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1. INTRODUCTION

Thanks to its ability to simulate different kinds of 
matter such as perfect fluid, dark energy etc. spinor 
field is being used by many authors not only to 
describe the late time acceleration of the expansion, 
but also to study the evolution of the Universe at 
different stages [1, 2, 3, 4, 5, 6, 7, 8].

It was found that the spinor field is very sensitive 
to spacetime geometry. Depending on the concrete 
type of metric the spinor field may possess different 
type of nontrivial non-diagonal components of the 
energy-momentum tensor. As a result the spinor 
field imposes various kinds of restrictions on both 
the spacetime geometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see 
whether its specific behavior can shed any new light 
in the study of objects like black hole and wormhole. 
Such studies were carried out within the scope of 
spherically symmetric [10, 11] and cylindrically 
symmetric spacetime [12, 13].

Since the present-day universe is surprisingly 
isotropic and the presence of nontrivial non-
diagonal components of the spinor f ield leads 
to the severe restrictions on the spinor field, we 

have studied role of a spinor field in Friedmann–
Lemaitre–Robertson–Walker (FLRW) model as 
well. But in those cases the space-time was given 
in Cartesian coordinates. In order to see influence 
of the coordinate transformations on spinor field 
some works were done by us earlier [14, 15]. In this 
paper we will further develop those studies and see 
how the spinor field behaves if the isotropic and 
homogeneous cosmological FLRW model given by 
spherical coordinates.

2. BASIC EQUATION

The action we choose in the form

	 S g
R

L dp=
2

,∫ − +










κ s Ω � (1)

where κ π= 8 G  is Einstein’s gravitational constant, 
R  is the scalar curvature and L ps  is the spinor field 
Lagrangian given by [16]

   L
i

m F Kps =
2

[ ] ( ).ψγ ψ ψγ ψ ψψ λµ
µ µ

µ∇ −∇ − − �(2)

To maintain the Lorentz invariance of the spinor 
field equations the nonlinear term F K( )  in (2) is 
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constructed as some arbitrary functions of invariants 
generated from the real bilinear forms. On account of 
Fierz equality in (2) we set K K I J b I b J= ( , ) = ,1 2+  
where b1  and b2  takes the value 0  or 1  which leads to 
the following expressions for K I J I J I J= { , , , }+ − .  
Here I S= 2  and J P= 2  are the invariants of 
bilinear spinor forms with S = ψψ  and P i= 5ψγ ψ  
being the scalar and pseudo-scalar, respectively. In 
(2) λ  is the self-coupling constant. Note that λ  can 
be both positive and negative, while λ = 0  leads to 
linear case. Here m  is the spinor mass.

The covariant derivatives of spinor field takes the 
form [16]

	 ∇ ∂ − ∇ ∂ +µ µ µ µ µ µψ ψ ψ ψ ψ ψ= , = ,Ω Ω � (3)

where Ωµ  is the spinor affine connections, defined 
as [16]

	 Ω Γµ ρσ µ τ
ρ

µτ
ρ σ τγ γ=

1
4

.( )
( )g e eb
b∂ −( ) � (4)

In (4) Γµα
β  is the Christoffel symbol and the Dirac 

matrices in curve space–time γ  are connected to the 
flat space–time Dirac matrices γ  in the following 
way

	 γ γ γ γβ β
α α= , = ,( )

( )e eb
b a

a � (5)

where e a( )
α  and e b

β
( )  are the tetrad vectors such that

	 g x e x e xa b
abµν µ ν η( ) = ( ) ( ) , � (6)

and fulfil following relations

	 e e e ea
a

a
b

a
b

( )
( )

( )
( )= , = .α

β β
α α

αδ δ � (7)

Here ηab iag= (1, 1, 1, 1)d - - -  is the Minkowski 
spacetime. The γ  matrices obey the following anti-
commutation rules

	 γ γ γ γ γ γ γ γµ ν ν µ µν
µ ν ν µ µν+ += 2 , = 2 .g g � (8)

