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1. INTRODUCTION

Since the advent of General Relativity (GR), 
attempts have been made to construct models of 
elementary particles in curved spacetime. Notable 
contributors to such models include G. B.  Jeffery 
(1921), P. A. M.  Dirac (1962), W.  Israel (1970), 
C. A. López (1984), O. Gron (1984), A. Burinskii 
(1974–2023), and others. Unfortunately, none of the 
proposed models have found practical application in 
classical and quantum field theory calculations.

Another longstanding problem, which has engaged 
many researchers and is the focus of this paper, is the 
issue of the infinite self-energy of a charged particle 
in classical and quantum electrodynamics. Efforts to 
eliminate the linear divergence of self-energy in classical 
electrodynamics were made by H. Poincaré, M. Born, 
L. Infeld, P. A. M. Dirac, J. Wheeler, R. Feynman, and 
others. In quantum field theory, the renormalization 
procedure for fermion masses was developed to address 
the logarithmic divergence of self-energy.

Such efforts continue today. For example, in [1, 
2], quantum electrodynamics demonstrates that the 
self-energy of a point charge converges when the 
nonlinearity of the theory is considered in any finite 
order of the Euler–Heisenberg Lagrangian expansion 
in powers of the electric field.

In this paper, using the electron as an example, we 
propose two quantum models of charged elementary 
particles with zero self-energy. By employing the 

quantum geometry of the Reissner–Nordström (RN) 
metric and neglecting extremely small gravitational 
coefficients, all practical calculations in classical and 
quantum electrodynamics can be conducted within 
the paradigm of elementary particles as point masses 
with electric charges.

Our approach is based on the phenomenological 
description of quantum black holes for modified 
Schwarzschild (Sq) and Reissner–Nordström (RNq) 
geometries [3, 4]. In this framework, black holes contain 
quantum cores described by coherent states of gravitons. 
The coherent-state-averaged solutions of the massless 
Klein–Gordon equation for longitudinal gravitons are 
equated, with certain coefficients, to classical potentials. 
Short wavelengths are eliminated by a graviton energy 
cut-off, introducing a maximum graviton energy:

	 k
c

RU V
S

= .
 � (1)

For convenience, as in [3, 4], we introduce the 
parameter RS. The primary quantity in this theory 
is the maximum graviton energy kUV. The presence 
of a quantum core gives rise to quantum “hairs.” 
Quantum black holes thus possess quantum hairs.

In a future quantum theory of gravity, the 
graviton energy cut-off kUV will be replaced by strict 
integration, and the absence of short wavelengths in 
graviton coherent states will naturally result from the 
application of a more advanced quantum theory.
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In our previous work [5], we extended the 
approach of [3, 4] to modified M and Kerr–Newman 
(KNq) geometries, describing regular uncharged and 
charged quantum rotating collapsars. As with the 
RNq geometry, this term includes either black holes 
with quantum cores and event horizons or rotating 
quantum cores without event horizons.

In [5], for charged rotating collapsars with mass 
M, charge Q, and angular momentum J, we obtained 
full regularization of the KNq quantum metrics at 
the following parameter value:

	 R R
Q

Mc
S S

reg= =
8

2

2

≠ �  (2)

This regularization yielded finite values for key 
GR quantities, such as the mass function m rKNq ( ),  
R rq
µν θ, ,( )  the Kretschmann scalar K rq ,θ( ),  and 

others.
For R RS S

reg= , the total energy of the quantum 
charged rotating collapsar equals E Mc= 2 , meaning 
its self-energy is zero. Due to the presence of a 
quantum core, the electromagnetic forces responsible 
for the collapsar’s self-energy are counterbalanced by 
gravitational forces.

Similar results are obtained for the RNq quantum 
metric [4].

In Section 2, we propose two quantum electron 
models with zero self-energy based on RNq and 
KNq quantum geometries. Section 3 compares these 
models, favoring the RNq-based electron model. The 
conclusion summarizes the key findings of this paper.

The Appendix provides the procedure for 
calculating the energy of a charged rotating black 
hole with a quantum core (see [5]).

2. QUANTUM MODELS OF THE ELECTRON

Based on regular quantum models of charged 
rotating and non-rotating black holes [4, 5], we 
propose two quantum models of the electron with 
modified KNq and RNq metrics.

