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Abstract. Within the scope of a spherically symmetric FLRW cosmological model we have studied the role of
nonlinear spinor field in evolution of the universe. It is found that if the FLRW model given by the spherical
coordinates the energy-momentum tensor (EMT) of the spinor field possesses nontrivial non-diagonal
components. These non-diagonal components of EMT neither depend on the spinor field nonlinearity nor on
the value of parameter k defining the type of curvature of the FLRW model. The presence of such components
imposes some restrictions on the spinor field. The problem is studied for open, flat and close geometries. In
doing so we exploited the spinor description of sources such as perfect fluid and dark energies. Some qualitative

numerical solutions are given.
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1. INTRODUCTION

Thanks to its ability to simulate different kinds of
matter such as perfect fluid, dark energy etc. spinor
field is being used by many authors not only to
describe the late time acceleration of the expansion,
but also to study the evolution of the Universe at
different stages [1, 2, 3, 4, 5, 6, 7, 8].

It was found that the spinor field is very sensitive
to spacetime geometry. Depending on the concrete
type of metric the spinor field may possess different
type of nontrivial non-diagonal components of the
energy-momentum tensor. As a result the spinor
field imposes various kinds of restrictions on both
the spacetime geometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see
whether its specific behavior can shed any new light
in the study of objects like black hole and wormhole.
Such studies were carried out within the scope of
spherically symmetric [10, 11] and cylindrically
symmetric spacetime [12, 13].

Since the present-day universe is surprisingly
isotropic and the presence of nontrivial non-
diagonal components of the spinor field leads
to the severe restrictions on the spinor field, we
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have studied role of a spinor field in Friedmann—
Lemaitre—Robertson—Walker (FLRW) model as
well. But in those cases the space-time was given
in Cartesian coordinates. In order to see influence
of the coordinate transformations on spinor field
some works were done by us earlier [14, 15]. In this
paper we will further develop those studies and see
how the spinor field behaves if the isotropic and
homogeneous cosmological FLRW model given by
spherical coordinates.

2. BASIC EQUATION

The action we choose in the form
S = f NEd

where « = 8nG is Einstein’s gravitational constant,
R is the scalar curvature and Ly, is the spinor field
Lagrangian given by [16]

dQ,

R
3+ Ly (1)

l' _ _ —
Ly = 3lwr"Vyy =V gytyl = miypy —1F(K). (2)

To maintain the Lorentz invariance of the spinor
field equations the nonlinear term F(K) in (2) is
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constructed as some arbitrary functions of invariants
generated from the real bilinear forms. On account of
Fierz equality in (2) we set K = K(1,J) = b1 + b,J,

where b, and b, takes the value 0 or 1 which leads to
the following expressions for K = {I,J,.I + J,I — J}.

Here /=5 and J = P? are the invariants of
bilinear spinor forms with S = yy and P = i\WS\y

being the scalar and pseudo-scalar, respectively. In
(2) A is the self-coupling constant. Note that A can
be both positive and negative, while A = 0 leads to
linear case. Here m is the spinor mass.

The covariant derivatives of spinor field takes the
form [16]

3)

is the spinor affine connections, defined

Vu\lf = 8p\v - QHW’ VH\TI = au\T’ + \TJQH;

where Qu
as [16]
1

_ b),p

Q= 7800 (0Vely) = T J1o7". (4)
In (4) Fﬁa is the Christoffel symbol and the Dirac

matrices in curve space—time y are connected to the

flat space—time Dirac matrices y in the following

way

(b5

g =ep Yy YV (5)

where e&) and e[g ) are the tetrad vectors such that

(6)

= e&)ya’

g (X) = el (x)ed (XN,

and fulfil following relations

o = ()

Here n,, = diag(1,—1,—1,—1) is the Minkowski
spacetime. The y matrices obey the following anti-
commutation rules

e(a)e 8[3 , e(a)e

Tu¥v TV = 28 YRV HYYH = 28" (8)

Varying the Lagrangian (2) with respect to y and
v, respectively, we obtain the following spinor field
equations

iV, —my — Dy — Gy y =0, 9)

iV, Gy +my + Dy +iGyy =0,  (10)
where D = 20FgbS, G = 20Fyb,P.