Varying the Lagrangian (2) with respect to ψ  and 
ψ , respectively, we obtain the following spinor field 
equations

	 i m D iGγ ψ ψ ψ γ ψµ
µ∇ − − − 5 = 0, � (9)

	 i m D iG∇ + + +µ
µψγ ψ ψ ψγ5 = 0, � (10)

where D F b S G F b PK K= 2 , = 2 .1 2λ λ
The energy momentum tensor of the spinor field 

is defined in the following way [16]

Tµ
ρ =

=
4

( )
i

g ρν µ ν ν µ µ ν ν µψγ ψ ψγ ψ ψγ ψ ψγ ψ∇ + ∇ −∇ −∇ −

� -δµ
ρL,  (11)

which in view of (3) we rewrite as

Tµ
ρ = �

=
4

( )
i

g ρν µ ν ν µ µ ν ν µψγ ψ ψγ ψ ψγ ψ ψγ ψ∂ + ∂ −∂ −∂ − �

− + + + −
i

g L
4

( ) .ρν
µ ν ν µ ν µ µ ν µ

ρψ γ γ γ γ ψ δΩ Ω Ω Ω �(12)

Note that the non-diagonal components of 
the EMT arises thanks to the second term in (12). 
Moreover, let us emphasize that in view of the spinor 
field equations (9)–(10) the spinor field Lagrangian 
(2) can be expressed as

	 L KF F F dF dKK K= 2 , = / .λ −( ) � (13)

We exploit this form of Lagrangian in solving 
Einstein equations, as they should be consistent 
with the Dirac one, as (13) is valid only when spinor 
fields obey Dirac equations (9)–(10). Let us also 
note that in case F K=  the Lagrangian vanishes 
which is very much expected as in this case spinor 
field becomes linear. We are interested in nonlinear 
spinor field as only it can generate different kinds of 
source fields.

The isotropic and homogeneous cosmological 
model proposed by Friedmann, Lemaitre, Robertson 
and Walker independently is the most popular and 
thought to be realistic one among the cosmologists. 
Let us consider the FLRW model in spherical 
coordinates in its stanard form [17]:

ds dt a t
dr

kr
r d r d2 2 2

2

2
2 2 2 2 2= ( )

1
,−

−
+ +

















ϑ ϑ φsin �(14)

with k taking the values +1, 0 and –1 which 
corresponds to a close, f lat and open universe, 
respectively. Though the value of k defines the type 
of geometry of space-time, in reality it is defined 
by the contents that filled universe. As we see later, 
independ to the value of k the universe filled with 
dark energy is always open, whereas for perfect fluid 
the value of k really matters. In this case depending 
on the value of k we obtain close, f lat or open 
universe.
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In view of (6) the tetrad we will choose in the form

e e
a

kr
0
(0)

1
(1)

2
= 1, =

1
,

-

e ar e ar2
(2)

3
(3)= , = .sinϑ

Then from (5) we find the following γ  matrices

γ γ γ γ0 0 1
2

1= , =
1

,
- kr
a

γ
γ

γ
γ

ϑ
2

2
3

3

= , = .
ar ar sin

Further from γ γµ µν
ν= g  one finds the γµ  as well.

The Christoffel symbols, Ricci tensor and scalar 
curvature and the Einstein tensor corresponding to the 
metric (14) are well known and can be found in [17].

Then from (4) we find the following expressions 
for spinor affine connection

	 W0 = 0,� (15)

Ω1
2

1 0=
1

2 1
,

- kr
aγ γ � (16)

Ω2
2 0 2 2 1=

1
2

1
2

1 ,ra krγ γ γ γ+ − � (17)

Ω3
3 0 2 3 1=

1
2

1
2

1ar krsin sinϑγ γ ϑγ γ+ − + �

+
1
2

.3 2cosϑγ γ � (18)

Let us consider the case when the spinor field 
depends on t  only, then in view of (15)–(18) the 
spinor field equations can be written as





ψ ψ γ γ ψ
ϑ
γ γ ψ+ +

−
+ +

3
2

1
2

2
0 1 0 2a

a
kr

ar ar
cot �

+ +( ) +i m D Gγ ψ γ γ ψ0 5 0 = 0,  � (19)





ψ ψ ψγ γ
ϑ
ψγ γ+ −

−
− −

3
2

1
2

2
0 1 0 2a

a
kr

ar ar
cot �

− +( ) +i m D Gψγ ψγ γ0 5 0 = 0, �  (20)