2.1 Modified Kerr–Newman geometry

For the electron model, we will use the Cürses-
Cürsey metric [6] 1):

1) Below we will use units with the velocity of light c = 1. When 
calculating the numerical values of the theory parameters, we 
will use the value c = 3 ⋅ 1010 cm/s.

p

ds
r m r
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e

2
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2
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∆
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dr d dsin � (3)

where m rKNq
e ( )  is the mass function,

	 ρ θ2 2 2 2= ,r ae+ cos � (4)

	 D∅= 2 ,2 2r r m r aKNq
e

e− ( )+ � (5)

	 Σ ∆= ,2 2 2 2 2r a ae e+( ) − sin θ � (6)

	 a
J

m me
e

e e
= =

2
.

 � (7)

In equation (7), me  is the electron mass, and 
Je = 2/  is the electron spin.

In general, for a black hole with mass M, charge 
Q, and angular momentum J, the mass functions 
m r( )  for both classical and quantum Kerr (K) and 
Kerr–Newman (KN) metrics do not depend on the 
spin parameter a J M= /  and are therefore equal 
to the mass functions for the classical and quantum 
Schwarzschild and Reissner–Nordström metrics.

For the electron, the quantum mass function is

m r m rKNq
e
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e( ) ( )= =

=
2

2
1

2
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where Si x
x

x
dx

x

( ) ∫=
'

'
'

0

sin  is the sine integral function. 

According to equation (2),

	 R
e

m c
S
e

e

=
8

= 1.11 10 .
2

2
13≠

⋅ − cm � (9)

According to equation (1), the maximum (cut-off) 
energy of gravitons is

k
c

R
U V
e

S
e

= = 178 .


MeV

p

p

p
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The asymptotics of the quantum mass function (8) 
are

	 m G mKNq
e

r
e→∞

= , � (10)

	 m
G m r

R
KNq
e

r

e

S
e→












→

0

3

=
1

18
0.

≠
� (11)

According to equation (10), the quantum KN 
metric becomes asymptotically flat as r → ∞ .

For the classical KN metric, the mass function 
mKN

cl = 0  at r e me e= / 22 , i.e. at r re= , the classical 
metric is flat in this limit [7]. For the quantum Kq 
and KNq metrics, the spacetime curvature persists 
throughout the entire interval r ∈ ∞( )0,  [5].

2.2 Modified Reissner–Nordström Geometry

The quantum RNq metric [4] can be obtained 
from equation (3) by setting ae = 0 :

ds
m r

r
dtRNq
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e
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where m rRNq
e ( )  is given in equation (8).

The quantum RNq metric is asymptotically flat 
as r → ∞  (see equation (10)). The g g00 11= 1 /-  
component at r ® 0  is

g
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meaning that the metric (12) becomes flat at r = 0 .

2.3 Characteristics of electron models

Let’s present some characteristic values for the 
electron:

m ee = 9.1 10  ,   = 2.31 10  ,28 2 19⋅ ⋅ ⋅− −g erg sm
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We see that for the electron, β β1 2 1+  ,  
R RS

e
H
e
 1. This means that in the models of electron 

with the RNq and KNq quantum metrics, the event 
horizons are absent [8]. The proposed electron models 
represent either rotating (KNq) or non-rotating (RNq) 
collapsars without event horizons and with quantum 
cores defined by coherent states of gravitons with a 
maximum energy of kU V

e = 178  Me V.

2.4 Electromagnetic potentials

For the classical Reissner–Nordström and Kerr–
Newman metrics with mass M and charge Q, the 
mass function consists of two terms:

m r m r m r G M
G Q

r
cl cl

M

cl

Q
( ) ( )( ) + ( )( ) −= =

2
.

2

�(14)

The “charge” part of the mass function

m r G Q rcl

Q
( )( ) −= 22

ensures that the “charge” components of 
the Einstein tensor, divided by 8pG, match the 
corresponding components of the electromagnetic 
f ield energy-momentum tensor derived from 
Maxwell’s equations:

p
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G

G
TQ

em

µ
ν

µ
ν

π

( )
( )8

= .

For the classical KN geometry, the electromagnetic 
potentials Am are chosen as follows [9]:

	 A
Qr

aµ
ρ

θ= 1,0,0, .
2

2−( )sin � (15)

Electromagnetic fields at r → ∞manifest as a 
superposition of the Coulomb field and the magnetic 
dipole field m  =  Qa. The gyromagnetic ratio m
/ /J Q m= ,  which coincides with the gyromagnetic 
ratio for a Dirac electron. The complex internal 
electromagnetic structure of the classical KN metric 
source is discussed, for example, in [10].

For the classical Reissner–Nordström (RN) 
metric, when a = 0( )  in equation (15), only the 
scalar Coulomb potential remains A Q r0 = / .