The energy momentum tensor of the spinor field
is defined in the following way [16]
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TP =

28" (WY, Vo + 9y, Vo u — Vi v = Vogy,y) —

8L, (11)

which in view of (3) we rewrite as

P —
T,

i v _ _ _
= 287 W0 + 91,0,y = 0,97,y — 0,9y, y) —

_%gPV‘T’(YpQV + QVYH

Note that the non-diagonal components of
the EMT arises thanks to the second term in (12).
Moreover, let us emphasize that in view of the spinor
field equations (9)—(10) the spinor field Lagrangian
(2) can be expressed as

+7,Q, + Qv )v— 3, L. (12)

L=L(2KFx —F), Fy =dF /dK. (13)

We exploit this form of Lagrangian in solving
Einstein equations, as they should be consistent
with the Dirac one, as (13) is valid only when spinor
fields obey Dirac equations (9)—(10). Let us also
note that in case F =+/K the Lagrangian vanishes
which is very much expected as in this case spinor
field becomes linear. We are interested in nonlinear
spinor field as only it can generate different kinds of

source fields.

The isotropic and homogeneous cosmological
model proposed by Friedmann, Lemaitre, Robertson
and Walker independently is the most popular and
thought to be realistic one among the cosmologists.
Let us consider the FLRW model in spherical
coordinates in its stanard form [17]:
ds? >+ r7d9 + r’sin?9d¢’ |,

(t) (14)

with k taking the values +1, 0 and —1 which
corresponds to a close, flat and open universe,
respectively. Though the value of k defines the type
of geometry of space-time, in reality it is defined
by the contents that filled universe. As we see later,
independ to the value of k the universe filled with
dark energy is always open, whereas for perfect fluid
the value of k really matters. In this case depending
on the value of £ we obtain close, flat or open
universe.
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In view of (6) the tetrad we will choose in the form
a

N

egz) = ar, e§3) = arsin 9.

(=1, o=

Then from (5) we find the following y matrices

arsin9’

Further from y, = gwy" one finds the vy, as well.

The Christoffel symbols, Ricci tensor and scalar
curvature and the Einstein tensor corresponding to the
metric (14) are well known and can be found in [17].

Then from (4) we find the following expressions
for spinor affine connection

0Q,=0, (15)
Q = —— 77", (16)
W1 — kr?
Q, = %myzyo +% 1— kr? 3%, (17)
93% ar sin 873 704—; 1—kr? sin 973 71—1—
+%cosS?372. (18)

Let us consider the case when the spinor field
depends on ¢ only, then in view of (15)—(18) the
spinor field equations can be written as

. +§g +\j1—kl‘2 —0—1 +COtS_0_2 n
v 2a\|/ ar YYV dar YY Vv
. -0 —5-0, _
+i(m + D)y y+Gyy y =0, (19)
;+§é_7\)1—kr2 __0_17C0t9__0_27
v 24 ar vyy 2ar vYy
. ——0 —5-0 _
—i(m +D)yy +Gyy’y =0, (20)

Introducing ¢ = a*/?y we rewrite the equation
(19)—(20)

\/l—krz__ cotd_o_
+ 7% + ——27%%

ar v 2ar +

+i(m +D)70 + G779 =0, (21)
= Nl-= kr2 __0—-1 cotd__g_»
(P—T(PY Y —W(PY Y-
. ——0 —_5_0 _
—i(m + D)oy +Goy’y =0, (22)

The equation (21) can be presented in the matrix
form

o= Ao, (23)
or
('pl —lDl 0 —G Bl (pl
i 0 -iD, B, -G
| R (e A X
P3 G B, D 0 [l
By Bl G 0 iD )\
where
/ 2
D, =(m+D), B =- 1= kr” | ;ootS
ar 2ar
B :_\/1—er _l,cotS
1 ar 2ar

It can be shown that
2
detd = (D} +G? —BIBI) .

