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1. INTRODUCTION

Signif icant progress has been made in the 
theoretical description of nonlinear effects arising 
from the interaction of intense infrared (IR) 
laser fields with atomic systems. The quantum 
mechanical description of processes induced 
by an intense IR field involves two approaches: 
numerical methods, such as solving the time-
dependent Schrödinger equation (TDSE) and its 
simplified variations for multi-electron systems 
(density functional theory, time-dependent 
Hartree-Fock method) [1–9], and analytical 
approaches. Numerical calculations typically 
serve as “benchmarks” for verifying the accuracy 
of analytical approaches and demonstrate their 
efficiency in determining the nonlinear response of 
an atomic system to an intense external alternating 
electric field. However, the results of numerical 
integration can only be obtained for fixed laser 
parameters and lack significant predictive power. 
Specif ically, in most cases, it is necessary to 
perform numerous time-consuming computations 
to achieve the desired physical interpretation of the 

observed effect. In contrast, analytical theories are 
better suited for uncovering general fundamental 
patterns in the nonlinear interaction of an atomic 
system with an intense laser field.

Analytical approaches to describing nonlinear 
effects in the interaction of IR fields with atomic or 
molecular systems are typically based on the single-
electron approximation. Within this approximation 
(subject to certain obvious limitations), it becomes 
possible to derive expressions for the amplitudes 
and cross sections of fundamental laser-induced 
and laser-assisted atomic processes with accuracy 
not inferior to numerical results of TDSE solution 
[10–16].
A key advantage of analytical approaches over 
numerical methods is the ability to establish a 
universal parameterization dependence of the 
probabilities of the strong-field processes on the 
fundamental characteristics of the target (i.e. the 
electron-core interaction potential U(r)) and the 
laser-pulse parameters (see, e.g., [17]).
These parameterizations can be further generalized 
to multi-electron systems, enabling the study of 
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the effects of internal electronic dynamics in laser-
induced photoprocesses [18].

Among the analytical approaches, the most 
popular is the S-matrix formalism, where the exact 
wave function of the active electron in the self-
consistent potential U(r) is expanded into a formal 
series in U(r) [19, 20] (see also [21, 22]). This 
expansion leads to a Born series for the transition 
amplitude, where the terms (partial transition 
amplitudes) can be expressed as a convolution of the 
free-electron Green’s function in the laser field with 
the atomic potential. For example, for the above-
threshold ionization (ATI) process, the account 
of U(r) in the lowest order leads to the Keldysh 
result [23].

Due to the large value of the classical action of 
the electron in a strong low-frequency field, the 
partial amplitudes can be analyzed using the saddle-
point method [24], which gives rise to the quantum 
orbit approach [25, 26]. This approach provides 
an intuitive physical interpretation of strong-field 
phenomena in terms of classical trajectories, thereby 
justifying the rescattering model for fundamental 
atomic photoprocesses in an intense laser field [19, 
20, 27, 28].

Although the Born expansion of transition 
amplitudes has proven fruitful and significantly 
contributes to the description of strong-f ield 
phenomena, it cannot fully account for the 
atomic potential, whose influence can be crucial 
[9, 18, 29–32]. One approach that allows for a 
more accurate treatment of the atomic system 
dynamics in an intense low-frequency field is the 
adiabatic approximation. The general idea of this 
approximation is based on the smallness of the 
carrier frequency ω of the laser pulse compared 
to the ionization threshold Ip of the atomic target 
�ω� Ip . The lowest-order of the adiabatic 
approximation (zero-order approximation) is 
defined by the quasistationary state of the system 
in a static (DC) field with an intensity equal to 
the instantaneous value of the low-frequency laser 
field [33–37]. In [11–17], a correction to the zero-
order adiabatic approximation was derived for the 
wave function, accounting for the rescattering of 
the electron by the atomic potential. The study [38] 
refined the adiabatic approach for determining the 
atomic state in the lowest adiabatic approximation, 
by utilizing the analytical part of the wave function of 
the quasistationary atomic state in the instantaneous 

laser field. Within the adiabatic approach, both low-
energy and high-energy (rescattering plateaus) parts 
of the photoelectron spectra and high-harmonic 
generation (HHG) spectra have been calculated.

