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1. INTRODUCTION

Significant progress has been made in the
theoretical description of nonlinear effects arising
from the interaction of intense infrared (IR)
laser fields with atomic systems. The quantum
mechanical description of processes induced
by an intense IR field involves two approaches:
numerical methods, such as solving the time-
dependent Schrodinger equation (TDSE) and its
simplified variations for multi-electron systems
(density functional theory, time-dependent
Hartree-Fock method) [1—9], and analytical
approaches. Numerical calculations typically
serve as “benchmarks” for verifying the accuracy
of analytical approaches and demonstrate their
efficiency in determining the nonlinear response of
an atomic system to an intense external alternating
electric field. However, the results of numerical
integration can only be obtained for fixed laser
parameters and lack significant predictive power.
Specifically, in most cases, it is necessary to
perform numerous time-consuming computations
to achieve the desired physical interpretation of the
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observed effect. In contrast, analytical theories are
better suited for uncovering general fundamental
patterns in the nonlinear interaction of an atomic
system with an intense laser field.

Analytical approaches to describing nonlinear

effects in the interaction of IR fields with atomic or
molecular systems are typically based on the single-
electron approximation. Within this approximation
(subject to certain obvious limitations), it becomes
possible to derive expressions for the amplitudes
and cross sections of fundamental laser-induced
and laser-assisted atomic processes with accuracy
not inferior to numerical results of TDSE solution
[10—16].
A key advantage of analytical approaches over
numerical methods is the ability to establish a
universal parameterization dependence of the
probabilities of the strong-field processes on the
fundamental characteristics of the target (i.e. the
electron-core interaction potential U(r)) and the
laser-pulse parameters (see, e.g., [17]).

These parameterizations can be further generalized
to multi-electron systems, enabling the study of
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the effects of internal electronic dynamics in laser-
induced photoprocesses [18].

Among the analytical approaches, the most
popular is the S-matrix formalism, where the exact
wave function of the active electron in the self-
consistent potential U(r) is expanded into a formal
series in U(r) [19, 20] (see also [21, 22]). This
expansion leads to a Born series for the transition
amplitude, where the terms (partial transition
amplitudes) can be expressed as a convolution of the
free-electron Green’s function in the laser field with
the atomic potential. For example, for the above-
threshold ionization (ATI) process, the account
of U(r) in the lowest order leads to the Keldysh
result [23].

Due to the large value of the classical action of
the electron in a strong low-frequency field, the
partial amplitudes can be analyzed using the saddle-
point method [24], which gives rise to the quantum
orbit approach [25, 26]. This approach provides
an intuitive physical interpretation of strong-field
phenomena in terms of classical trajectories, thereby
justifying the rescattering model for fundamental
atomic photoprocesses in an intense laser field [19,
20, 27, 28].

Although the Born expansion of transition
amplitudes has proven fruitful and significantly
contributes to the description of strong-field
phenomena, it cannot fully account for the
atomic potential, whose influence can be crucial
[9, 18, 29—32]. One approach that allows for a
more accurate treatment of the atomic system
dynamics in an intense low-frequency field is the
adiabatic approximation. The general idea of this
approximation is based on the smallness of the
carrier frequency o of the laser pulse compared
to the ionization threshold 7, of the atomic target
ho < I,. The lowest-order of the adiabatic
approximation (zero-order approximation) is
defined by the quasistationary state of the system
in a static (DC) field with an intensity equal to
the instantaneous value of the low-frequency laser
field [33—37]. In [11—17], a correction to the zero-
order adiabatic approximation was derived for the
wave function, accounting for the rescattering of
the electron by the atomic potential. The study [38]
refined the adiabatic approach for determining the
atomic state in the lowest adiabatic approximation,
by utilizing the analytical part of the wave function of
the quasistationary atomic state in the instantaneous
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laser field. Within the adiabatic approach, both low-
energy and high-energy (rescattering plateaus) parts
of the photoelectron spectra and high-harmonic
generation (HHG) spectra have been calculated.

The presence of a closed analytical expression for
the wave function of the atomic state in an intense
IR field allows for the development of an adiabatic
perturbation theory in additional interaction with
a high-frequency (e.g., extreme ultraviolet — XUYV)
attosecond pulse [17, 39]. The influence of an
ultrashort XUV pulse on the radiation generation
process results in the appearance of a significant
number of new generation channels and substantial
modification of the IR field HHG spectra. For
example, the enhancement of harmonic yield due
to the resonant population of excited target states
by the XUV pulse was studied in [40—43]. XUV-
induced enhancement of high harmonic yield was
investigated both for attosecond pulse train [44—
47] and for an isolated attosecond XUV pulse [48,
49]. These studies demonstrated that a XUV pulse
(or its sequence) can affect the ionization stage in
the three-step Corkum model [50], i.e., change the
ionization times and thereby affect the harmonic
yield. In [51, 52], it was shown that adding a weak
XUV field leads to the appearance of an additional
plateau in the HHG spectra. The physics of the
additional XUV-induced plateau was explained
in [53], where it was shown that the additional
plateau results from XUV-photon absorption at
the recombination stage. It should also be noted
that, at sufficiently high carrier frequencies of the
XUYV pulse, electrons from the inner atomic shell
can also participate in the HHG process, leading
to an increase in the cutoff energy of the plateau
[54—56]. Moreover, such XUV pulses, combined
with an intense IR field, enable the study of Auger
processes [57, 58] and electronic transitions from
inner shells to the valence shell [59]. The re-
emission channel (or elastic scattering) of a XUV
photon by the atomic system, leading to significant
enhancement of the generated radiation yield, was
studied in [60]. Second-order processes of XUV
interaction in an IR-dressed atomic medium were
also investigated: generation of a XUV pulse at the
doubled carrier frequency [39] and the XUV pulse
rectification effect [61].

In this paper, we generalize the perturbative
approach proposed in [17, 39] to construct
perturbation theory corrections for the interaction
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with a short XUV pulse of arbitrary order, based on
adiabatic wave functions of the atomic state in an
intense IR field. Within the developed perturbation
theory, XUV-induced radiation generation channels
are investigated by analyzing classical electron
trajectories in the field of synchronized intense IR
and attosecond XUV pulses, and the possibility of
interference between different channels due to their
spectral overlap is explored. The article uses atomic
units unless otherwise specified.

