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1. INTRODUCTION

Currently, General Relativity (GR) accurately 
explains nearly the entire body of astronomical data. 
However, from the very first cosmological solutions 
[1], Einstein’s equations must necessarily include the 
energy-momentum tensor on the right-hand side. One 
approach is that the entire array of modern astrophysical 
data is well described by GR equations, and theories of 
gravity extending GR in various ways [2, 3, 4, 5, 6] are 
developed specifically to explain the physical nature of 
the right-hand side and its source.

One promising direction for extending GR has 
been scalar-tensor theories of gravity, where, as 
the name suggests, physical fields are included 
alongside geometric terms and curvature invariants. 
To address the issue of higher-order differential 
equations, theories have been constructed where 
higher degrees mutually cancel out, with the 
most general example of this approach being 
the Horndeski model [7, 8]. Despite significant 
constraints on the Horndeski model from 
gravitational-wave astronomy data [9, 10], interest 
in it (and theories derived from it that pass the 

GW170817 test) remains strong. This model has 
also been used to create nonsingular cosmology 
models, where the initial singularity is replaced by a 

“bounce” of the scale factor [11, 12]. This approach 
appears promising, and within the Horndeski 
framework, models known as the “Fab Four” 
were proposed, where the corrections themselves, 
without additional tuning parameters like the 
cosmological constant (Λ), ensure the accelerated 
expansion of the Universe [13, 14]. Nonsingular 
cosmological solutions within the Fab Four model, 
as an example of a scalar-tensor theory with a 
simpler structure than the general Horndeski 
theory, have also been discussed earlier [15].

The idea of adding quantum-field corrections 
to gravity models [16] allows, for example, the 
limitation of nonlocality size in gravity theories 
at the quantum limit [17]. This approach was 
also applied to the Fab Four model [18], and the 
additional inclusion of quantum-field corrections 
ensures that the speed of gravitational wave 
propagation now matches the experimental results 
of gravitational-wave astronomy. All of this 
highlights the potential of scalar-tensor models. 
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Therefore, we consider a nonminimal effective 
model of scalar-tensor gravity with third- and 
fourth-order field terms, formed by summing one-
loop interactions [19] in the form:
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where κ π2 = 32 G ,  G is the Newtonian constant, f is 
the new scalar field, R is the scalar curvature, a and 
b are dimensionless constants, l is the cubic scalar 
coupling with mass dimension, g is the dimensionless 
fourth-order scalar coupling, and G µν  is the Einstein 

tensor G R g Rµν µν µν=
1
2
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nature, this model remains significantly simpler 
than the standard version of the Horndeski or 
DHOST theory, increasing interest in its potential 
to explain dark energy and early Universe processes. 
To further analyze the applicability of this model 
to early Universe evolution, it is necessary to study 
its predictions for bounce and genesis realization 
[20]. This paper is dedicated to the first step in this 
direction – investigating the conditions for bounce 
existence. It is important to note that the absence 
of an initial singularity in the cosmological model 
significantly increases its appeal. For example, 
consider the search for parameter spaces where 
a “bounce” occurs [21] in second-order curvature 
correction gravity – the Gauss-Bonnet model [22, 
23], one of the candidates for the semiclassical limit 
of string gravity [24]. Moreover, the bounce already 
appears with the simple addition of a scalar field, as 
in the Brans-Dicke model [25]. Thus, the presence of 
a nonsingular asymptotic solution in the considered 
theory serves as an additional argument for its 
relevance. As the first step in examining the strengths 
and weaknesses of the theory (1), we investigate this 
issue. Since additional constraints on the theory’s 
parameters were previously proposed to pass 
astronomical tests (discussed at the end of Section 3) 
[19], it is of interest to compare these constraints 
with those imposed by the bounce requirement.

This paper is structured as follows. Section 2 
derives the field equations for the theory proposed 
in [19]; Section 3 explores the parameter space 
constraints imposed by the bounce requirement; and 
Section 4 discusses the results and conclusions.

2. FIELD EQUATIONS

The Klein-Gordon equations are obtained by 
varying the action (1) with respect to the scalar field. 
Following [26], we have:
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Varying with respect to the metric tensor and 
introducing the effective gravitational constant 
G eff ( )f ,  which depends only on the scalar field, gives:

	 2
=

1
16 ( )

.
2

2

κ
α

π
+ φ

φG eff
� (3)

As a result, Einstein’s equation takes the form:
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where Tµν  is the effective energy-momentum tensor:
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Here Lm is the matter Lagrangian.

3. COSMOLOGICAL SOLUTION 
WITH A “BOUNCE”

Following [22, 23], we consider an isotropic 
(Friedmann-like) cosmological solution of the form:

	 ds dt a t dx dy dz2 2 2 2 2 2= ( )( ),− + + � (6)

where both the scale factor a, and the scalar field f 
depend only on the time coordinate t.
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To study the behavior at the bounce point, we 
examine the system (2)–(4). At the bounce point, the 
scale factor must be positive and finite, i.e., a const= > 0. 
To ensure the scale factor reaches a minimum at the 
bounce point and to avoid a cosmological singularity 
a = 0  at any other point, it is necessary that a = 0  and 
a > 0 . With this, Einstein’s equations at the bounce 
point can be rewritten as:
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The Klein-Gordon-Fock equation (2) takes the 
form:
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If we consider the case where the energy-
momentum tensor is represented by the scalar field, 
its absence would imply the absence of a nontrivial 
cosmological solution: f = 0 = 0Þ a .  Since this 
would lead to the singularity we aim to avoid, we 
introduce the additional conditions:

f = 0,  f = > 0const  and f > 0.