The presence of a closed analytical expression for 
the wave function of the atomic state in an intense 
IR field allows for the development of an adiabatic 
perturbation theory in additional interaction with 
a high-frequency (e.g., extreme ultraviolet – XUV) 
attosecond pulse [17, 39]. The inf luence of an 
ultrashort XUV pulse on the radiation generation 
process results in the appearance of a significant 
number of new generation channels and substantial 
modification of the IR field HHG spectra. For 
example, the enhancement of harmonic yield due 
to the resonant population of excited target states 
by the XUV pulse was studied in [40–43]. XUV-
induced enhancement of high harmonic yield was 
investigated both for attosecond pulse train [44–
47] and for an isolated attosecond XUV pulse [48, 
49]. These studies demonstrated that a XUV pulse 
(or its sequence) can affect the ionization stage in 
the three-step Corkum model [50], i.e., change the 
ionization times and thereby affect the harmonic 
yield. In [51, 52], it was shown that adding a weak 
XUV field leads to the appearance of an additional 
plateau in the HHG spectra. The physics of the 
additional XUV-induced plateau was explained 
in [53], where it was shown that the additional 
plateau results from XUV-photon absorption at 
the recombination stage. It should also be noted 
that, at sufficiently high carrier frequencies of the 
XUV pulse, electrons from the inner atomic shell 
can also participate in the HHG process, leading 
to an increase in the cutoff energy of the plateau 
[54–56]. Moreover, such XUV pulses, combined 
with an intense IR field, enable the study of Auger 
processes [57, 58] and electronic transitions from 
inner shells to the valence shell [59]. The re-
emission channel (or elastic scattering) of a XUV 
photon by the atomic system, leading to significant 
enhancement of the generated radiation yield, was 
studied in [60]. Second-order processes of XUV 
interaction in an IR-dressed atomic medium were 
also investigated: generation of a XUV pulse at the 
doubled carrier frequency [39] and the XUV pulse 
rectification effect [61].

In this paper, we generalize the perturbative 
approach proposed in [17, 39] to construct 
perturbation theory corrections for the interaction 
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with a short XUV pulse of arbitrary order, based on 
adiabatic wave functions of the atomic state in an 
intense IR field. Within the developed perturbation 
theory, XUV-induced radiation generation channels 
are investigated by analyzing classical electron 
trajectories in the field of synchronized intense IR 
and attosecond XUV pulses, and the possibility of 
interference between different channels due to their 
spectral overlap is explored. The article uses atomic 
units unless otherwise specified.

2. ADIABATIC APPROACH  
TO THE DESCRIPTION OF AN ATOM  

IN A LOW-FREQUENCY LASER FIELD

2.1. Adiabatic expression for the wave function

Let us consider the interaction of an atomic system 
with an intense infrared (IR) laser pulse characterized 
by the peak electric field strength FIR  and the carrier 
frequency ωIR . We will assume that the laser pulse 
parameters satisfy the adiabatic conditions [23]:

	 ω γIR KE | |, 10 , � (1)

where γ κωK IR IRF= /  is the Keldysh parameter, 
κ = 2 | |0E , E0  is related to the binding energy 
of the unperturbed atomic level. The conditions 
(1) can also be rewritten in terms of the average 
oscillation energy of a free electron in the laser field 
u Fp IR IR= / (4 )2 2ω :

	 ω ωIR IR pE u | |, .0 �  (2)

To describe the nonlinear interaction of an atomic 
system with a laser field that satisfies the conditions 
(2), it is most convenient to use the adiabatic 
approach [12, 13, 37]. Within this approach, the 
wave function of an atomic electron interacting with 
a low-frequency laser field can be represented as a 
sum of “slow” ( ΨIR t(0)( , )r ) and “fast” ( ΨIR

r t( )( , )r ) 
time-dependent parts [11, 12, 17]:

	 Ψ Ψ ΨIR IR IR
rt t t( , ) = ( , ) ( , ).(0) ( )r r r+ � (3)

The slow part ΨIR t(0)( , )r  represents the adiabatic 
approximation in the lowest order (“zero-order” 
approximation) and is defined by the quasistationary 
state in a DC electric field with a strength equal to the 
instantaneous value of the IR field at time t [37, 12]. 
In many practical calculations, the function ΨIR t(0)( , )r

can be accurately approximated by the initial-state 
wave function in the absence of the IR field:

	 ΨIR
iE t

t e(0) 0
0( , ) ( ).r r≈

−
ϕ � (4)

The term ΨIR
r t( )( , )r  in Eq. (3) describes the 

rescattering effects of the valence electron on the 
atomic core and represents a superposition of 
scattering states ψK s

( )+  of the electron in the atomic 
potential with laser-induced momenta K s  [17]:

	 Ψ ΦIR
r iE t

IR
rt e t( ) 0 ( )( , ) = ( , ),r r

- � (5а)

	 ΦIR
r

s
s

s
t a t( ) ( )( , ) = ( ) ( ).r rK∑ +ψ � (5b)

Each term in the sum (5b) is associated with one of 
the possible closed classical trajectories, which start 
at the tunneling time t′s and end at the return time t 
of the electron back to the atomic core. The laser-
induced momenta are defined by the expression:

	 K Ks st t= ( , ),¢ � (6)

K A A( , ) = ( )
1

( ) ,t t t
t t

dIR

t

t

IR′ −
− ′

′
∫ t t

where A IR t( )  is the vector potential associated with 
the electric field strength FIR t( )  of the laser pulse by 
the relation:

F AIR IRt t t( ) = ( ) / .−∂ ∂

The tunneling times ¢t ts ( )  as functions of the return 
times t satisfy the transcendental equation (see details 
in [14]):

	 ′ ⋅ ′K Ks s
 = 0, � (7)

where

′ ≡ ′ ′K Ks st t( , ),

	  ′ ∂ ′
∂ ′

K
K

s
s

st
= , � (8)

′ ′ ′ −
− ′

′
∫K A A( , ) = ( )

1
( ) .t t t

t t
dIR

t

t

IR t t

Equation (7) has a simple physical meaning: the 
atomic electron tunnels at the moments in time that 
provide the minimum kinetic energy of the released 
electron in the laser field. The time-dependent 
coefficients a ts ( )  in the superposition (5b) represent 
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the product of the ionization (tunneling) factor 
a ttun

s
( )( )¢  and the propagation factor a t tpr

s
( )( , )¢ :

	 a t a t a t ts
tun

s
pr

s( ) = ( ) ( , ).( ) ( )¢ ¢ �  (9)

The ionization factor is characterized by the 
tunneling exponent in the instantaneous “static” 
electric field with the strength:

 = [ ( ) ( )] ,2 1/2F K FIR s s IR st t′ − ′ ⋅ ′

see [62]. For example, in the case of a linearly 
polarized laser field, the following relation holds:

	 a t etun
s

Fat FIR ts( ) /(3| ( )|)
( ) ,′ ∝

− ′
� (10)

where Fat = 3κ  def ines the magnitude of the 
characteristic intra-atomic field. To satisfy the 
quasiclassical condition, an additional inequality 
must hold: F Fat , which ensures the smallness 
of the ionization factor and the insignificance of the 
initial-state decay effects.

The propagation factor a t tpr
s

( )( , )¢  is determined 
by the classical action S t ts( , )¢  of the free electron in 
the laser field over the time interval from ¢ts  to t:

	 a t t
e

t t

pr
s

iE t ts iS t ts

s

( )
0( ) ( , )

3/2
( , ) =

( )
,′

− ′

− ′ − ′

� (11a)

S t ts

ts

t

IR( , ) =
1
2

( )′ −[
′
∫ A t

	 −
− ′

′ ′
′
∫

1
( ) .

2

t t
d d

s ts

t

IRA t t t � (11b)

It is important to note that the rescattered part 
ΦIR

r t( )( , )r  of the atomic electron wave function in the 
IR field, relative to the unperturbed function j0( )r , 
has a smallness bIR

βIR K
IR

at

Fat FIRF
F

e= 1.3/2 /(3 )
γ

-


Essentially, the result (3) represents an expansion of 
the atomic electron state in terms of bIR up to the 
first order. In the following, we will maintain this 
accuracy, as the inclusion of higher-order terms in 
the expansion of bIR  (i.e., a more precise account of 
rescattering effects) does not lead to any significant 
manifestations in the amplitudes and cross sections 
of processes in a strong IR laser field.