We can choose the nonlinearity in such a way that
the corresponding determinant is nontrivial. In that
case the solution (23) can be formally written as [18]

h

o(t) = Texp | — f A, (vdz, (25)
t

where T = o(t;) is the solution at ¢ =1¢,. Given the
fact that the universe is expanding and the spinor field
invariants are the inverse functions of scale factor, in
case of a nonzero spinor mass one can assume

0 7imt1
b

o(t) = col[ghe " g " o™,

imt
Pse ge

(g€ )a

whereas for a massless spinor field
_ 0.0 0 0
(P(tl) - COI((pl ’(Pz’(P3,(P4)

with ¢) being constants.

The non-trivial components of the energy
momentum tensor of the spinor field in this case read

T) = mS + \F, (26)
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T' =T} =T] = L(2KFx — F), (27)
acos9 o
T=——A" (28)
41— kr?
cotd 3
T = ———A4°, (29)
41 — kr?
70 = —%\/ P (30)
Ty = %\/1 — kr?sin94? — %cosSAl. (31)

From (28)—(31) we conclude that the energy-
momentum tensor of the spinor field contains
nontrivial non-diagonal components. The non-
diagonal components

* do not depend on the spinor field nonlinearity;
* occur due to the spinor affine connections;

* appear depending on space-time geometry as well
as the system of coordinates;

* impose restrictions on spinor field and/or space-
time geometry;

* do not depend on the value of k& which defines
the type of curvature.

It should be emphasized that for a FLRW model
given in Cartesian coordinate the EMT have only
diagonal components with all the non-diagonal one
being identically zero [19]. So in this case the non-
diagonal components arise as a result of coordinate
transformation. Note also that all cosmological
spacetime defined by diagonal matrices of Bianchi
type VI, VI,, V, IIl, I, LRS —BI and FLRW,
possess same diagonal components of EMT, but has
nontrivial non-diagonal elements that differ from
each other in different cases [9]. Moreover, non-
diagonal metrics such as Bianchi type 71, VIII and
IX also have nontrivial non-diagonal components
of EMT. Consequently, we see that the appearance
of non-diagonal components of the energy-
momentum tensor occurs either due to coordinate
transformations or due to the geometry of space-time.

As one sees, the components of the EMT of the
spinor field contains some spinor field invariants.
To define those invariants let us write the system of
equations for the invariants of the spinor field. It can
be obtained from the spinor field equation (19)—(20):

(32)
(33)

Sy +2GAJ =0,
Py —2(m +D)A{ =0,
AY +2G Sy +2(m +D)Py +
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[, 2
) 1—kr A(l) —|—COtSA3 -0, (34)
ar ar
‘1 \ll—kl‘2 0
AO + ZTAO = 0, (35)
. t9
Al + °°r A =0, (36)

that gives the following relation between the
invariants:

P =83 +(a8) ~(4b) ~(42) =CpC = const. (37)

In (32)—(37) the quantities with a subscript "0"
are related to the normal ones as follows: X, = Xa’.
From (37) we can conclude that since C is an
arbitrary constant, the each term of (37) should be
constant as well.

In order to solve the Einstein equations we have
to know how the components of the EMT are related
to the metric functions. In order to know that let us
find the invariant K in general. We consider the 4
cases separately.

In case of K =1, G =0. In this case from (32)
we find

(O
I
-

=K = (38)

[9%)
:.|Q
=N NN}

If K =J, then in case of a massless spinor field
from (33) we find

a

=K =

Q|Q
[SA A ST

p=-2,
a3

(39)

Let us consider the case when K =1 + J . In this
case b; = b, =1. Then on account of expression for
D and G from (32) and (33) for the massless spinor
field we find

Sy + 4ra’Fy PA® =0, (40)
Py —4ra’FiSA° = 0, (41)
which yields
C 2
K=I+J=8+pP* ==L (42)
a

Finally in case when K =1 —J ,i.e. by = —b, =1
from (32) and (33) for the massless spinor field we find

Sy + 4ra’Fy PA® =0, (43)
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Py + 4ra’FrS4° =0, (44)

which yields

C?2
K=1-J=5§-p*==1 (45)

a

Thus we see that the invariant K is a function of
metric function a, namely, K = const.a”® and it is
what we need to solve the Einstein equation. In what

follows we solve the Einstein equation.