2. ADIABATIC APPROACH
TO THE DESCRIPTION OF AN ATOM
IN A LOW-FREQUENCY LASER FIELD

2.1. Adiabatic expression for the wave function

Let us consider the interaction of an atomic system
with an intense infrared (IR) laser pulse characterized
by the peak electric field strength F;z and the carrier
frequency w;z . We will assume that the laser pulse
parameters satisfy the adiabatic conditions [23]:

or < Eyl|, vx <1, (1)

where yg = xoyz / Fip is the Keldysh parameter,

k=42|E,|, E, is related to the binding energy
of the unperturbed atomic level. The conditions
(1) can also be rewritten in terms of the average
oscillation energy of a free electron in the laser field

u, = Fjp / (4ojg):

or <l E |, (2)

Q)57 < Llp.

To describe the nonlinear interaction of an atomic
system with a laser field that satisfies the conditions
(2), it is most convenient to use the adiabatic
approach [12, 13, 37]. Within this approach, the
wave function of an atomic electron interacting with
a low-frequency laser field can be represented as a
sum of “slow” (‘P(O)(r t)) and “fast” (‘P(’)(r )
time-dependent parts [11, 12, 17]:

¥R (r,0) = YR + PR, (3)

The slow part ‘I‘(I%) (r,t) represents the adiabatic

approximation in the lowest order (“zero-order”

approximation) and is defined by the quasistationary
state in a DC electric field with a strength equal to the
instantaneous value of the IR field at time t [37, 12].
In many practical calculations, the function ‘I’(I%) (r,0)

can be accurately approximated by the initial-state
wave function in the absence of the IR field:

e e @

The term ‘P([Q(r,t) in Eq. (3) describes the
rescattering effects of the valence electron on the
atomic core and represents a superposition of

scattering states \u(“ of the electron in the atomic

@ (r).

potential with 1aser-1nduced momenta K, [17]:

lEot

P (r,t) = oY (r,1), (5a)

o (r,1) = Za (t)l//(+)(r). (5b)
Each term in the sum (5b) is associated with one of
the possible closed classical trajectories, which start
at the tunneling time # and end at the return time #
of the electron back to the atomic core. The laser-
induced momenta are defined by the expression:

K, = K@t1), (6)

K(t.t') = A jp(6) — fAIR(T)dT
where A jp(¢) is the vector potential associated with

the electric field strength Fz(r) of the laser pulse by
the relation:

Fip(t) = —0A g (t) / Ot.

The tunneling times #,(t) as functions of the return
times 7 satisfy the transcendental equation (see details
in [14]):

K/ -K! =0, (7)
where
K, =K'(t,t]),
: oK'
K = 8;, ®)

N

K'(t,1") = A (t') — fA]R(r)dt

Equation (7) has a simple physical meaning: the
atomic electron tunnels at the moments in time that
provide the minimum Kkinetic energy of the released
electron in the laser field. The time-dependent
coefficients a,(¢) in the superposition (5b) represent
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the product of the ionization (tunneling) factor
a™™ ¢!y and the propagation factor " (z,t!):

a,(t) = d™))d?" (t.1)). )

The ionization factor is characterized by the
tunneling exponent in the instantaneous “static”
electric field with the strength:

F =[Fjp@})— K} -Fr)]"?,

see [62]. For example, in the case of a linearly
polarized laser field, the following relation holds:

a(run)(t;) o eiFat /(3|F1R (t;)D, (10)

where F, =’ defines the magnitude of the

characteristic intra-atomic field. To satisfy the
quasiclassical condition, an additional inequality
must hold: F <« F, , which ensures the smallness
of the ionization factor and the insignificance of the
initial-state decay effects.

The propagation factor a?”(z,¢!) is determined
by the classical action S(,7;) of the free electron in
the laser field over the time interval from ¢, to f:

iE,(t—t')—iS(t,t!)
0 s s
aP( ) =

P (11a)

t
S(tt5) = %I[Am(f) -
t/

N

t
- i tf A (d P d. (11b)
N
It is important to note that the rescattered part
®(1;2(r,t) of the atomic electron wave function in the
IR field, relative to the unperturbed function ¢y (r),
has a smallness ~ S

Fin —F _ /BF,,)
_ .32
B]R_YI(/ %e at’ TIR
at

< 1.
Essentially, the result (3) represents an expansion of
the atomic electron state in terms of S, up to the
first order. In the following, we will maintain this
accuracy, as the inclusion of higher-order terms in
the expansion of Sz (i.e., a more precise account of
rescattering effects) does not lead to any significant
manifestations in the amplitudes and cross sections
of processes in a strong IR laser field.
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2.2 Amplitude of radiation generation

The amplitude of photon generation by an atom
in an intense laser field is determined by the dipole
matrix element [63, 64]:

D(Q) = f (PR @D p (0™ dr,  (12)

where Q is the frequency of the generated photon,
W, (r,t) is the dual wave function to the state
WY r(r,t), defined from the state Wz (r,f) by
complex conjugation, time reversal + — — , and
the replacement of all 7-odd parameters A for —A
[65, 66]. In a low-frequency laser field, the dipole
matrix element (12) for Q > |E| can be approximately
expressed through ¥ (r,r) and ‘P([Q(r,t) [17, 63]:

D@ = [(oe "V [r| R0 ar.  (13)

The harmonic yield, summed over polarizations
and integrated over directions, is determined by the
square of the modulus of D(Q):

4 2
y_ 9 ID(Q)|

4n%c3

’

where c is the speed of light.

In the adiabatic approximation, the time integral
in (13) is evaluated using the saddle-point method,
and D(Q) can be represented as a sum of partial
amplitudes D(Q) [14, 17]:

D(Q)=3 D ,;(%), (14a)
j

D/(Q)=d{" a;d(K )¢, (14b)

where g™

e a ; are the tunneling and propagation
factors, respectively, and d(K ;) is the dipole matrix
element for the transition from the continuum state

with momentum K ; to the bound state ¢ (r):
d(K)) = oo [ vy ()

The factors a®™™ | a; are defined by the relations:

J

(tun) _ _(tun) 4/
aj =da (tj)’

- l 27
o 2

aj =
\/Kj 'FIR(tj)'i_ﬁ
J J

a?"(t 1))
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The summation in (14a) is performed over all
closed classical electron trajectories, defined by the
start time ¢ j’ and end time 7; of the electron’s motion.
The times tJ’~ and 7; are the roots of the system of
transcendental equations [14, 17]:

K/ -K; =0, Kj=2Q+ Ey, (15)
where the induced momenta K =K'(.7)),
K; =K(;,t) are defined in Egs. (8) and (6),
respectively.