2.2 Amplitude of radiation generation

The amplitude of photon generation by an atom 
in an intense laser field is determined by the dipole 
matrix element [63, 64]:

	 D r r r( ) = ( , ) ( , ) ,Ω Ψ Ψ Ω∫ 〈 〉

IR IR
i tt t e dt � (12)

where W is the frequency of the generated photon, 
ΨIR t( , )r  is the dual wave function to the state 
ΨIR t( , )r , def ined from the state ΨIR t( , )r  by 
complex conjugation, time reversal t t→ − , and 
the replacement of all t-odd parameters l for –l 
[65, 66]. In a low-frequency laser field, the dipole 
matrix element (12) for W > |E0| can be approximately 
expressed through Ψ(0)( , )r t  and ΨIR

r t( )( , )r  [17, 63]:

	 D r r( ) = | | ( , ) .0
0 ( )Ω Ψ Ω∫ 〈 〉

−
ϕ e t e dt

iE t
IR
r i t � (13)

The harmonic yield, summed over polarizations 
and integrated over directions, is determined by the 
square of the modulus of D(W):

Y
c

=
( )

4
,

4 2

2 3

Ω ΩD

π

where c is the speed of light.
In the adiabatic approximation, the time integral 

in (13) is evaluated using the saddle-point method, 
and D(W) can be represented as a sum of partial 
amplitudes Dj(W) [14, 17]:

	 D(W)D D( ) = 
j

jå ( ),(W),� (14а)

	 Dj(W)D d Kj j
tun

j j

i t ja a e( ) = ( ) ,( )
iWtj,� (14b)

where aj
tun( ) , a j  are the tunneling and propagation 

factors, respectively, and d K( )j  is the dipole matrix 
element for the transition from the continuum state 
with momentum K j  to the bound state j0( )r :

d K r r rK( ) = ( ) | | ( ) .0
( )

j
j

〈 〉+ϕ ψ

The factors aj
tun( ) , a j  are defined by the relations:

a a tj
tun tun

j
( ) ( )( ),≡ ′

a
i

t
t t

a t tj

j IR j
j

j j

pr
j j=

2

( )

( , ).
2

( )≠

K F
K

⋅ +
− ′

′2pi



JETP,  Vol. 167,  No. 1,  2025

28	 Breev et al.

The summation in (14a) is performed over all 
closed classical electron trajectories, defined by the 
start time ¢t j  and end time t j of the electron’s motion. 
The times ¢t j  and t j  are the roots of the system of 
transcendental equations [14, 17]:

	 ′ ⋅ ′ +K K Kj j j E = 0, = 2( ),2
02(W + E0),� (15)

where the induced momenta  ′ ≡ ′ ′K Kj j jt t( , ),  
K Kj j jt t≡ ′( , )  are defined in Eqs. (8) and (6), 
respectively.

3. TIME-DEPENDENT PERTURBATION 
THEORY FOR AN ATOMIC SYSTEM  

IN AN INTENSE IR FIELD

Let us consider an atomic system interacting with 
an intense IR field and a perturbative XUV pulse. The 
account of the XUV interaction with the IR-dressed 
atomic system can be treated within the perturbation 
theory based on the adiabatic wave functions of the 
atomic electron in the IR field [17]. We will consider 
the interaction with the XUV pulse in the dipole 
approximation, so that the potential V tXU V ( , )r  of 
the interaction between the atomic electron and the 
XUV pulse has the form:

V t V t e V t eXU V
i t i tXU V XU V( , ) = ( , ) ( , ) ,r r r+
−

−+ω ω � (16)

V t
F

f tXU V
XU V XU V+ ⋅( , ) =

2
( ) ( ),r e r

V t V t− +( , ) = ( , ),*r r

where FXU V  is the peak field strength, ωXU V  is the 
carrier frequency, eXU V  is the polarization vector, 
and f tXU V ( )  is the XUV pulse envelope.

Note that for ωXU V E>| |0 , the small perturbation 
parameter for the XUV interaction is defined as [67]

	 βXU V
XU V

XU V XU V

XU V

at

F E F
F

= = 4 1.
2

0
2

2

κ

ω ω
 � (17)

Therefore, even in the case of XUV radiation strength 
comparable to Fat, the interaction V XU V  can be 
treated perturbatively [68].