Introducing ϕ ψ= 3/2a  we rewrite the equation 
(19)–(20)

ϕ γ γ ϕ
ϑ
γ γ ϕ+

−
+ +

1
2

2
0 1 0 2kr

ar ar
cot �

	 + +( ) +i m D Gγ ϕ γ γ ϕ0 5 0 = 0, � (21)

ϕ ϕγ γ
ϑ
ϕγ γ-

-
- -

1
2

2
0 1 0 2kr

ar ar
cot �

	 − +( ) +i m D Gϕγ ϕγ γ0 5 0 = 0, � (22)

The equation (21) can be presented in the matrix 
form

	 ϕ ϕ= ,A � (23)

or

	









ϕ
ϕ
ϕ
ϕ

1

2

3

4

1 1

1 1
*

=

0

0













− −

−

iD G B

iD B −−

















G

G B iD

B G iD

1 1

1
*

1

1

2

3

4

0

0

ϕ
ϕ
ϕ
ϕ









, � (24)

where

D m D B
kr

ar
i

ar1 1

2

= , =
1

2
,+( ) −

−
+

cotϑ

B
kr

ar
i

ar1
*

2

=
1

2
.-

-
-

cotϑ

It can be shown that

det A D G B B= .1
2 2

1 1
* 2

+ −( )
We can choose the nonlinearity in such a way that 

the corresponding determinant is nontrivial. In that 
case the solution (23) can be formally written as [18]

	 ϕ τ τ( ) = ( ) ,
1

1t T xp A d
t

t

e −











∫ � (25)

where T t= ( )1ϕ  is the solution at t t= 1 . Given the 
fact that the universe is expanding and the spinor field 
invariants are the inverse functions of scale factor, in 
case of a nonzero spinor mass one can assume

ϕ ϕ ϕ ϕ ϕ( ) = , , , ,1 1
0 1

2
0 1

3
0 1

4
0 1t ol e e e e

imt imt imt imt
c

− −( )
whereas for a massless spinor field

ϕ ϕ ϕ ϕ ϕ( ) = , , ,1 1
0

2
0

3
0

4
0t olc ( )

with ϕi
0  being constants.

The non-trivial components of the energy 
momentum tensor of the spinor field in this case read

	 T mS F0
0 = ,+ λ � (26)
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	 T T T KF FK1
1

2
2

3
3= = = 2 ,− −( )λ � (27)

	 T
a

kr
A3

1

2

0=
4 1

,
cosϑ

-
� (28)

	 T
r kr

A1
0

2

3=
4 1

,
cotϑ

-
�  (29)

	 T kr A2
0 2 3=

3
4

1 ,- - � (30)

	 T kr A A3
0 2 2 1=

3
4

1
1
2

.- -sin cosϑ ϑ � (31)

From (28)–(31) we conclude that the energy-
momentum tensor of the spinor f ield contains 
nontrivial non-diagonal components. The non-
diagonal components

•	 do not depend on the spinor field nonlinearity;
•	 occur due to the spinor affine connections;
•	 appear depending on space-time geometry as well 

as the system of coordinates;
•	 impose restrictions on spinor field and/or space-

time geometry;
•	 do not depend on the value of k  which defines 

the type of curvature.
It should be emphasized that for a FLRW model 

given in Cartesian coordinate the EMT have only 
diagonal components with all the non-diagonal one 
being identically zero [19]. So in this case the non-
diagonal components arise as a result of coordinate 
transformation. Note also that all cosmological 
spacetime defined by diagonal matrices of Bianchi 
type VI, VI0, V, III, I, LRS BI-  and FLRW, 
possess same diagonal components of EMT, but has 
nontrivial non-diagonal elements that differ from 
each other in different cases [9]. Moreover, non-
diagonal metrics such as Bianchi type II, VIII  and 
IX  also have nontrivial non-diagonal components 
of EMT. Consequently, we see that the appearance 
of non-diagonal components of the energy-
momentum tensor occurs either due to coordinate 
transformations or due to the geometry of space-time.