3. TIME-DEPENDENT PERTURBATION
THEORY FOR AN ATOMIC SYSTEM
IN AN INTENSE IR FIELD

Let us consider an atomic system interacting with
an intense IR field and a perturbative XUV pulse. The
account of the XUV interaction with the IR-dressed
atomic system can be treated within the perturbation
theory based on the adiabatic wave functions of the
atomic electron in the IR field [17]. We will consider
the interaction with the XUV pulse in the dipole
approximation, so that the potential Vy, (r,t) of
the interaction between the atomic electron and the
XUYV pulse has the form:

Vygy (50 =V (x,0e "0 4V (r,ne™ev!, (16)

F
X2UV (exyy T xyy @),

V., (rt) =

V_(rt) =V, (1),

where Fy) is the peak field strength, @y, is the
carrier frequency, ey is the polarization vector,
and fyyy () is the XUV pulse envelope.

Note that for oy >| E; |, the small perturbation
parameter for the XUV interaction is defined as [67]

2
xF E,)" F
BXUV — 2XUV =4 |20| ;UV < 1. (17)
Oxyy Oxyy “a

Therefore, even in the case of XUV radiation strength
comparable to F,,, the interaction Vy,), can be
treated perturbatively [68].

The state ¥(r,) of the atomic electron in the field
of synchronized IR and XUV pulses can be written as:

Y(r,t) =¥ p(r,0)+

+ [[Gw b0 Wy (40 1 (e dr, (18)

where G(r,z;r',t’) is the time-dependent (retarded)
Green’s function of the atomic electron in the two-
component field. For the function G(r,%;r',¢'), the
Dyson equation holds:

G ') = G (et )+ [[Grprasr” ")

XV yuy @ t"G@" 1" e’ )dr"dt”, (19)

where G (r,t;r',t") is the time-dependent (retarded)
Green’s function of the atomic electron in the
IR field. Using the relations (18) and (19), we can
represent the wave function ¥(r,#) as a perturbation
series in Vyyy :

Y(r,t) = ¥(r,0) + i‘l’n (r,1),

n=l1

(20)

where W¥,(r,r) = W ,z(r,t) is the atomic state in
the absence of the XUV pulse (see Eq. (3)), and
W, (r,1) ~ B%yy are the n-order corrections, satisfying
the following recursive relation:

W, () = ffg,R (r,t:r' 1) x

XV yyy @YW, (¢' ¢ )dr'dt’. (21)

The accuracy of the adiabatic approximation
allows for the approximate evaluation of the time
integrals in (21). The main contribution to the value
of the corresponding integrals are given primarily by
the weakly overlapping neighborhoods of the points
t' =t and ¢’ =1/(t), where 7,(¢) are the saddle points
of the phase of the rapidly oscillating factor of the
integrand in (21). This phase is primarily determined
by the classical action of the electron in the IR field
and the carrier frequency of the XUV pulse. The
asymptotic expression for the Green’s function
Gg (r,t;r',¢") in the vicinity of these singular points
was obtained in [17]:

Gig (r,t;r',t") ~

G, (r.tr' 1), t~t,
~ : (22)

G 1o (0,50, WO O T, 1 =1,
Where G, (r,t;r',t’) is the time-dependent atomic
Green’s function of the electron, G ,,,;(0,0,7') is the
Volkov Green’s function of the electron in the IR
field for r =r' =0, and the momenta K = K(,t')
and K'=XK'(r,t') are defined by Eq. (6) and (8),

respectively.
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The explicit expression for the nth-order
correction ¥, (r,f) can be obtained by sequentially
calculating the lower-order corrections, using the
relations (22) and (21) and approximately evaluating
the time integrals. The nth-order correction can be
decomposed into a slow part ‘ng) and a fast part ¥':

¥, (r,t") =¥ () + v (). (23)
To determine the slow part ‘Pff) , We represent it

as a superposition:
YO (r,r) ~ Ze Vo (r,1), (24)

A%
where E, = E, +voyyy are time-dependent
coefficients, and the slow (in time) functions
(”)(r t) require further definition. The slow time
dependence of the functions (p(”)(r,t) , as well as
the envelope fyyy (), will be understood under the

following conditions:

()
a(p < (’OXUV ([)S,n) , (253)

ot

9 !
‘% < oxgy fxor @ (@25b)

It should be emphasized that in order to isolate
the slowly varying part of the wave function, one
should neglect the contribution from the saddle
point neighborhoods 7/(s) in the time integral in
(21) and consider only the vicinity of the endpoint
t' ~t. Substituting (24) into (21) and using the
asymptotic form of the Green’s function for ¢’ — ¢
(see Eq. (22)), we obtain:

Ze_jEVT(P\(,nH)(rJ) = fme(r,t;r/,t/) X

v

—iE , !
<V yyy () e Y oW ar'dr’. (26)
V,
Next, approximating the slow functions (p(")(r’ ,t)
on the right-hand side of Eq. (26) by their values at
t' =t and using the relation between the stationary

and time-dependent atomic Green’s functions:

G prr) = [H06 ,wpr i, (27)

we obtain:

S gl V(e =

v
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—iEy GE » | go(”)>

= El

\%
—iE t

+§we e Gp, V

Note that if the energy of the Green’s function
coincides with the energy of the ground state, then,
according to perturbation theory, the Green’s
function is replaced by the reduced Green’s function
G /Eo [69, 70]:

o). (28)

E—E, (29)

Ggo = lim |G g(r,r’) —

EHEO

Given the weak dependence of the functions (p(”)
and V', on time [see (25)], we equate the coefﬁcwnts
of the “fast-oscillating” exponentials with identical
exponents in (32) and obtain the equation for the

functions " *1:
GE 4+ (P(n,) >+GE V_| (P5’21>a

Vilo")+Gp v lef), v=o.

| v =0,
(p\(}n+)_

(30)
The itera‘uve method for solving Eq. (30) assumes
the following expression for the zero iteration:

O\ (1) = 9y ()3, . (31

Thus, using the relations (24) and (30), one can
find the nth-order correction for the slow part of the
wave function, which formally coincides with the
expression for the nth-order perturbation theory in
a monochromatic field [70] (for a monochromatic
field: fyyy (t) =1, i.e., V. do not depend on time).
We write the wave function ¥ in the nth order of
perturbation theory using the integral operator 13,, :

w0 = P (Eg.t) | 0p), (32)
which represents the convolution of the atomic
Green’s function with all possible #-combinations of
the operators V', and/or V_. We present the explicit
form of the operators P, for the first three orders of
perturbation theory (n<3):