Let us recall that the Einstein tensor GJ
corresponding to the metric (14) possesses only
nontrivial diagonal components. Hence the general
Einstein system of equations

G: = —8nG TJ, (46)
leads to the following non-diagonal expressions
0=T“V, o= . 47)

In view of (28)—(31) from (47) one dully finds that
A =0, A°=0, A" =@/2N1—kr?942. (48)

Note that since the FLRW model given by the
Cartesian coordinate the non-diagonal components
of EMT are identically zero, hence relation such as
(48) does not exist.

Inviewof 4° =0, A% =0 from the system (32)—
(36) we find

S, =Cg, Py=Cp, Ab=Cl, A} =0}, (49)

with Cg, Cp, C) and C? being some arbitrary
constants. Thus we see that K = const.a_°. Note that
the equation (34) in this case in redundant and (48)
gives relations between the constants C ) and C3.

We are now ready to consider the diagonal
components of the Einstein system of equations
which for the metric (14) takes the form

. )
2§+ "—2+% =8nGT}, (50)
a a
a ok 0
3|5 + 5| = 8nGTy. (51)
a a

On account of (51) we rewrite (50) in the form

a 4nG 4nG
ZZ—T; T; (8—1—31)), (52)

1t o)

SAHA

where ¢ and p are the the energy density and and
pressure, respectively:

e=T) =mS + \F, (53)

p=-T =1(2KFgx — F). (54)

On account of (26) and (27) from (52) we find

4G
-4

mS — 20LF + 6AKFy )a. (55)

Note that the equations (52) or (55) do not
contain k that defines the type of space-time
curvature. In order to take this very important
quantity into account we have to exploit (51) as the
initial condition for a . The equation (51) we rewrite
in the form

a=+\(8n/3)Gea® — k =

= +/(8%3)G (mS +AF)a® —k,  (56)

Now we can solve (55) with the initial condition
given by (56). It comes out that these equations are
consistent when one takes the negative sign in (56).
Alternatively, one can solve (56), but for the system
to be consistent he has to check whether the result
satisfies (55).

As we have already established, S, K , hence
F(K) are the functions of a. Consequently, given
the spinor field nonlinearity the foregoing equation
can be solved either analytically or numerically.

The equation (55) can be solved analytically. The
first integral of (55) takes the form

a= /ff(a)da+Cc,

where we define

8nG
fla)= =3
and C, is a constant which should be defined from
(56). The solution to the equation (57) can be given
in quadrature

(57)

(mS —20F + 6LKFy )a

[ ___da (58)
| f f(a)da +C,

1. In what follows we solve the system (50)—(51)
numerically. In doing so we rewrite it in the following
way:

= Ha, (59)
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1k

o 2
H=-3H* -5~ —4nG1(2KFg — F), (60)
a
2 8nG k
H? == (mS—l—kF)—a—z, (61)

where H isthe Hubble constant.

As one sees, in the foregoing system the first two
are differential equations, whereas the third one is a
constraint, which we use as the initial condition for
H:

H = +[82G (mS+LF)3—k[d*.  (62)

Since the expression under the square-root must
be non-negative, it imposes some restrictions on the
choice of initial value of a as well. Note that initial
value of H depends on spinor mass m , coupling
parameter A and the value of k.

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (59) and
(60), numerically. The third equation of the system
(61) we exploit as initial condition for H(t) in the
form (62). We do it for both massive and massless
spinor field. Beside this, we consider close, flat and
open universe choosing different values for k. As it
was mentioned earlier, the coupling constant A can
be positive or negative. Let us recall that

K = %, K, = const. (63)
The foregoing relation holds for K = {/,J,I = J}
for a massless spinor field, whereas for K = I = 52
it is true for both massive and massless spinor field.
Hence we assume that K =7 =S%. We consider
different kind of spinor field nonlinearities F(K)
(equivalently, F(S)), that describes various types of

sources from perfect fluid to dark energy.