As one sees, the components of the EMT of the 
spinor field contains some spinor field invariants. 
To define those invariants let us write the system of 
equations for the invariants of the spinor field. It can 
be obtained from the spinor field equation (19)–(20):

	 S G A0 0
02 = 0,+ � (32)

	 P m D A0 0
02 = 0,− +( ) � (33)

A G S m D P0
0

0 02 2+ + +( ) +

	 +
−

+2
1

= 0,
2

0
1

0
2kr

ar
A

ar
A

cotϑ � (34)

	 A
kr

ar
A0

1
2

0
02

1
= 0,+

− � (35)

	 A
ar

A0
2

0
0 = 0,+

cotϑ � (36)

that gives the following relation between the 
invariants:

P S A A A C C0
2

0
2

0
0 2

0
1 2

0
2 2

0 0= , = .− +( ) −( ) −( ) const �(37)

In (32)–(37) the quantities with a subscript "0"  
are related to the normal ones as follows: X Xa0

3= .  
From (37) we can conclude that since C 0  is an 
arbitrary constant, the each term of (37) should be 
constant as well.

In order to solve the Einstein equations we have 
to know how the components of the EMT are related 
to the metric functions. In order to know that let us 
find the invariant K  in general. We consider the 4 
cases separately.

In case of K I= , G = 0 . In this case from (32) 
we find

	 S
C

a
K

C

a
s s= , = .
3

2

6
Þ �  (38)

If K J= , then in case of a massless spinor field 
from (33) we find

	 P
C

a
K

C

a

p p= , = .
3

2

6
Þ � (39)

Let us consider the case when K I J= + . In this 
case b b1 2= = 1 . Then on account of expression for 
D  and G  from (32) and (33) for the massless spinor 
field we find

	 S a F PAK0
3 04 = 0,+ λ � (40)

	 P a F SAK0
3 04 = 0,- λ � (41)

which yields

	 K I J S P
C

a
= = = .2 2 1

2

6
+ + � (42)

Finally in case when K I J= - , i.e. b b1 2= = 1-  
from (32) and (33) for the massless spinor field we find

	 S a F PAK0
3 04 = 0,+ λ � (43)
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	 P a F SAK0
3 04 = 0,+ λ � (44)

which yields

	 K I J S P
C

a
= = = .2 2 2

2

6
- - � (45)

Thus we see that the invariant K  is a function of 
metric function a , namely, K onst a= . 6c -  and it is 
what we need to solve the Einstein equation. In what 
follows we solve the Einstein equation.

Let us recall that the Einstein tensor G µ
ν  

corresponding to the metric (14) possesses only 
nontrivial diagonal components. Hence the general 
Einstein system of equations

	 G G Tµ
ν

µ
νπ= 8 ,- � (46)

leads to the following non-diagonal expressions

	 0 = , .Tµ
ν µ ν¹ � (47)

In view of (28)–(31) from (47) one dully finds that

	 A A A kr A0 3 1 2 2= 0, = 0, = (3 2) 1 .- ϑ �(48)

Note that since the FLRW model given by the 
Cartesian coordinate the non-diagonal components 
of EMT are identically zero, hence relation such as 
(48) does not exist.

In view of A 0 = 0 , A 3 = 0  from the system (32)–
(36) we find

	 S C P C A C A CS P0 0 0
1

0
1

0
2

0
2= , = , = , = , �(49)

with C S , C P , C 0
1  and C 0

2  being some arbitrary 
constants. Thus we see that K onst a= . 6c - . Note that 
the equation (34) in this case in redundant and (48) 
gives relations between the constants C 0

1  and C 0
2 .

We are now ready to consider the diagonal 
components of the Einstein system of equations 
which for the metric (14) takes the form

	 2 = 8 ,
2

2 2 1
1 a

a
a

a

k

a
G T+ +











≠ � (50)

	 3 = 8 .
2

2 2 0
0a

a

k

a
G T+











≠ � (51)

On account of (51) we rewrite (50) in the form

	
a
a

G
T T

G
p=

4
3

3 =
4

3
3 ,0

0
1
1− −( ) − +( )π π

ε � (52)

8pG

8pG

where ε  and p  are the the energy density and and 
pressure, respectively:

	 ε λ= = ,0
0T mS F+ � (53)

	 p T KF FK= = 2 .1
1− −( )λ � (54)