—iEyt 5

Po(Eyt)=e 0],
P(Eyt)=c MG Vi + e g £ Vo
Py (Egt)=¢ "2G £,ViGpV, +

v MG EV GV, +



accuracy of the method. Therefore, in any order of
perturbation theory for the XUV interaction, the
expression for ‘I’(n’)(r,t) contains only one Volkov
Green’s function. From relation (21), it follows that
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—iEqt
"Gy V.G V. +
Gy v v,
o _ iEy
Py(Epty=e SGpV. Gy V.GV,

e MG, VGV, GV, +
GV, GEV GV, +
+e G V.GL V. Gy Vo +
e g £ VGV GpV,+

te g 5V GEVGy Vo +

—iE 1

+e "Gy V.Gp V.Gp Vo +

—iE
3GE VGE VGE V

where 7 is the identity operator. It is evident that the
slow part of the wave function is the sum of partial
terms ‘Pff)(r,t):

¥ (r,) = Z‘I’(S)(r 1= ZP (Eg,1),(r). (33)

n=0

The similarity between the perturbation series in
the XUV interaction of the atomic wave function in
an intense IR field and the well-known perturbation
result for the quasistationary atomic state in a
monochromatic laser field, obtained within the
quasistationary quasienergy state (QQES) method
[70], is noteworthy. The series (33) formally
coincides with the QQES result after replacing the
exact quasienergy ¢ by the ground state energy E|,
and the field strength Fyy,, by the instantaneous
amplitude of the pulse field Fyyp (1) = Fyyyfyuy ().
Thus, if the functional dependence of the QQES wave
function ‘I’()?g,fs)(r,t;g,F yuy) on the quasienergy
and field strength is known, the same dependence
defines the wave function ¥ (r,7):

YO (r,r) = ¥ (x,t Ey, Fyyy 1)) (34)

In contrast to the slow part, the time dependence
of the fast part lIJS,’)(r,t) is determined by the rapidly
oscillating exponential factor~ e, defined by
the classical action S of the electron in the IR field
along the closed trajectories (see Egs. (5b), (9), and
(11a)). It should be noted that, within the adiabatic
approximation, the appearance of any products of
two or more Volkov Green’s functions exceeds the

‘I‘ﬁ,’)(r,t) is defined as the convolution result of either
the slow part ¥, (r,) with the Green’s function G 1 ,
approximated by the Volkov Green’s function (see
Eq. (22), or the fast part ¥, (r,r) with the Green’s
function G ;5 , approximated by the atomic Green’s
function (see Eq. (22)):

W () =

=[G 410,100 | Vg @) | ¥ )i (0t '+
+ f f G o (050 "Wy (0 YO (0t N 'dt’,  (35)

where the first integral implies an approximate
evaluation using the saddle-point method, while
the second integral should be evaluated considering
only the contribution from the vicinity of ' ~ 1.
Accordingly, ‘{‘(’) 1 can be written as the sum of two
terms:

(r)  — g(r.l) (r,2)
anr-i-l \Pnr-&-l + \Pnr-&-l ’ (36)
where the expressions for pjs ‘P(’Jrll) , ‘Pﬁl’fl) are

discussed below.

We will use the approximate expression (27) for
the Green’s function ‘Pﬁf) in the first integral of (39)
and then perform the saddle-point integration over

. As a result, we obtain an expression for ‘P(’ 1)

¢ = Z Z;\u(g)(r)Gv(t,t ) %

X[l 1V, <t>|<p<">> + ) Ie@ o),

(37)

where K’ = K'(1,/'), K = K(z,7'), the summation is
carried out over all allowed values of v with the same
parity as n +1 in the interval | v|<n + 1, and the
saddle points 7 = 7(¢), defined by the equation:

K2 =2E,. (38)
In (37), the following notation is used, defined as:
e—iS(t,f’)—iEV?’
G,t1')=————575 X
Y 2t —1')>/?

~1/2

x\K'-Fp@)=2E, / (t —1) (39)

The accuracy of the approximate expression for
the Green’s function in (22) implies that only those
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saddle points v should be considered in the sum (37)
that ensure the solution of Eq. (38) in real numbers.

From expression (37), it follows that the correction
‘I’El’ Jrll) to the fast part of the wave function describes
a rescattering state, formed within the three-step

scenario:

First stage: as a result of the absorption or
emission of # XUV photons, the atomic system forms
states ¢\

Second stage: a stimulated single-photon
transition (with absorption or emission of a photon)
from one of the states (/") to a continuum state with
asymptotic momentum K’ occurs at the moment 7.

Third stage: while in the continuum, the electron
interacts with the intense IR field and forms, at
the moment ¢, the state \yg)(r) , acquiring energy
while moving along a closed classical trajectory.
The propagation of the electron wave packet in the
continuum is described by the multiplier G, (z,7").

As follows from Egs. (5b) and (37), the fast part
of the wave function is determined by the rapidly
oscillating factor e “*)  which defines the IR-
controlled propagation of the electron in the
continuum, and the continuum state function \u(“
The same components determine the correction
‘PE,”Z), so, without loss of generality, we represent
lrd) ag:

v = Za‘”’a) i) (40)

where a () x e” iStis) is a certain integral

operator, and the summation is performed over
all real ionization moments 7., induced by the IR
or XUV field. In the zero approximation for the
XUV interaction: t =1t, (see relation (7)), and
a(o) = qy (t)[ (see relatlon (9)). It is worth noting
that the operator a; ")(t) can be defined by two terms
(denoted below by the indices a and b), describing
two different scenarios of the electron interaction
with the IR and XUYV pulses:

a) The atomic electron tunnels into the IR-
modified continuum and, while propagating along
closed classical trajectories in the IR field, absorbs v
and emits n—v of XUV photons (parity of n and v is
the same).

b) The atomic electron transitions into the IR-

modified continuum with energy E, by absorbing
v/ of XUV photons, where, during propagation
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along the closed classical trajectories in the IR field,
it absorbs and emits additional XUV photons.