3.1 Barotropic equation of state

Let us consider the case when the Universe is
filled with perfect fluid or dark energy given by
quintessence, A -term or phantom matter. It can
be implemented by the barotropic equation of state
(EoS), which gives a linear dependence between the
pressure and energy density and was exploited by
many authors [20, 21, 22, 23]. The corresponding
EoS takes the form
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Fig. 1. Evolution of the FLRW Universe (scale factor a()) in
presence of a radiation given by a massless spinor field. The blue
solid, red dash-dot and black long dash lines stand for close, flat
and open (k = +1, 0, —1) universe, respectively

Fig. 2. Evolution of the corresponding Hubble parameter H(z)
and corrsponds to differnt values of £ as in Fig. 1

p = Wk, (64)

where the EoS parameter Wis a constant. Depending
on the value of W, the Eq. (64) can give rise to both
perfect fluid, such as dust, radiation etc. and dark
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Fig. 3. Evolution of the FRW Universe (scale factor a(7)) in
presence of a radiation given by a massive spinor field. The
blue solid, red dash-dot and black long dash lines stand for
k=+1,0, —1, respectively

12

Fig. 4. Evolution of the corresponding Hubble parameter H(?)

energy such as quintessence, cosmological term,
phantom matter etc. For W <[0,1], it describes
a perfect fluid. The value W = —1 represents a
typical cosmological constant ( A -term) [24, 25, 26],
whereas W e [—1,—1/ 3] gives rise to a quintessence,
while for W < —1 it ascribes a phantom matter.

2500+

2000+

15001
a

1000+

5004

Fig. 5. Evolution of the FRW Universe (scale factor a(7)) in
presence of a modified Chaplygin gas given by a massless spinor
field. As one sees, independent to the value of k£ in this case the
universe expand rapidly

It was shown in [9, 27] that inserting (26)—(27)
into (64) the matter or energy corresponding to Eq.
(64) can be simulated by the nonlinear term given by

F(S) =28 —mS, = const., (65)
in the spinor field Lagrangian (2).

Let us now solve (59)—(61) numerically for the
nonlinear term given by (65). We consider both
massive and massless spinor field. The values of W
are takentobe 1 /2, —1/2 and —1 describing the
radiation, quintessence and cosmological constant,
respectively. For simplicity we set S, =1, G =1,
A = 0.5 here and in the cases to follow. We also set
m = 0 for a massless and m =1 for a massive spinor
field.

In Fig. 1 we have illustrated the evolution of the
Universe filled with radiation, given by a massless
spinor field, while Fig. 2 shows the evolution of
the Hubble parameter corresponding to the case in
question. Figs. 3 and 4 describes the evolution of the
Universe filled with radiation and the corresponding
Hubble parameter in case of a massive spinor field. In
the figures blue solid line stands for a closed universe
given by k =1, red dash-dot line stands for a flat
universe with £ = 0 and black long dash line stands
for an open universe with k = —1.
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2.5

Fig. 6. Evolution of the corresponding Hubble parameter H()

We have also considered the case with the
spinor field nonlinearity describing a quintessence
(W = —1/2) and cosmological constant (W = —1).
Both massive and massless spinor fields are taken into
account. Since in both cases the energy density is less
than the critical density, independent to the value of
k we have only open type of universe. The behavior
of the evolution is qualitatively same as that of in
case of a modified Chapligin gas. The corresponding
figures will be similar to those in Figs. 5 and 6, only
the rate of expansion being much slower.

3.2 Chaplygin gas

In order to combine two different physical
concepts such as dark matter and dark energy, and
thus reduce the two physical parameters in one, a
rather exotic equation of state was proposed in [28]
which was further generalized in the works [29, 30].
Generalized Chaplygin gas model is given by the EoS

Pen = _A/Sgh , (66)

where A is a positive constant and 0 < a <1.

