metric is asymptotically flat
as r — oo (see equation (10)). The go = —1/ g4

component at » — 0 is

2
Gm,

- 9nc? RS

r
RS

8o =1

2
=1-215-10%| |, (13)
Re

S

meaning that the metric (12) becomes flat at » = 0.

2.3 Characteristics of electron models

Let’s present some characteristic values for the
electron:

m,=9.1-102g 2 =231-10"" erg- sm,
spin :% =0.5-1.054-107% erg - sm,

3

_g Cm Sm
G =667-10% , c=3.10"02—,
g S2 S
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2
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B, = K Ee 42.10%,
(RS
442
By = —e =82-10%, re. By +B, > 1,
(R)
2
Ry =——=2.82-10"%cm,
m,c
2
RE=2_% —111-10 % cm
5 Sm C2 ‘ ’
e
ke, = 1€ = 178 MevV,
uv p
R
R¢  1.11-1071
—S='—55=O.82-1042.
RG  1.35-10°

We see that for the electron, B, + 8, > 1,

RS / R > 1. This means that in the models of electron
with the RNq and KNq quantum metrics, the event
horizons are absent [8]. The proposed electron models
represent either rotating (KNq) or non-rotating (RNq)
collapsars without event horizons and with quantum
cores defined by coherent states of gravitons with a
maximum energy of k;;,; =178 Me V.

2.4 Electromagnetic potentials

For the classical Reissner—Nordstrom and Kerr—
Newman metrics with mass M and charge Q, the
mass function consists of two terms:

me (r) = (m (r)) +(m (r))Q =GM —%. (14)

The “charge” part of the mass function
(m*! (r))Q =G0/

ensures that the “charge” components of
the Einstein tensor, divided by 8nG, match the
corresponding components of the electromagnetic
field energy-momentum tensor derived from
Maxwell’s equations:
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8nG

For the classical KN geometry, the electromagnetic
potentials Au are chosen as follows [9]:

A, =22(1,0,0,~asin? ). (15)
[

Electromagnetic fields at » — oo manifest as a
superposition of the Coulomb field and the magnetic
dipole field p = Qa. The gyromagnetic ratio p
/M| =Q/m, which coincides with the gyromagnetic
ratio for a Dirac electron. The complex internal
electromagnetic structure of the classical KN metric
source is discussed, for example, in [10].

For the classical Reissner—Nordstrom (RN)
metric, when (a=0) in equation (15), only the
scalar Coulomb potential remains 4y =Q /r.

For the regular quantum electron metrics
(considering the relation between m, and e? from
equation (9)), the “charge” part of the mass function
can be retained as in the classical RN and KN
metrics. In this case, the mass function (8) becomes:

Ming (1) = ming (r) =

4 €08 (r/Rg) Ge?
— - . (16)
T r/R% 2r

=Gm, ZSi
T

-
Ry

Thus, the electromagnetic properties of the
proposed electron models coincide with the
electromagnetic properties of the sources of the
classical Reissner—Nordstrom and Kerr—Newman
metrics.

2.5 Electron’s self-energy
In the study [5], we established that for

Rg = R = nQ?%/8M

the energy of a rotating charged quantum black
hole equals £ =M (see also the Appendix). A
similar equality holds for the RNq quantum metric
at any value of Rg. For electron models in natural
units:

RS =ne?/8m,c? =1.11-10"3cm.

The equality £ = m, means that the electron’s
self-energy E,, is zero.

3. DISCUSSION

We have examined two quantum models of the
electron based on modified Reissner—Nordstrom
(RNq) and Kerr—Newman (KNq) metrics. Can we
currently favor one model over the other? To answer
this question, let us compare some characteristics of
the considered models under the condition

TC€2

8m,

Table: Comparison of electron model characteristics in
Reissner—Nordstrom (RNq) and Kerr—Newman (KNq)
quantum geometries

Electron model characteristic RNqg|KNg
l\E,=m,, E,, =0 + +
2 |Weak energy condition + —
3||J]= E, Dirac gyromagnetic ratio LR

2 [J|  m,

4 |Absence of event horizons + +
Finiteness of the GRT quantities, such

5|as the mass function, Ricci tensor, + +
Kretschmann scalar, etc.