According to the described mechanisms, we
represent the function ¥{"*? as a sum:

\PE{,2) — l},;r,2a) + ‘PS{’Zb). (41)

The mathematical expression for the operator
Zzgn)(t), corresponding to the realization of Scenario
(a), can be easily obtained from (35) (see the second
integral term on the right-hand side), assuming that
the “zero iteration” ‘Pg’) = ‘I’([}) for the fast part of
the wave function is defined in (5). By sequentially
calculating the time integrals in (35) and considering
the contribution from the vicinity of the point ¢’ = ¢,
we obtain the general expression for ¥\ (r,1):

P2 () = S g (0P, | == vi (@), (42)

where the summation includes all solutions of Eq. (7).
It is worth noting that, similar to the previously
considered case of the functions ¥®(r,r), the
summation of the perturbation series in n, taking
into account the explicit form of (46), leads to a
result formally coinciding with the expression for the
quasienergy scattering state ‘P%r)(r,t;s,fXUV(t)) of
the atomic electron in a monochromatic XUV field
[70] with the quasienergy ¢ = Ks2 / 2, the asymptotic
momentum K =K, , and the XUV field strength,
equal to the instantaneous value Fypp (f):

AK

(+)(r)

K2
I AVIE (43)

— \P(+)
27

.t lPi(—:)(rat)’

and therefore,

P2 (1) =S P02(,0) = Y gy (t)\{fgs)(r,t). (44)
n N

The correction W+?® to the fast part of the
wave function, responsible for the realization of
Scenario (b), arises in the second and higher orders
of perturbation theory. As the “zero iteration” for
obtaining this correction, we use the term ‘P(’ b
(‘P(’) = ‘P(’ D), corresponding to the absorption of a
XUV photon (see the first term in the square brackets
in (37)):
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v 0 =3 w06 G S TV ), (45)
-

where 7 is determined from Eq. (38) with v =1.
Substituting (45) into the second term in (35) and
evaluating the time integral in the vicinity of ¢/ ~ ¢,
we obtain the desired second-order correction:

5 | K
W) = 3P S v
-

G (W 1V | gp)- (46)
It is easy to give a transparent physical meaning to
relation (46): the electron, being in the bound state,
absorbs a XUV photon and passes to a continuum
state with asymptotic momentum K' (that
corresponds to the matrix element (\ug,) RAGIENY)

in (46)). The electron propagates in the IR-dressed
continuum along a closed trajectory (see the
multiplier G,(,7) ). As a result, it forms a continuum
state at time ¢ through a single-photon channel of
interaction with XUV radiation (i.e., by absorbing or
emitting a XUV photon).

In the third order of perturbation theory, the
calculations are carried out similarly, and the
corresponding correction takes the form:

¥ = Y P,
'(v=1)
<G (!

K2
—t

(+)
()

[V, @) o)+

K2
—.1
2,

<G (I |V G g V@) o),

v ()

(47)

where the times ¢’ for the first (second) sum are
found from Eq. (38) for v =1 (v = 2) respectively.
The interpretation of the first sum in (47) is
analogous to that provided for relation (46), except
that at the final stage, the continuum state is formed
through the two-photon interaction with the XUV
radiation. The partial terms in the second sum
reflect the following physical mechanism: the bound
electron, having absorbed two photons, passes into
a continuum state, where it propagates along a
closed trajectory driven by the IR field and forms a
continuum state through a single-photon channel of
interaction with XUV radiation. It should be noted
that, although the determination of higher-order
corrections presents no significant difficulties, they

are not considered in this work due to the complexity
of the final expressions.

4. GENERATION OF RADIATION BY AN
ATOM IN SYNCHRONIZED IR AND XUV
PULSES

4.1. Generation channels

We will use the obtained expressions for the
wave function to determine the radiation generation
amplitude by an atom in the field of synchronized,
linearly polarized IR and XUV pulses:

F@)=F @) +Fyypy @ —n), (48)

where t is the time delay between the pulses, defined
as the time interval between the peaks of their
envelopes. The amplitude of radiation generation is
given by Eq. (12) with the substitution:

\P[R (r9t) - \P(r’t)s \NP]R (I',t) - ‘i’(r,t),

where ¥(r,r)is dual wave function, gefined from
Y(r,t) by the same procedure as W ,(r,r) (see
discussion below Eq. (12)).

As shown in the previous section, the wave
function ¥(r,r) is represented as the sum of “slow’
(¥®(r,r)) and “fast” (¥ (r,r)) components.
Accordingly, the radiation generation amplitude can
be written as:

9

D(Q) = DYQ) + DO(Q) +

+ DN(Q) + DI(Q), (49a)
D@ = [(FO@n x| ¥ r,0)edr, (49)
DY@ = [(¥O || ¥ w0 dr, (49¢)
D@ = [(¥0wn) | [ ¥ w0 ar, (49
D@ = [(#00) |1 | ¥ 0)edr, (49)

where each term is discussed in detail below.

The “slow” term D®(Q) describes harmonic
generation of the XUV field by the atomic system.
Considering that ‘P(s)(r,t) is defined by the
perturbation series (see Egs. (33) and (34)), it is
evident that D®(Q) can be expressed in terms of
nonlinear susceptibilities y,, at the frequencies of the
generated harmonics:
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DOQ) ="y, @y FRyrfn(Q),  (50)

0
£AQ) = zi [ Ftuy e, (51)
—0o0
It is worth noting that, due to dipole selection
rules for centrally symmetric systems, the nonlinear
susceptibilities y,(wyy) ) for even number # vanish.
However, if we more accurately account for the
IR-field effects in the zero-order approximation
‘P(I%)(r,t) , it can be shown that the susceptibilities
xn(®xyy) should be replaced by generalized
nonlinear susceptibilities of the atomic system in a
static electric field with a strength corresponding to
the IR pulse at the delay time t:

tn@xur) = 1L @xyy s Fpe = Fig(0). (52)

In this case, the prohibition on the generation of
even harmonics is lifted, and the spectrum of the
generated radiation exhibits peaks corresponding to
the frequencies Ny , where N is an integer (see,
for example, [39]). Let us consider the “fast” term
D(Q) in Eq. (49). Taking into account that the fast
part of the wave function in the synchronized IR and
XUV pulses is the sum of two terms (see Eq. (36)),
we write D(Q) as:

DN(Q) = DED(Q) + DD(Q), (53)

where D"-)(Q)(i = 1,2) are determined by the
corresponding corrections for the fast part of the
wave function. Using Egs. (32) and (37), we obtain
D"D(Q) in the form:

DrD(Q) = f DD (1)el 4y, (54a)

DD (p) = iZMV(;-)GV@(s) It | w%r))’ (54b)

v=Il f'

| POy = STIP,(Eg, 1ol (54c)
A%

where G, =G, (1,1')is defined in (39), ¢ are roots of

Eq. (38), and M () is the sum of matrix elements

describing the v-photon XUV-induced excitation of

the atomic system from the initial state ¢, to the

continuum state \p%f) , considering the re-emission

channels. The explicit form of M (') can be
determined within the perturbation theory using the
recurrence relation (30):

M@ =W 1V, | 9o)
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(CORR % % %
g V.G IIEOV—G Ey+oyyy Vileg)+-
N — (D)1 %
M2(t)_<\VKv |V+GEO+(°XUVV+ |(P()>+”'
M) = <\V;~(+.) | 17+GE0+2°’XUVI7+GE0+°’XUVV+ | o)+

where V . = V_(r,f) (note that for the case of a linearly
polarized XUV pulse, V. L= V_). The third factor in

(54b) (the matrix element (¥ | r | \yg))) determines

the amplitude of XUV-assisted recombination into
the atomic state at the moment ¢ (see expression (34)).