It was shown that such kind of dark energy can
be modeled by the massless spinor field with the
nonlinearity [9] inserting (26)—(27) into (66)

1/(1+0)

F(S) = (A + xs‘*“) (67)

JETP, Vol. 167, No. 1, 2025

We have solved (59)—(61) numerically for the
nonlinear term given by (67). We consider only
massless spinor field setting m = 0. The parameters
Sy,G and A were taken as in previous case. We have
alsoset A =1/2 and o =1/3.

As in case of quintessence and cosmological
constant, the evolution of the universe filled with
Chaplygin gas and corresponding behavior of the
Hubble parameter are qualitatively same as in case
of a modified Chaplygin gas which are illustrated in
Figs. 5 and 6. The expansion rate in this case is higher
than the previous case but slower than in the case to
follow.

3.3 Modified Chaplygin gas

Though the dark energy and the dark matter act in
a completely different way, many researchers suppose
that they are different manifestations of a single entity.
Following such an idea a modified Chaplygin gas was
introduced in [31] and was further developed in [32].
Corresponding EoS takes the form

p=We—Ale*, (68)

with W being a constant, 4 >0 and 0 < a <1.

/\

1.0+

Fig. 7. Evolution of the FRW Universe (scale factor a(7) in
presence of a modified quintessence given by a massless spinor
field. In case of k = +1 there occurs a periodic solution, whereas
for k = 0 or kK = —1, we have Big Crunch like solutions
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Fig. 9. Evolution of the FRW Universe (scale factor ¢(7)) in
presence of a modified quintessence given by a massive spinor
field. Unlike massless spinor field, in this case there is no periodic
solutions for the given value of problem parameters

Inserting (26)—(27) into (68) the modified
Chaplygin gas can be generated by a massless spinor
field with the nonlinearity given by [9]

A 1/(1+a)
F(S) = + XS(HO‘)(HW)

1+w (69)

0 F——— . . .
02 04 06 08 1412
; \
|
!
|
100 i|
|
I
p i
|
!l
|
|
i
-300- !
!
|

Fig. 10. Evolution of the corresponding Hubble parameter H(r)

In fact, mathematically it is a combination of
quintessence and Chaplygin gas. We have solved
(59)—(61) numerically for the nonlinear term given
by (69). Since we consider only massless spinor field,
we set m = 0. For simplicity we set §,,G ,A,4, and o
as in previous cases. Beside that we set W = —1/ 2.

In Figs. 5 and 6 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the Universe is filled with nonlinear spinor field
simulating a modified Chaplygin gas.

3.4 Modified quintessence

A modified Quintessence was proposed in order
to avoid eternal acceleration of the universe. In some
cases it gives cyclic universe that pops up from a Big
Bang singularity, expands to some maximum value
and then decreases and finally ends in Big Crunch.
In some cases it might be periodic without singularity.
A spinor description of a modified quintessence was
proposed in [23]

p=W(E—¢g,), We(-1,0), (70)
with g, being some critical energy density. The
model gives rise to cyclic or oscillatory universe.
Setting ¢, = 0 one obtains ordinary quintessence.
As one sees from (70), the pressure is negative as long
as € > g, . Since with the expansion of the universe
the energy density decreases, at some moment of
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time & becomes less than g, , i.e., € <g, . This
leads to the positive pressure and the contraction
of the universe. It can be shown that a modified
quintessence can be modeled by a spinor field
nonlinearity inserting (26)—(27) into (70)

w

— 5 QW
F§)=28"" + 10

(71)

We solve the system (59)—(61) for the values of
parameters as in case of quintessence. For critical
density we set g, =1.