6 |Compatibility with the Maxwell equations | + +
Stationary bound states in the fields B
of regular black holes

In the table, the symbols “+” and “—” indicate
the presence or absence of key characteristics in the
considered models.

Let us briefly discuss points 1—7 of the table.
Point 1. For both models:

— 2 —
E, =m,",E,, =0.

We found an important aspect: gravity in the
charged quantum Kerr—Newman (rotating) and
Reissner—Nordstrom (non-rotating) metrics with
Ry = RS compensates for the electromagnetic
component in the expressions for the total energy of
the quantum black hole.

In classical electrodynamics, the self-energy of
a charged particle Eg,’n = 32/2r diverges linearly as
r — 0. In quantum field theory, the self-energy of a
charged particle is determined by an infinite series in
perturbation theory with logarithmic divergence terms.

Point 2. For the RNqg quantum geometry, the
energy density p,(r), radial pressure p;(r), and
stresses p, (r) = p3(r) take the following form [4]:

— nz (—Rg )3 X
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X
(r /RS
. : sin{_], (17)
2(r / RS) s
p2(r) = p(r) = E’;) x
TRy
1 ]
7 1—cos|— —1—2cos —r
(r /Rg) Ry 4(r /R§) Ry
— 3 sin| — (18)
4(r/R§) RS

Atr — 0,wehave p,(r) — K/24, p; (r) — —K/24,

3
where i =1,2,3 and K = me/Tt2 (R§) . Thus, for the

RNq quantum geometry near r = 0, the weak energy
condition p, >0, p, +p; >0, i =1,2,3 is satisfied.
Specifically, equations (17) and (18) show that at
r=0p.,=K/24,p.+p; =0,i=1,23.
For the RNq quantum geometry at » =0, the
energy dominance condition p, > |p,- , i =123
also holds. In our case: p, =|p;|.

For the Kerr—Newman quantum geometry, the
asymptotics of the energy density p, (r,u) at r — 0
follow from equation (7) in [5] (here and below,
1 = cos0):

K2 )
%(RH)‘ET[Z] =0,
pa(r,u)=84K,u=().

(19)

At pu= 0,+1 the energy density near » =0 is
negative. In this case, none of the energy conditions
are satisfied.

Point 3. In the KNqg quantum model, it is possible
to introduce the spin modulus |J| = #/2 , satisfying
the Dirac gyromagnetic ratio. However, introducing
the quantum spin operator S = (1/2)c is complicated
when the classical definition of angular momentum is

JETP, Vol. 167, No. 1, 2025

used in the Kerr—Newman geometry. Above,, c; are
two-dimensional Pauli matrices.

In the RNq quantum geometry, the angular
momentum J is zero. In the RNq electron quantum
model, the spin operator .§'and the gyromagnetic ratio
e/m, are pure quantum properties defined externally.

Point 4. In both these models, event horizons are
absent.

Point 5. In both models, general relativity (GR)
quantities such as the mass function, Ricci tensor,
Kretschmann scalar, and others remain finite.

Point 6. The RNq and KNq quantum geometries
are consistent with Maxwell’s equations (see Section
2.4 of this study). However, the electromagnetic
structure of the RNqg model is significantly simpler
than that of the KNq model. In the RNg quantum
model, the source of the electromagnetic field is a
point electric charge e located at the system’s center
(r =0). At large distances, the electromagnetic field
behaves as a Coulomb field.

In contrast, the source of the electromagnetic field
in the KNqg quantum model is a system of surface
currents and electric charges distributed over a disk of
radius a, = |J,|/m,c withthe centerat r = 0 [10]. For
r — oo, the electromagnetic field is a superposition of
the Coulomb field and a magnetic dipole p = ea.

Point 7. In the RNq quantum geometry,
the metric (12) becomes asymptotically flat as
r — oo . Importantly, for both Rg = RS and r — 0,
the metric (12) is also flat (see Equation (13)). In this
case, the problem of determining the eigenfunctions
and eigenvalues of the Dirac equation for motion
of fermions in the RNq fields can be solved by
using single-valued boundary conditions from the
analogous problem for the fermion motion in the
Coulomb field in flat Minkowski space.