The function D"V() rapidly changes with
variations in the time 7 due to the presence of the
rapidly oscillating factor e ") in G n. Given
that the time interval between ionization and
recombination (i.e., the time of electron propagation
in the continuum driven by the IR field) is on the order
of the IR field period (|7 — ' |~ Ty ), ionization and
recombination cannot occur throughout the duration
Tyyy of the attosecond XUV pulse (7Tyypy < Tig ).
This circumstance allows us to omit all terms in the
sum over v in (54c) except for v =0, and to write
the recombination amplitude (¥® |r | \y;{)) in the
lowest-order approximation in Fyy, (i.e., assuming
Fyyy =0 for the state ¥©)):

(B |1yl m e gy [x [ylD). (59)
Estimation of the integral (54a) by the stationary
phase method leads to the result:

D(r,l)(Q) _ ZD(r,l)(f)eiQ?,

t

(56)

where the summation is performed over all times that
satisfy the equation:

K? o
7=Q+EO, K =K(@,1). (57)
When solving this equation, one should take into
account the implicit dependence of ' =¢'(¢)
according to Eq. (38). Based on the obtained
analytical relations, it is easy to give a physical
interpretation of the radiation generation mechanism
described by D" (Q): the atomic electron absorbs v
XUYV photons and passes into the continuum, where
it propagates along a closed trajectory driven by of
the intense IR field. At the moment of return to the
atomic core, the energy gained by the electron is
emitted as a photon with the frequency Q through
recombination into the ground state. This generation
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mechanism is called the “XUV-initiated HHG
channel” [44, 46, 71-73].

We represent the dipole moment D"2)(Q),
determined by the wave function ¥*? | as the sum:

Dr(Q) = D2(Q) + D)), (58)
where the partial dipole moments D22 (Q) and
D26)(Q) correspond to the corrections ¥+?» and
w29 of the fast part of the wave function (see the
discussion of Eq. (41)). Taking into account (42), we
write D20(Q)) as:

DE(Q) = [Dr2)@)e, (59a)

D) =S a e) (P |1 | \Piés’x

N

(59b)

where ‘Pg) is defined by relation (43). Considering

the deﬁnitison of the dual function ¥ | constructed
from P (see relation (34)), we express the matrix
element in (59b) as:

(O [ W0) = YAy (e "V, (60)
n

where AV « F},, is the amplitude of
photorecombination with the absorption (n > 0)
or emission (n < 0) of n XUV photons. Since the
function a,(r) is rapidly oscillating, the integral in
(59a) can be evaluated using the stationary phase
method. As a result, for the partial amplitude
D20 (), we obtain:

D))= Zas (t,)A flreC) x

n,s

I(Q—no )
xfyuy (s — 1)e XUV s | (61)
where the recombination times #, are found from the
stationary phase equation:

K2(t,,1'(t,))

) (62)

and the corresponding ionization times #'(¢,) satisfy
Eq. (7) when substituting ¢ =z, . In the following, we
will number possible solution pairs of the system of
equations (7) and (62) with a single index s: (#,]).
The analytical relation (61) allows us to give a
simple quasiclassical interpretation of the radiation
generation mechanism described by the term D22
(Q): at the moment ¢, , the bound electron tunnels
and propagates along a closed trajectory until

BREEV et al.

the moment of recombination #,. Recombination
occurs with the emission of a photon with frequency
Q, simultaneously with the absorption of n XUV
photons. Moreover, the envelope of the XUV
pulse acts as a “temporal separator”, cutting off
recombination moments for which the difference
|, — | exceeds the duration of the XUV pulse. This
radiation generation mechanism defines the XUV-
assisted HHG channel [52, 53].

Now let us show that the remaining terms
D20 (), D(Q) and DN(Q) are negligibly
small. The calculation of the partial dipole
moment D2Y(Q), using relations (46), (47), and
(33), shows that it is determined by terms that
were discarded during the analysis of D"D(Q).
In particular, the dipole matrix element of the
transition between ‘I’(2”2b) and ¥ has a second
order in Fyy, and defines a linear (o< Fyyy )
correction to the dipole moment in the one-photon
XUV-initiated generation channel, through the
XUV-interaction at the recombination step (i.e., it
includes, along with the the XU V-initiated channel,
also the one-photon XUV-assisted recombination
channel). Similarly, it can be shown that ‘P(3”2b)
gives a correction o« F#;, to the one-photon
XUV-initiated channel due to the two-photon
interaction in the XUV-assisted channel, as well
as a correction « Fyyy to the two-photon XUV-
initiated channel via the one-photon XU V-assisted
mechanism. These corrections should be discarded
due to the significant difference in the time scales
between the dynamics of the atomic electron’s
interaction with the IR and attosecond XUV pulses:
the characteristic time scale between sequential
processes of ionization and recombination is
comparable to the IR-field period. Therefore, the
ionization and recombination stages cannot occur
within the duration of a single attosecond XUV
pulse.

To estimate the contribution of the dipole
moment D(Q), defined by expression (49d), note
that it describes the time-inverted process relative
to the previously considered generation channels
for the term D" (Q). This directly follows from the
definition of the dual wave function. For example, the
generation of radiation in the XUV-assisted channel
for D)(Q) occurs under the following scenario: the
bound electron emits radiation at the frequency Q,
with the simultaneous absorption of # XUV photons.
As the result, the electron goes into a virtual state
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with a larger negative energy and returns to the
initial state, interacting with the intense IR field.
Since all radiation formation stages occur at negative
energy, within the quasiclassical approximation,
this mechanism is strongly suppressed, and its
contribution is negligibly small (see, for example, the
discussion in [63]). Using similar reasoning for the
XU V-initiated generation channel, we conclude that
it can also be neglected.