In Figs. 7 and 8 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the universe is filled with nonlinear massless
spinor field simulating a modified quintessence. The
corresponding cases with massive spinor field are
illustrated in Figs. 9 and 10

In the figures, evolution of Hubble parameter
H is drawn for a much smaller time interval than
the scale factor a. It is just for technical reason.
For example, if in Figs. 3 and 4 we use interval 30
for both @ and H, as we see from Fig. 4 Hubble
parameter after crossing mark 5 it becomes almost
zero, thus giving rise to a visually ugly picture.
Whereas, setting interval 5 for both, we have a on
rising phase for all three values of k [cf. Fig. 3].
These two figures correspond to the same values of
problem parameter, only for good visual pictures
we have drawn them for different intervals. The
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric
FLRW model we have studied the role of a
nonlinear spinor field in the evolution of the
universe. It is found that in this case the spinor
field possesses nontrivial non-diagonal components
of the EMT. Since the Einstein tensor in this case
is diagonal, this fact imposes some restrictions on
the components of spinor field: 4° =0, 4° =0
and A' « A%. Corresponding equations are solved.
It is shown that if the spinor field nonlinearity
repesents ordinay matter such as radiation, the
factor k plays decisive role giving rise to close, flat
or open universe depending on its positive, trivial
or negative values. It is also shown that in this case
spinor mass influences the result quantatively. If the
spinor feild nonlinearity generates a dark energy we
have only rapidly expanding universe independent
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to the value of k. Finally in case of a modified
quintessence the model gives rise to as oscillating
universe. Depending on the value of k and spinor
mass m there might be periodic solutions or the one
that ends in Big Crunch.

FUNDING

This paper has been supported by the RUDN
University Strategic Academic Leadership Program.

REFERENCES

1. M. O. Ribas, F. P. Devecchi, and G. M. Kremer, Phys.
Rev. D 72, 123502 (2005).

2. B. Saha, Phys. Rev. D 74, 124030 (2006).
3. B. Saha, Gravitation and Cosmology 12, 215 (2006).

4. B. Saha and V. S. Rikhvitsky, Phys. Part. Nucl. 40, 612
(2009).

5. L. Fabbri, Int. J. Theor. Phys. 52, 634 (2013).
6. L. Fabbri, Phys. Rev. D 85, 047502 (2012).

7. S. Vignolo, L. Fabbri, and R. Cianci, J. Math. Phys. 52,
112502 (2011).

8. N.J. Poptawski, Phys. Rev. D85, 107502 (2012).
9. B. Saha, Phys. Parti. Nucl. 49, 146 (2018).
10. B. Saha, Eur. Phys. J. Plus 133 461 (2018).

11. K. A. Bronnikov, Yu. P. Rybakov, and Saha B. Saha,
Eur. Phys. J. Plus 135124 (2020).

12. B. Saha, Universe 6, 152 (2020).
13. B. Saha, Eur. Phys. J. Plus 1371063 (2022).

14. B. Saha, E. I. Zakharov, and V. S. Rikhvitsky, Discrete
and Continous Models and Applied Computational
Science 28, 132 (2020).

15. A. S. Gavrikov, B. Saha, and V. S. Rikhvitsky, Discrete
and Continous Models and Applied Computational
Science 28, 120 (2020).

16. B. Saha, Phys. Rev. D 64, 123501 (2001).

17. J. V. Narlikar Introduction to Relativity, Cambridge
University Press, NY (2010).

18. B. Saha, Eur. Phys. J. Plus 131 170 (2016).
19. B. Saha, AstroPhys. Space Sci. 365, 68 (2020).
20. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

21. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9,
373 (2000).

22. I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett.
82, 896 (1999).

23. B. Saha, Int. J. Theor. Phys. 45, 983 (2006).

24. T. Padmanabhan, Phys. Reports 380, 235 (2003).
25. V. Sahni, Lecture Notes on Phys. 653, 141 (2004).
26. B. Saha, Astrophys. Space Sci. 302, 83 (2006).
27. B. Saha, Astrophys. Space Sci. 331, 243 (2011).



56 SAHA

28. A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, 30. M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev.
Phys. Lett. B 511, 265 (2001). D 66, 043507 (2002).
31. H. B. Benaoum, Universe 8, 340 (2022).

29. N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. 33 1 B Benaoum, Adv. High Energy Phys. 2012:357802
B 353, 17 (2002). (2012).

JETP, Vol. 167, No. 1, 2025