From equation (8) and (9), we obtain an equation 
for the scalar field:

φ = 4 .-
λ
g

From equations (8) and (9), we derive an 
expression for the second derivative of the scalar field:
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The final system of inequalities (after substituting 
into (9) with equations (7) and (8)) is:
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From inequality (10), we obtain that l and g 
must have opposite signs. It is also necessary for the 
stability of the model that g > 0 . Otherwise, the 
scalar potential would be unbounded from below, 
rendering the model unstable. From inequality (11), 
it follows that l < 0 , then a > 0 .The final inequality 
(13) is automatically satisfied under conditions (10)–
(12). We can also consider the case a < 0 . From (13), 
we obtain:
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This implies that the expression inside the 
parentheses is positive. Thus, condition (11) also 
holds if l > 0  and g < 0 . However, this condition 
contradicts the necessary stability condition of the 
model. Therefore, these conditions are not suitable 
for the given problem.

4. CONCLUSION AND FINDINGS

In the non-minimal effective model of scalar-
tensor gravity with third- and fourth-order field terms 
formed by summing one-loop interactions [19], the 
realization of a “bounce” solution is possible. The 
necessary conditions for the realization of the bounce 
solution are as follows: parameters l < 0 , g > 0  and 
a > 0 . A similar model was previously studied in 
[27], where a = 0 , the scalar field f  was absent, but 
the cosmological constant L was present, ensuring 
the same effect. The bounce solution is realized 
under the conditions Λ = 0  (although the case 
when l = = 0g  is not possible in our model), ρ = 0  
(similarly, in our case, the volume density is zero), 
a0 > 0  (in our case, the scale factor a > 0 ) and b < 0  
(which does not contradict our conditions). Thus, 
our results partially coincide with those previously 
obtained for a simpler version of the discussed model, 
except for the zero value of the cosmological constant 
and the parameter α (which was initially zero in the 
simpler version of the theory).
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Thus, in the discussed scalar-tensor gravity 
model, instead of an initial singularity, a bounce is 
possible even in the simplest configuration, provided 
the initial constraints are met. This means that the 
model, with a simpler structure than most scalar-
tensor models based on Horndeski’s theory, not only 
solves the initial singularity problem but also brings 
us closer to the development of quantum gravity 
while offering the potential for the realization of both 
bounce and genesis scenarios.

FUNDING

The work of O.I.Z. was funded by the Foundation 
for the Advancement of Theoretical Physics and 
Mathematics “BASIS,” grant 22-2-2-11-1.

REFERENCES

1.	 A. Friedmann, Über die Krümmung des Raumes (About the 
curvature of space), Z. Phys. 10, 377 (1922).

2.	 S. Alexeyev, E. Pamyatnykh, A. Ursulov et al., General 
theory of relativity: Introduction. Modern development 
and applications, URSS publishing group Moscow, 
400 (2022).

3.	 S. Capozziello, M. De Laurentis, Phys.Rept. 509, 167 
(2011).

4.	 E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, 
Class. Quant. Grav. 32, 243001 (2015).

5.	 L. Barack et al, Class. Quant. Grav. 36, 143001 (2019)
6.	 S. Alexeyev, V. Prokopov, Universe 8, 283 (2022)
7.	 G. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
8.	 T. Kobayashi, Rept. Prog. Phys. 82, 086901 (2019).

9.	 J. Ezquiaga, M. Zumalac´arregui, Phys. Rev. Lett. 119, 
251304 (2017).

10.	 P. Creminelli, F. Vernizzi, Phys. Rev. Lett. 119, 251302 
(2017).

11.	A. Starobinsky, Phys. Lett. B 91, 99 (1980); Adv. Ser.
Astrophys. Cosmol. 3, 130 (1987).

12.	Y. Ageeva, P. Petrov, V. Rubakov, Phys. Rev. D 104, 
063530 (2021).

13.	 C. Charmousis, E. J. Copeland, A. Padilla, P. M. Saffin, 
Phys. Rev. Lett. 108, 051101 (2012).

14.	 E. J. Copeland, A. Padilla, P. M. Saffin, JCAP 12, 026 
(2012).

15.	Torres, J. C. Fabris, O. F. Piattella, Phys.Lett.B 798, 
135003 (2019).

16.	X. Calmet, D. Croon, C. Fritz, Eur. Phys. J. C, 75, 605 
(2015).

17.	 S. Alexeyev, X. Calmet, B. Latosh, Phys. Lett. B, 776, 
111 (2018).

18.	 B. Latosh, Eur. Phys. J. C, 78, 991 (2018).
19.	 B. Latosh, Eur. Phys. J. C, 80, 845 (2020).
20.	S. Mironov, V. Rubakov, V. Volkova, Phys.Rev.D 100, 

083521 (2019).
21.	S. Alexeyev, A. Toporensky, V. Ustiansky, Class. Quant. 

Grav 17, 2243 (2000).
22.	S. Alexeyev, K. Rannu, JETP 141, 463 (2012).
23.	S. Alexeyev, M. Senduk, Universe, 6, 25 (2020).
24.	P. K. Townsend, P. van Nieuwenhuizen, Phys.Rev.D 19, 

3592 (1979).
25.	I.  Novikov, A.  Shatsky, S.  Alexeyev, D.  Tretyakova, 

UFN 184, 379 (2014).
26.	T. Kobayashi, M. Yamaguchi, J. Yokoyama, Prog.Theor.

Phys. 126 511 (2011).
27.	S. Sushkov, R. Galeev, Phys.Rev.D 108 044028 (2023).