Finally, the term ’ﬁ(’)(Q) must also be discarded in
our consideration, as it is determined by the product
of two fast parts of the wave function, and its inclusion
exceeds the accuracy established in this analysis. Thus,
we have shown that radiation generation by an atomic
system, interacting with intense IR radiation and an
attosecond XUV pulse, whose duration is much shorter
than the IR field period, can occur within the framework
ofthree channels: 1) XUV harmonic generation, defined
by the corresponding atomic nonlinear susceptibilities;
2) the XU V-initiated generation channel; 3) the XU V-
assisted generation channel.

4.2 Contribution of different radiation
generation channels

Let us consider the general properties of the
radiation generation channels, such as the position
and width of the spectral region [€2,;,;Qmax] fOr
a given channel. These properties depend on the
characteristics of the atomic target (the energy of
the initial bound state) and the parameters of the
laser field interacting with the atomic system. The
contribution of different generation channels and
their spectral overlap is of particular interest.

The frequency interval [Q.;;Qmax] Can be
determined from the requirement for the existence
of real solutions to the saddle-point equations for
the classical ionization and recombination times. To
find them, we parametrize the electric field of the IR
pulse through the vector potential A ;5 (¢) :

OA (¢t
Fie) = 2220, (63a)
F .
Ap(t)=—e, wﬂfm (t)sin(wzt),  (63b)
IR

cos? ,;.T—t |t |< %
fir® = IR . (63c)

0 1> =
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where 7, = 5T isthe pulse duration, T, = 2n/0z.
In all numerical calculations, we assume the initial
bound state energy E, = —13.6 €V, corresponding to
the ground state of the hydrogen atom.

4.2.1 XUV-assisted channel

For the XUV-assisted generation channel, the
ionization times s and recombination times s, satisfy
the system of equations (7) and (62):

K/ -K! =0, KX(tlt,)=2Q+ Ey —noyyy). (64)

As seen from Eq. (64), the solution of this system
for an arbitrary »n can be obtained from the solution
for n = 0 by a corresponding frequency shift of the
generated radiation: Q — Q+ noyy),. Therefore,
below we analyze the case n = 0, which corresponds
to harmonic generation in the absence of the XUV
field. The system (64) has real solutions for Q > |E|
and Q< maxK?/2+ | Ey | agu,+| Ey|, where
u, =F & /(4wdg), oy is a numerical factor depending
on the pulse envelope shape. For example, for a
long monochromatic pulse (f;z(f) =1), we obtain
oy ~3.17.

Fig. 1 shows the dependence of the frequency Q of
the generated radiation on the recombination times t.
The color represents the absolute value of the tunneling
factor a}’””) , which enters the expression (14b) for the
partial HHG amplitude for the IR field. It is seen from
the figure that for fixed parameters of the laser pulse,
the number of solutions of system (64) increases with
decreasing Q, which leads to the formation of a complex
interference structure in the plateau region [17]. In the
vicinity of the global maximum for Q (i.e., the cutoff of
the IR-induced HHG plateau), only two solutions exist,
determining the well-known interference oscillations of
the HHG vyield near the cutoff region [74, 75].

4.2.2 XUV-initiated channel

For the XU V-initiated channel (consisting of an
v-photon transition of the electron from the ground
state to the continuum, its laser-driven propagation,
and subsequent recombination), the ionization and
recombination times are determined by the following

system of equations:
K 12
D) = EO + VO‘)XUV’ (653)
2
KT =E,+ Q, (65b)
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Fig. 1. Dependence of the recombination time on the frequency
of the generated radiation for an IR pulse with a carrier
frequency » = 1 éV and a peak intensity 2 - 10'4 W/cm?. The color
represents the value of the tunneling factor (10), calculated for
the ionization and recombination times satisfying the system of
equations (64) u, = 26.89 eV. |Ej| = 13.65 V.

where K’ = K'(,7), K = K(@,7).
Equation (65a) has real solutions under the
following necessary condition:

K/2
2

V(J)XUygmaX |E0 | + =| EO | +0L0up. (66)

To determine the boundaries of the spectral region
[QninsC2max] Of classically allowed frequencies
of the generated radiation, note that the system
of equations (65) is invariant with respect to the
replacement (K’, E,) — (K,Q), where Q=0+ E,.
The maximum values K’?/2 and K?/2 are identical

due to the obvious symmetry in the dependence of
K(,t") and K'(t,t') on the times ¢, ¢’ (see Egs. (6)
and (8)). Therefore, in the plane of the variables
Q and E,, the desired region of real solutions
(or classically allowed energies Qand E, is symmetric
with respect to the line Q = E,, . Moreover, since the
momenta K and K’ are proportional to Fjg /oy,
the region of real solutions in the coordinates (~2,
E, scales by the magnitude u,. From the above, it
follows that the boundary of classically allowed
energies can be expressed using a symmetric function
g(x,y) = g(y,x) of the two arguments x = ﬁ/up and
y = E, /u, in the form of the following equation:

3.5

3.0 1

2.0 1 =)

Q/“p

1.0 4

0.0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

B, [uy

Fig. 2. Region of existence for solutions of the saddle-point
equations (65). The dark gray area represents the parameter
region obtained from the numerical solution, while the red
dashed line shows the linear law (67).

g,ﬂ :0.
u, u

p P

Fig. 2 shows the region of classically allowed energies
Qand E,, obtained from the numerical analysis of the
system of equations (65). The desired region is well
approximated by two straight lines [76]:

- £ i
R T
QE || “ (67)

gup’up “E o) -
_V+BO__aO’ Q<Ev
u u
p P
where

Bo = Fir(tq) / Fig(ty),

to and #, are ionization and recombination times,
corresponding to the global maximum of K? /2 (for
the monochromatic field B, = 0.324).