On account of (26) and (27) from (52) we find

	 a
G

mS F KF aK=
4

3
2 6 .− − +( )π
λ λ � (55)

Note that the equations (52) or (55) do not 
contain k  that defines the type of space-time 
curvature. In order to take this very important 
quantity into account we have to exploit (51) as the 
initial condition for a . The equation (51) we rewrite 
in the form

a G a k= 8 3 =2± ( ) −π ε

	 = 8 3 ,2± ( ) +( ) −π λG mS F a k � (56)

Now we can solve (55) with the initial condition 
given by (56). It comes out that these equations are 
consistent when one takes the negative sign in (56). 
Alternatively, one can solve (56), but for the system 
to be consistent he has to check whether the result 
satisfies (55).

As we have already established, S , K , hence 
F K( )  are the functions of a . Consequently, given 
the spinor field nonlinearity the foregoing equation 
can be solved either analytically or numerically.

The equation (55) can be solved analytically. The 
first integral of (55) takes the form

	 a f a da C c= ( ) ,∫ + � (57)

where we define

f a
G

mS F KF aK( ) =
8

3
2 6− − +( )π
λ λ

and C c  is a constant which should be defined from 
(56). The solution to the equation (57) can be given 
in quadrature

	 ∫
∫ +

da

f a da C
t

c( )
= . � (58)

1.	 In what follows we solve the system (50)–(51) 
numerically. In doing so we rewrite it in the following 
way:

	 a Ha= , � (59)
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	 H H
k

a
G KF FK=

3
2

1
2

4 2 ,2
2

− − − −( )π λ � (60)

	 H
G

mS F
k

a

2
2

=
8

3
,

π
λ+( )− � (61)

where H  is the Hubble constant.
As one sees, in the foregoing system the first two 

are differential equations, whereas the third one is a 
constraint, which we use as the initial condition for 
H :

	 H G mS F k a= 8 3 .2± +( ) −π λ � (62)

Since the expression under the square-root must 
be non-negative, it imposes some restrictions on the 
choice of initial value of a  as well. Note that initial 
value of H  depends on spinor mass m , coupling 
parameter λ  and the value of k .

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (59) and 
(60), numerically. The third equation of the system 
(61) we exploit as initial condition for H t( )  in the 
form (62). We do it for both massive and massless 
spinor field. Beside this, we consider close, flat and 
open universe choosing different values for k . As it 
was mentioned earlier, the coupling constant λ  can 
be positive or negative. Let us recall that

	 K
K

a
K= , = .0

6 0 const � (63)

The foregoing relation holds for K I J I J= { , , }±  
for a massless spinor field, whereas for K I S= = 2  
it is true for both massive and massless spinor field. 
Hence we assume that K I S= = 2 . We consider 
different kind of spinor field nonlinearities F K( )  
(equivalently, F S( ) ), that describes various types of 
sources from perfect fluid to dark energy.

3.1 Barotropic equation of state

Let us consider the case when the Universe is 
filled with perfect f luid or dark energy given by 
quintessence, Λ -term or phantom matter. It can 
be implemented by the barotropic equation of state 
(EoS), which gives a linear dependence between the 
pressure and energy density and was exploited by 
many authors [20, 21, 22, 23]. The corresponding 
EoS takes the form

	 p W= ,ε � (64)

where the EoS parameter W is a constant. Depending 
on the value of W, the Eq. (64) can give rise to both 
perfect fluid, such as dust, radiation etc. and dark 

Fig. 1. Evolution of the FLRW Universe (scale factor a(t)) in 
presence of a radiation given by a massless spinor field. The blue 
solid, red dash-dot and black long dash lines stand for close, flat 
and open (k = +1, 0, –1) universe, respectively

Fig. 2. Evolution of the corresponding Hubble parameter H(t) 
and corrsponds to differnt values of k as in Fig. 1
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energy such as quintessence, cosmological term, 
phantom matter etc. For W Î [0,1] , it describes 
a perfect f luid. The value W = 1-  represents a 
typical cosmological constant (Λ -term) [24, 25, 26], 
whereas W ∈ − −[ 1, 1 / 3]  gives rise to a quintessence, 
while for W < 1-  it ascribes a phantom matter.