For the regular quantum electron metrics 
(considering the relation between me  and e2  from 
equation (9)), the “charge” part of the mass function 
can be retained as in the classical RN and KN 
metrics. In this case, the mass function (8) becomes:

m r m rRNq
e
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Thus, the electromagnetic properties of the 
proposed electron models coincide with the 
electromagnetic properties of the sources of the 
classical Reissner–Nordström and Kerr–Newman 
metrics.

2.5 Electron’s self-energy

In the study [5], we established that for

R R Q MS S
reg= = 82≠

the energy of a rotating charged quantum black 
hole equals E M=  (see also the Appendix). A 
similar equality holds for the RNq quantum metric 
at any value of RS . For electron models in natural 
units:

R e m cS
e

e= 8 = 1.11 10 .2 2 13≠ ⋅ − cm

The equality E me=  means that the electron’s 
self-energy Eem  is zero.

p p

p

p

3. DISCUSSION

We have examined two quantum models of the 
electron based on modified Reissner–Nordström 
(RNq) and Kerr–Newman (KNq) metrics. Can we 
currently favor one model over the other? To answer 
this question, let us compare some characteristics of 
the considered models under the condition

R R
e
mS S

e

e
= =

8
.

2≠

Table: Comparison of electron model characteristics in 
Reissner–Nordström (RNq) and Kerr–Newman (KNq) 
quantum geometries

Electron model characteristic RNq KNq
1 Ee = me, Eem = 0 + +
2 Weak energy condition + –

3 | J | =  
2

, Dirac gyromagnetic ratio m
| J |

 =  e
me

– +

4 Absence of event horizons + +

5
Finiteness of the GRT quantities, such 
as the mass function, Ricci tensor, 
Kretschmann scalar, etc.

+ +

6 Compatibility with the Maxwell equations + +

7 Stationary bound states in the fields 
of regular black holes + –

In the table, the symbols “+” and “–” indicate 
the presence or absence of key characteristics in the 
considered models.

Let us briefly discuss points 1–7 of the table.
Point 1. For both models:

E m c Ee e em= , = 0.2

We found an important aspect: gravity in the 
charged quantum Kerr–Newman (rotating) and 
Reissner–Nordström (non-rotating) metrics with 
R RS S

e=  compensates for the electromagnetic 
component in the expressions for the total energy of 
the quantum black hole.

In classical electrodynamics, the self-energy of 
a charged particle E e rem

cl = 22  diverges linearly as 
r ® 0 . In quantum field theory, the self-energy of a 
charged particle is determined by an infinite series in 
perturbation theory with logarithmic divergence terms.

Point 2. For the RNq quantum geometry, the 
energy density ρε r( ),  radial pressure p r1( ) , and 
stresses p r p r2 3=( ) ( )  take the following form [4]:

ρ
π

ε r p r
m

R

e

S
e

( ) − ( )
( )

×= =1
2 3

p
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At r ® 0 , we have ρε r K( ) → 24 , p r Ki ( ) → − 24, 

where i = 1,2,3  and  K m Re S
e= ( )≠2 3

. Thus, for the 

RNq quantum geometry near r = 0 , the weak energy 
condition ρε ³ 0 , ρε + ≥pi 0 , i = 1,2,3  is satisfied.

Specifically, equations (17) and (18) show that at 
r = 0  ρε = 24K , ρε + pi = 0 , i = 1,2,3 .

For the RNq quantum geometry at r = 0 , the 
energy dominance condition ρε ³ pi , i = 1,2,3  
also holds. In our case: ρε = .pi

For the Kerr–Newman quantum geometry, the 
asymptotics of the energy density ρ µε r,( )  at r ® 0  
follow from equation (7) in [5] (here and below, 
µ θ= )cos :

	
ρ µ

µ

µ
µ

ρ µ µ

ε

ε

r
K r

a

r K

e
, =

12
1

, 0,

, = 84 , = 0.

2

4

2

( ) − 






 ≠

( )
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At m∝≠ ±0, 1  the energy density near r = 0  is 
negative. In this case, none of the energy conditions 
are satisfied.

Point 3. In the KNq quantum model, it is possible 
to introduce the spin modulus J = 2 , satisfying 
the Dirac gyromagnetic ratio. However, introducing 
the quantum spin operator S = 2( )s  is complicated 
when the classical definition of angular momentum is 

p2

p2

used in the Kerr–Newman geometry. Above,, si are 
two-dimensional Pauli matrices.

In the RNq quantum geometry, the angular 
momentum J is zero. In the RNq electron quantum 
model, the spin operator S and the gyromagnetic ratio 
e me  are pure quantum properties defined externally.

Point 4. In both these models, event horizons are 
absent.

Point 5. In both models, general relativity (GR) 
quantities such as the mass function, Ricci tensor, 
Kretschmann scalar, and others remain finite.