The dependence of the solutions of the system
of equations (65) on the frequency of the generated
radiation Q is shown in Fig. 3. Each pair of solutions
(f,f) is represented by a point, the color of which
corresponds to a specific value of wyyy . As can
be seen from the presented figure, as well as from
the above estimate (66), the number of real roots
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Fig. 3. Solutions of the system of equations (65) for the classical
ionization times 7, and recombination times 7, in the case
of single-photon ionization (v = 1) and various values of the
XUYV photon energy: (a) oy = 40 eV, (b) oyyy = 60 eV, (c)
oyyy = 100 eV. The shaded purple area represents the duration
of the XUV pulse. The initial-state energy, carrier frequency of
the IR pulse, XUV pulse duration, and the time delay between
the pulses are the same as in Fig. 1, while the peak intensity of
the IR pulse is 7 = 3-10'* W/cm?2. The signs (+) indicate the
direction of the instantaneous momentum K of the electron at
the moment of ionization relative to the polarization vector e,

of the IR field: (+) for the case (K-e,) > 0 and (—) for the case

(K-e,) < 0. The black line represents the profile of the IR field
intensity in arbitrary units.

of the system (65) decreases with the increase of
oyyy » While the region of possible values for the
ionization and recombination times shrinks (see
the regions bounded by closed curves in Fig. 3).
We remind that in the theory being developed, the
interaction of the XUV pulse with the atomic system
is determined by the specific moments of ionization
and recombination (see Section 3), which define the
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closed trajectory of the free electron in the IR field.
Therefore, at certain time delays, the considered
generation channel can be suppressed due to the lack
of overlap between the solution region of the system
(65) and the time interval of interaction with the
XUV pulse. For example, in Fig. 3c, it is shown that
for an XUV pulse with a time delay t = —0.57, the
region of acceptable values for ¢/ does not intersect
with the time interval of the XUV pulse duration.

Dependence of the generated radiation frequency on
the recombination times for all the discussed generation
channels is shown in Fig. 3. The regions corresponding
to elastic scattering of the XUV photon by the atomic
system (Rayleigh scattering) and the second harmonic
generation are indicated by the horizontal dashed lines
in the figure (solid bold horizontal lines correspond to
Q= oyyy and Q = 2oy ). At IR-pulse intensities
of I 22- 10" W/cm?, we observe a spectral overlap
between the harmonic generation channel in the
IR field (black bold lines in Fig. 3) and the elastic
scattering channel of the XUV photon, leading to
the specific oscillations in the harmonic generation
spectrum [60]. As the IR pulse intensity increases,
overlap with the XUV harmonic generation channels
occurs (see Fig. 3(c), where overlap with the second
XUV harmonic generation channel is observed at
I =4-10"* W/cm?). We note, that for the occurrence
of interference between different radiation generation
channels, necessary conditions are spectral overlap of
the channels and comparable generation probabilities
within the desired channels. The XUV-initiated
channels (green and orange lines) overlap spectrally
only with the harmonic generation channel in the single
IR pulse. Moreover, as seen in Fig. 3, as the number
of photons in the XUV-initiated channel increases,
the spectral overlap region shrinks, which is obviously
related to the reduced energy gain by the electron during
its propagation in the IR-field after absorbing v XUV
photons (see Fig. 2). Thus, the observation of XUV-
initiated generation channels with v > 1 is difficult due
to suppression by the more intense HHG channel in
the absence of the XUV pulse and is possible only with
a significant increase in the XUV-field intensity. For
v =1, the XU V-initiated channel can be distinguished
under the orthogonal geometry of the IR and XUV
pulses [77]. In contrast, the XUV-assisted channels
(thin gray lines in Fig. 3) contribute to the generation
of higher-frequency radiation, forming sequential
plateau-like structures in the HHG spectra [53].
Typically, the XUV-assisted channels interfere with the
harmonic generation channels of the XUV radiation
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Fig. 4. Spectrograms of generation channels for different peak intensities of the IR pulse: (a) /= 2- 10" W/cm?, (b) 3- 104 W/cm? and
(c) 4- 10" W/cm?2. Black lines show the HHG channel in the absence of the XUV field. Gray lines represent the XUV-assisted channel
with the absorption of one and two XUV photons. Green lines (orange lines) represent the XU V-initiated channel with the absorption
of one (two) XUV photons. The solid horizontal lines indicate the values of Q = Nwyyy (N = 1,2), while the dashed horizontal lines
show the boundaries of the spectral regions for the first and second XUV harmonics. The XUV photon energy is oy, = 80 €V, and
the initial-state energy, carrier frequency of the IR field, and XUV pulse envelope parameters are the same as in Fig. 1.

[39]. Note that it is possible to select conditions for
spectral overlap between the harmonic generation
channel in the single IR pulse and the XU V-assisted
and XUV-initiated channels [see Fig. 4(c)].

5. CONCLUSION

In this work, an adiabatic approach has been
developed for analyzing the interaction effects
of an IR-dressed atomic system with a short
(attosecond) XUV pulse. The nonlinear effects
due to XUV interaction result in the emergence
of additional XUV-induced radiation generation
channels. Depending on the nature of the XUV
pulse’s influence on the atom, these channels can be
classified into three types. The first one is the XUV-
induced modification of nonlinear susceptibilities
of the atomic system. For initially non-polarized
targets, the odd-order susceptibilities (e.g., atomic

polarizability, describing Rayleigh scattering of the
XUYV photon [60], or the third-order susceptibility,
responsible for third XUV harmonic generation) do
not vanish in the absence of the IR field. Thus, at
moderate field intensities, they can be approximated
by the susceptibilities of the free atom. In contrast,
even-order susceptibilities (e.g., those describing
the XUV rectification effect [61] or the second XUV
harmonic generation [39]) vanish when the IR field
is switched off, as they are caused by the IR-induced
symmetry breaking of the atomic state. The first type
of channels has been thoroughly studied in the works
cited above.

The main focus of this study is on the second
and third types of channels — the XUV-induced
ionization channels, involving the absorption of
XUV photons during the first stage of the three-
step rescattering mechanism, and the XU V-assisted
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recombination channels, where XUV photons are
absorbed at the moment the electron returns to
the atomic core. Analysis of the contributions of
partial amplitudes associated with various closed
classical trajectories of the electron in the IR field,
in accordance with the described XU V-initiated
and XUV-assisted channels, revealed that for
moderate IR pulse intensities, the spectral region
of XU V-initiated channels overlaps only with the
harmonic spectrum of the IR field in the absence of
the XUV pulse, while the probability of interference
with XUV harmonic generation channels is
negligibly small. In contrast, XUV photon
absorption during recombination (XUV-assisted
channel) significantly expands the spectrum of the
generated radiation, enabling the interference of
different generation channels.

It is worth noting that for short XUV pulses, the
energy range of the generation channels strongly
depends on the time delay between the XUV and
IR pulses. For example, in the case of high XUV
photon energies, there are delay intervals where the
XU V-initiated generation channel is suppressed. It is
important to emphasize that interference phenomena,
caused by the spectral overlap of different
XUV-induced generation channels with the IR-field
HHG channel, are key to a deeper understanding
of atomic photoprocesses occurring in the field of
synchronized XUV and IR pulses. These phenomena
can also form the basis for optical methods to
extract the temporal profile of the IR pulse from the
measured generation spectra [39, 77, 78].
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