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Abstract. The work presents the necessary conditions for the “bounce” of the scale factor existence
(except Big Bang at the initial moment of the Universe). We study rather wide range of parameter
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gravity and for the consideration of subsequent cosmological evolution based on this model.
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1. INTRODUCTION

Currently, General Relativity (GR) accurately
explains nearly the entire body of astronomical data.
However, from the very first cosmological solutions
[1], Einstein’s equations must necessarily include the
energy-momentum tensor on the right-hand side. One
approach is that the entire array of modern astrophysical
data is well described by GR equations, and theories of
gravity extending GR in various ways [2, 3, 4, 5, 6] are
developed specifically to explain the physical nature of
the right-hand side and its source.

One promising direction for extending GR has
been scalar-tensor theories of gravity, where, as
the name suggests, physical fields are included
alongside geometric terms and curvature invariants.
To address the issue of higher-order differential
equations, theories have been constructed where
higher degrees mutually cancel out, with the
most general example of this approach being
the Horndeski model [7, 8]. Despite significant
constraints on the Horndeski model from
gravitational-wave astronomy data [9, 10], interest
in it (and theories derived from it that pass the

GW170817 test) remains strong. This model has
also been used to create nonsingular cosmology
models, where the initial singularity is replaced by a
“bounce” of the scale factor [11, 12]. This approach
appears promising, and within the Horndeski
framework, models known as the “Fab Four”
were proposed, where the corrections themselves,
without additional tuning parameters like the
cosmological constant (A), ensure the accelerated
expansion of the Universe [13, 14]. Nonsingular
cosmological solutions within the Fab Four model,
as an example of a scalar-tensor theory with a
simpler structure than the general Horndeski
theory, have also been discussed earlier [15].

The idea of adding quantum-field corrections
to gravity models [16] allows, for example, the
limitation of nonlocality size in gravity theories
at the quantum limit [17]. This approach was
also applied to the Fab Four model [18], and the
additional inclusion of quantum-field corrections
ensures that the speed of gravitational wave
propagation now matches the experimental results
of gravitational-wave astronomy. All of this
highlights the potential of scalar-tensor models.
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Therefore, we consider a nonminimal effective
model of scalar-tensor gravity with third- and
fourth-order field terms, formed by summing one-
loop interactions [19] in the form:
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where k2 = 32nG, G is the Newtonian constant, ¢ is
the new scalar field, R is the scalar curvature, o and
B are dimensionless constants, A is the cubic scalar
coupling with mass dimension, g is the dimensionless
fourth-order scalar coupling, and G v is the Einstein
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tensor |G, = R, —ngR . Despite its “extended

nature, this model remains significantly simpler
than the standard version of the Horndeski or
DHOST theory, increasing interest in its potential
to explain dark energy and early Universe processes.
To further analyze the applicability of this model
to early Universe evolution, it is necessary to study
its predictions for bounce and genesis realization
[20]. This paper is dedicated to the first step in this
direction — investigating the conditions for bounce
existence. It is important to note that the absence
of an initial singularity in the cosmological model
significantly increases its appeal. For example,
consider the search for parameter spaces where
a “bounce” occurs [21] in second-order curvature
correction gravity — the Gauss-Bonnet model [22,
23], one of the candidates for the semiclassical limit
of string gravity [24]. Moreover, the bounce already
appears with the simple addition of a scalar field, as
in the Brans-Dicke model [25]. Thus, the presence of
a nonsingular asymptotic solution in the considered
theory serves as an additional argument for its
relevance. As the first step in examining the strengths
and weaknesses of the theory (1), we investigate this
issue. Since additional constraints on the theory’s
parameters were previously proposed to pass
astronomical tests (discussed at the end of Section 3)
[19], it is of interest to compare these constraints
with those imposed by the bounce requirement.

This paper is structured as follows. Section 2
derives the field equations for the theory proposed
in [19]; Section 3 explores the parameter space
constraints imposed by the bounce requirement; and
Section 4 discusses the results and conclusions.
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2. FIELD EQUATIONS

The Klein-Gordon equations are obtained by
varying the action (1) with respect to the scalar field.
Following [26], we have:
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Varying with respect to the metric tensor and
introducing the effective gravitational constant
G . (¢), which depends only on the scalar field, gives:
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As a result, Einstein’s equation takes the form:
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where T, is the effective energy-momentum tensor:
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Here L, is the matter Lagrangian.
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3. COSMOLOGICAL SOLUTION
WITH A “BOUNCE”

Following [22, 23], we consider an isotropic
(Friedmann-like) cosmological solution of the form:

ds? = dt? — a*(t)(dx? +dy? +dz?), (6)

where both the scale factor a, and the scalar field ¢
depend only on the time coordinate ¢.
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To study the behavior at the bounce point, we
examine the system (2)—(4). At the bounce point, the
scale factor must be positive and finite, i.e., a =const> 0.
To ensure the scale factor reaches a minimum at the
bounce point and to avoid a cosmological singularity
a = 0 atany other point, it is necessary that a = 0 and
a > 0 . With this, Einstein’s equations at the bounce
point can be rewritten as:
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The Klein-Gordon-Fock equation (2) takes the
form:

- a o 1 2 1 3
If we consider the case where the energy-
momentum tensor is represented by the scalar field,
its absence would imply the absence of a nontrivial
cosmological solution: ¢ =0 =-a=0. Since this
would lead to the singularity we aim to avoid, we
introduce the additional conditions:
¢=0, ¢=const >0 and ¢ > 0.
From equation (8) and (9), we obtain an equation
for the scalar field:
A
¢ =—4=.
g

From equations (8) and (9), we derive an
expression for the second derivative of the scalar field:
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The final system of inequalities (after substituting
into (9) with equations (7) and (8)) is:
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From inequality (10), we obtain that A and g
must have opposite signs. It is also necessary for the
stability of the model that g > 0. Otherwise, the
scalar potential would be unbounded from below,
rendering the model unstable. From inequality (11),
it follows that A < 0, then o > 0.The final inequality
(13) is automatically satisfied under conditions (10)—
(12). We can also consider the case a < 0. From (13),
we obtain:
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This implies that the expression inside the
parentheses is positive. Thus, condition (11) also
holds if L > 0 and g < 0. However, this condition
contradicts the necessary stability condition of the
model. Therefore, these conditions are not suitable
for the given problem.

4. CONCLUSION AND FINDINGS

In the non-minimal effective model of scalar-
tensor gravity with third- and fourth-order field terms
formed by summing one-loop interactions [19], the
realization of a “bounce” solution is possible. The
necessary conditions for the realization of the bounce
solution are as follows: parameters A <0, g > 0 and
o > 0. A similar model was previously studied in
[27], where o = 0, the scalar field ¢ was absent, but
the cosmological constant A was present, ensuring
the same effect. The bounce solution is realized
under the conditions A =0 (although the case
when A = g = 0 is not possible in our model), p =0
(similarly, in our case, the volume density is zero),
a, > 0 (in our case, the scale factor ¢ > 0) and <0
(which does not contradict our conditions). Thus,
our results partially coincide with those previously
obtained for a simpler version of the discussed model,
except for the zero value of the cosmological constant
and the parameter o (which was initially zero in the
simpler version of the theory).
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Thus, in the discussed scalar-tensor gravity
model, instead of an initial singularity, a bounce is
possible even in the simplest configuration, provided
the initial constraints are met. This means that the
model, with a simpler structure than most scalar-
tensor models based on Horndeski’s theory, not only
solves the initial singularity problem but also brings
us closer to the development of quantum gravity
while offering the potential for the realization of both
bounce and genesis scenarios.
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