It was shown in [9, 27] that inserting (26)–(27) 
into (64) the matter or energy corresponding to Eq. 
(64) can be simulated by the nonlinear term given by

	 F S S mSW( ) = , = .,1λ λ+ − const � (65)

in the spinor field Lagrangian (2).
Let us now solve (59)–(61) numerically for the 

nonlinear term given by (65). We consider both 
massive and massless spinor field. The values of W  
are taken to be 1 / 2 , -1 / 2  and -1  describing the 
radiation, quintessence and cosmological constant, 
respectively. For simplicity we set S0 = 1 , G = 1 , 
λ = 0.5  here and in the cases to follow. We also set 
m = 0  for a massless and m = 1  for a massive spinor 
field.

In Fig. 1 we have illustrated the evolution of the 
Universe filled with radiation, given by a massless 
spinor field, while Fig. 2 shows the evolution of 
the Hubble parameter corresponding to the case in 
question. Figs. 3 and 4 describes the evolution of the 
Universe filled with radiation and the corresponding 
Hubble parameter in case of a massive spinor field. In 
the figures blue solid line stands for a closed universe 
given by k = 1 , red dash-dot line stands for a flat 
universe with k = 0  and black long dash line stands 
for an open universe with k = 1.-

Fig. 3. Evolution of the FRW Universe (scale factor a(t)) in 
presence of a radiation given by a massive spinor field. The 
blue solid, red dash-dot and black long dash lines stand for 
k = +1, 0, –1, respectively

Fig. 5. Evolution of the FRW Universe (scale factor a(t)) in 
presence of a modified Chaplygin gas given by a massless spinor 
field. As one sees, independent to the value of k in this case the 
universe expand rapidly

Fig. 4. Evolution of the corresponding Hubble parameter H(t)
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We have also considered the case with the 
spinor field nonlinearity describing a quintessence 
( = 1 / 2)W -  and cosmological constant ( = 1)W - . 
Both massive and massless spinor fields are taken into 
account. Since in both cases the energy density is less 
than the critical density, independent to the value of 
k  we have only open type of universe. The behavior 
of the evolution is qualitatively same as that of in 
case of a modified Chapligin gas. The corresponding 
figures will be similar to those in Figs. 5 and 6, only 
the rate of expansion being much slower.

3.2 Chaplygin gas

In order to combine two different physical 
concepts such as dark matter and dark energy, and 
thus reduce the two physical parameters in one, a 
rather exotic equation of state was proposed in [28] 
which was further generalized in the works [29, 30]. 
Generalized Chaplygin gas model is given by the EoS

	 p Ah hc c= ,- εα � (66)

where A  is a positive constant and 0 < 1.α £

It was shown that such kind of dark energy can 
be modeled by the massless spinor field with the 
nonlinearity [9] inserting (26)–(27) into (66)

	 F S A S( ) = .1 1/(1 )
+( )+ +
λ α α

� (67)

We have solved (59)–(61) numerically for the 
nonlinear term given by (67). We consider only 
massless spinor field setting m = 0 . The parameters 
S G0,  and λ  were taken as in previous case. We have 
also set A = 1 2/  and α = 1 3./

As in case of quintessence and cosmological 
constant, the evolution of the universe filled with 
Chaplygin gas and corresponding behavior of the 
Hubble parameter are qualitatively same as in case 
of a modified Chaplygin gas which are illustrated in 
Figs. 5 and 6. The expansion rate in this case is higher 
than the previous case but slower than in the case to 
follow.

3.3 Modified Chaplygin gas

Though the dark energy and the dark matter act in 
a completely different way, many researchers suppose 
that they are different manifestations of a single entity. 
Following such an idea a modified Chaplygin gas was 
introduced in [31] and was further developed in [32]. 
Corresponding EoS takes the form

	 p W A= ,ε εα- � (68)

with W  being a constant, A > 0  and 0 1£ £α .