Point 6. The RNq and KNq quantum geometries 
are consistent with Maxwell’s equations (see Section 
2.4 of this study). However, the electromagnetic 
structure of the RNq model is significantly simpler 
than that of the KNq model. In the RNq quantum 
model, the source of the electromagnetic field is a 
point electric charge e located at the system’s center 
r = 0( ) . At large distances, the electromagnetic field 

behaves as a Coulomb field.
In contrast, the source of the electromagnetic field 

in the KNq quantum model is a system of surface 
currents and electric charges distributed over a disk of 
radius a J m ce e e=  with the center at r = 0  [10]. For 
r → ∞ , the electromagnetic field is a superposition of 
the Coulomb field and a magnetic dipole m = ea.

Point 7. In the RNq quantum geometry, 
the metric (12) becomes asymptotically f lat as 
r → ∞ . Importantly, for both R RS S

e=  and r ® 0 , 
the metric (12) is also flat (see Equation (13)). In this 
case, the problem of determining the eigenfunctions 
and eigenvalues of the Dirac equation for motion 
of fermions in the RNq fields can be solved by 
using single-valued boundary conditions from the 
analogous problem for the fermion motion in the 
Coulomb field in flat Minkowski space.

In the Kerr–Newman quantum geometry, the 
situation is different. At r ® 0  и  R RS S

e= , the 
metric (3) remains non-flat and takes the following 
form:

ds dt dr a dKNq e
2 2 2 2 2 2 2= - - -cos cosθ θ θ

	 -a de
2 2 2.sin θ ϕ � (20)

In [11, 12], it was shown that in this case, the Dirac 
equation has two quadratically integrable solutions, 
making it impossible to formulate a well-defined 
eigenvalue problem for fermions in the classical or 
quantum KN spacetime.
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To establish a well-defined quantum mechanical 
problem, one must perform a self-adjoint extension 
of the Hamiltonian, which usually results in new 
boundary conditions near r = 0  (see, for example, 
[13, 14]).

4. CONCLUSION

We proposed two quantum electron models with 
zero self-energy based on the Reissner–Nordström 
[4] and Kerr–Newman [5] quantum geometries. A 
critical parameter for regularizing key GR quantities 
is the choice of R e m cS

e
e= 8 1.11 102 2 13≠  ⋅ − cm,  

where  the  cut-of f  energy  of  gravi tons 
k c RU V

e
S
e= 178 »  Me V.

The proposed models solve the long-standing 
problem of linear divergence in the self-energy of 
a charged particle in classical electrodynamics. In 
the considered models, gravity compensates for 
the electromagnetic component in the total energy 
expressions for the electron.

It can be hypothesized that with more advanced 
quantum gravity theories, the problem of infinite 
self-energy of charged fermions in quantum field 
theory will be resolved similarly.

Notably, when using the RNq quantum electron 
model, all classical and quantum electrodynamics 
effects can be calculated within the standard 
paradigm of an elementary particle with point 
mass me  and electric charge e < 0 . This is due 
to the extremely small values of the parameters 

G m ce / 0.7 102 55
 ⋅ −  cm and G e c2 4 68/ 1.9 10 ⋅ −

cm2 in Equation (16) for the mass function m rRNq
e ( ) .

As a result of neglecting the coefficients G m

c
e

2
 and 

G e

c

2

4
 the RNq geometry becomes the flat Minkowski 

space-time. In this case, we return to the domain of 

classical and quantum electrodynamics for charged 
leptons within the Standard Model.
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APPENDIX: ENERGY OF A CHARGED 
ROTATING BLACK HOLE WITH A 

QUANTUM CORE [5]

For the KN quantum metric, the total energy, 
defined by the volume integral of the energy density 
T r0

0 ,≡ ( )ρ θε , is given by:

E T gdV
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dr d r a G r= =
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For the K and KN metrics:

− +

′ ≡ ′′ ≡

g r a

m
dm

dr
m

d m

dr
KNq

KNq
KNq

KNq

= ; = , = ;

,

2 2 2 2 2

2

2

ρ θ ρ µ µ θsin cos

,,

=
2

2
1

2

m G M Si
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G Q
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RKNq
S Sπ
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
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.

When the condition

R R
Q

Mc
S S

reg= =
8

2

2

≠

is satisfied, the total energy of the quantum charged 
rotating collapsar equals zero: E Mc= 2 .

Under this condition, the key general relativity 
(GR) quantities, such as the mass function m r( ), the 
Ricci tensor R rµν θ,( ) , and the Kretschmann scalar 
K r,θ( ) , become regular and finite throughout the 
entire spacetime.
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