In the Kerr—Newman quantum geometry, the
situation is different. At r — 0 u Rg = RS, the
metric (3) remains non-flat and takes the following
form:

ds;(Nq = dtz — cos29dr2 — aezcos2ed92 —

—a2sin’0dg?. (20)

In [11, 12], it was shown that in this case, the Dirac
equation has two quadratically integrable solutions,
making it impossible to formulate a well-defined
eigenvalue problem for fermions in the classical or
quantum KN spacetime.
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To establish a well-defined quantum mechanical
problem, one must perform a self-adjoint extension
of the Hamiltonian, which usually results in new
boundary conditions near » =0 (see, for example,
[13, 14]).

4. CONCLUSION

We proposed two quantum electron models with
zero self-energy based on the Reissner—Nordstrom
[4] and Kerr—Newman [5] quantum geometries. A
critical parameter for regularizing key GR quantities
is the choice of R§ =me?/8mc? ~1.11-10"3cm,
where the cut-off energy of gravitons
ki, =Tic/RE ~ 178 Me V.

The proposed models solve the long-standing
problem of linear divergence in the self-energy of
a charged particle in classical electrodynamics. In
the considered models, gravity compensates for
the electromagnetic component in the total energy
expressions for the electron.

It can be hypothesized that with more advanced
quantum gravity theories, the problem of infinite
self-energy of charged fermions in quantum field
theory will be resolved similarly.

Notably, when using the RNq quantum electron
model, all classical and quantum electrodynamics
effects can be calculated within the standard
paradigm of an elementary particle with point
mass m, and electric charge e <0. This is due
to the extremely small values of the parameters

Gm, /c?~0.7-107> cmand Ge? /c* ~1.9.107%8
cm? in Equation (16) for the mass function m% Ng ()

. . G
As a result of neglecting the coeflicients ™e and

2

2 c
G_i the RNq geometry becomes the flat Minkowski

c
space-time. In this case, we return to the domain of

classical and quantum electrodynamics for charged
Ieptons within the Standard Model.
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APPENDIX: ENERGY OF A CHARGED
ROTATING BLACK HOLE WITH A
QUANTUM CORE [5]

For the KN quantum metric, the total energy,
defined by the volume integral of the energy density
TO0 = p,(r,0), is given by:

E= fTOO\/%dV = %Tdrjdoc(rz +azo<.2)G00 (r, )=
0 -1

2
1% ! r4~|—(p2—r2) ~|—a2(2r2—p2) ra2(1—u2)
= Efdl’fd“ 2 2 m}(N ——2m;</N =
0 9 p q p q
15 r . a 2sin(r/Rg)  CQ? r co? . (r
= —4— —|GM = 1- — || = —
e {dr‘[S aarctgr G . p + 52 cos R, Ry sin R, +

2
2r — 2"—arctgg —2a atrctg2 GM =
a r r

+
n  r/Rg

2 2
+02Lsm[L] o [_]
r‘Rg Rs) 2rR3 Ry

2cos(r/RS)L_GMgsin(r/RS)L_CQz I_COS[L}
R} Rg

2
l=M+lﬂ_£Q i

+

3

T <r/RS)2 RS v

W n QWK

kyy — .
2n°Y 16 M R2
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For the K and KN metrics:

\/—_ = p2 sin 6; p2 =r2 4 azpz, [ = cosb;

2
mh = dmgy, _ d"myp,
KNqg — dr s KNqg — dr2 ’
2.0 r GQ2 r
=GM =Si|—|— 1— —.
Mgy, =G nSl R, > [ cos[RS}]
When the condition
2
= reg — E Q
Rs RS 8 Mc?

is satisfied, the total energy of the quantum charged
rotating collapsar equals zero: E = M. 2.

Under this condition, the key general relativity
(GR) quantities, such as the mass function m (r), the
Ricci tensor R, (r,0), and the Kretschmann scalar
K (r,0), become regular and finite throughout the
entire spacetime.
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