Fig. 7. Evolution of the FRW Universe (scale factor a(t) in 
presence of a modified quintessence given by a massless spinor 
field. In case of k = +1 there occurs a periodic solution, whereas 
for k = 0 or k = –1, we have Big Crunch like solutions

Fig. 6. Evolution of the corresponding Hubble parameter H(t)
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Inserting (26)–(27) into (68) the modif ied 
Chaplygin gas can be generated by a massless spinor 
field with the nonlinearity given by [9]

	 F S
A

W
S W( ) =

1
.(1 )(1 )

1/(1 )

+
+













+ +
+

λ α
α

� (69)

In fact, mathematically it is a combination of 
quintessence and Chaplygin gas. We have solved 
(59)–(61) numerically for the nonlinear term given 
by (69). Since we consider only massless spinor field, 
we set m = 0 . For simplicity we set S G A0, , , ,λ  and α  
as in previous cases. Beside that we set W = 1 / 2.-

In Figs. 5 and 6 we have illustrated the evolution 
of the universe and corresponding Hubble parameter 
when the Universe is filled with nonlinear spinor field 
simulating a modified Chaplygin gas.

3.4 Modified quintessence

A modified Quintessence was proposed in order 
to avoid eternal acceleration of the universe. In some 
cases it gives cyclic universe that pops up from a Big 
Bang singularity, expands to some maximum value 
and then decreases and finally ends in Big Crunch. 
In some cases it might be periodic without singularity. 
A spinor description of a modified quintessence was 
proposed in [23]

	 p W Wr= ( ), ( 1,0),ε ε− ∈ −c � (70)

with εcr  being some critical energy density. The 
model gives rise to cyclic or oscillatory universe. 
Setting εcr = 0  one obtains ordinary quintessence. 
As one sees from (70), the pressure is negative as long 
as ε ε> cr . Since with the expansion of the universe 
the energy density decreases, at some moment of 

Fig. 8. Evolution of the corresponding Hubble parameter H(t)

Fig. 9. Evolution of the FRW Universe (scale factor q(t)) in 
presence of a modified quintessence given by a massive spinor 
field. Unlike massless spinor field, in this case there is no periodic 
solutions for the given value of problem parameters

Fig. 10. Evolution of the corresponding Hubble parameter H(t)
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time ε  becomes less than εcr , i.e., ε ε< cr . This 
leads to the positive pressure and the contraction 
of the universe. It can be shown that a modified 
quintessence can be modeled by a spinor field 
nonlinearity inserting (26)–(27) into (70)

	 F S S
W

W
W

r( ) =
1

.1λ ε+ +
+ c � (71)

We solve the system (59)–(61) for the values of 
parameters as in case of quintessence. For critical 
density we set εcr = 1 .

In Figs. 7 and 8 we have illustrated the evolution 
of the universe and corresponding Hubble parameter 
when the universe is filled with nonlinear massless 
spinor field simulating a modified quintessence. The 
corresponding cases with massive spinor field are 
illustrated in Figs. 9 and 10

In the figures, evolution of Hubble parameter 
H is drawn for a much smaller time interval than 
the scale factor a. It is just for technical reason. 
For example, if in Figs. 3 and 4 we use interval 30 
for both a and H, as we see from Fig.  4 Hubble 
parameter after crossing mark 5 it becomes almost 
zero, thus giving rise to a visually ugly picture. 
Whereas, setting interval 5 for both, we have a on 
rising phase for all three values of k [cf. Fig. 3]. 
These two figures correspond to the same values of 
problem parameter, only for good visual pictures 
we have drawn them for different intervals. The 
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric 
FLRW model we have studied the role of a 
nonlinear spinor f ield in the evolution of the 
universe. It is found that in this case the spinor 
field possesses nontrivial non-diagonal components 
of the EMT. Since the Einstein tensor in this case 
is diagonal, this fact imposes some restrictions on 
the components of spinor field: A 0 = 0 , A 3 = 0  
and A A1 2µ . Corresponding equations are solved. 
It is shown that if the spinor field nonlinearity 
repesents ordinay matter such as radiation, the 
factor k  plays decisive role giving rise to close, flat 
or open universe depending on its positive, trivial 
or negative values. It is also shown that in this case 
spinor mass influences the result quantatively. If the 
spinor feild nonlinearity generates a dark energy we 
have only rapidly expanding universe independent 

to the value of k. Finally in case of a modified 
quintessence the model gives rise to as oscillating 
universe. Depending on the value of k and spinor 
mass m there might be periodic solutions or the one 
that ends in Big Crunch.
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