The state Ψ( , )r t  of the atomic electron in the field 
of synchronized IR and XUV pulses can be written as:

Ψ Ψ( , ) = ( , )r rt tIR +

	 + ′ ′ ′ ′ ′ ′ ′ ′∫∫( , ; , ) ( , ) ( , ) ,r r r r rt t V t t d dtXU V IRΨ � (18)

where ( , ; ', )r rt t ¢ is the time-dependent (retarded) 
Green’s function of the atomic electron in the two-
component field. For the function ( , ; ', )r rt t ¢ ,  the 
Dyson equation holds:

  ( , ; , ) = ( , ; , ) ( , ; , )r r r r r rt t t t t tIR IR′ ′ ′ ′ + ′′ ′′ ×∫∫
	 × ′′ ′′ ′′ ′′ ′ ′ ′′ ′′V t t t d dtXU V ( , ) ( , ; , ) ,r r r r � (19)

where IR t t( , ; ', )r r ¢  is the time-dependent (retarded) 
Green’s function of the atomic electron in the 
IR field. Using the relations (18) and (19), we can 
represent the wave function Ψ( , )r t  as a perturbation 
series in V XU V :

	 Ψ Ψ Ψ( , ) = ( , ) ( , ),0
=1

r r rt t t
n

n+
∞

∑ � (20)

where Ψ Ψ0( , ) ( , )r rt tIRº  is the atomic state in 
the absence of the XUV pulse (see Eq. (3)), and 
Ψn(r,t) ~ bn

XUV are the n-order corrections, satisfying 
the following recursive relation:

Ψn IRt t t+ ∫∫ ′ ′ ×1( , ) = ( , ; , )r r r

	 × ′ ′ ′ ′ ′ ′V t t d dtXU V n( , ) ( , ) .r r rΨ � (21)

The accuracy of the adiabatic approximation 
allows for the approximate evaluation of the time 
integrals in (21). The main contribution to the value 
of the corresponding integrals are given primarily by 
the weakly overlapping neighborhoods of the points 
¢t t=  and ¢ ¢t t ts= ( ) ,  where ¢t ts ( )  are the saddle points 

of the phase of the rapidly oscillating factor of the 
integrand in (21). This phase is primarily determined 
by the classical action of the electron in the IR field 
and the carrier frequency of the XUV pulse. The 
asymptotic expression for the Green’s function 
IR t t( , ; ', )r r ¢  in the vicinity of these singular points 
was obtained in [17]:

IR t t( , ; ', )r r ′ ≈

     ≈
′ ′ ≈ ′

′ ′+ +

G t t t t

G t t

at

ol

( , ; , ), ,

(0, ;0, ) ( )[ ( ' )] ,( )
'

( ) *

r r

r rK Kv ψ ψ tt t≠ ′






 ,

�(22)

Where G t tat ( , ; ', )r r ¢  is the time-dependent atomic 
Green’s function of the electron, G t tolv (0, ;0, )¢  is the 
Volkov Green’s function of the electron in the IR 
field for r r= ' = 0 , and the momenta K K≡ ′( , )t t  
and K K' '( , )≡ ′t t  are defined by Eq. (6) and (8), 
respectively.
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The explicit expression for the nth-order 
correction Ψn t( , )r can be obtained by sequentially 
calculating the lower-order corrections, using the 
relations (22) and (21) and approximately evaluating 
the time integrals. The nth-order correction can be 
decomposed into a slow part Ψn

s( ) and a fast part Ψn
r( ) :

	 Ψ Ψ Ψn n
s

n
rt t t( , ) = ( , ) ( , ).( ) ( )r r r′ ′ + ′ � (23)

To determine the slow part Ψn
s( ) , we represent it 

as a superposition:

	 Ψn
s iE t nt e t( ) ( )( , ) ( , ),r r≈ ∑ −

ν

ν
νϕ � (24)

where E E XU Vν νω= 0 +  are time-dependent 
coeff icients, and the slow (in time) functions 
ϕν

( )( , )n tr  require further definition. The slow time 
dependence of the functions ϕν

( )( , )n tr , as well as 
the envelope f tXU V ( ) , will be understood under the 
following conditions:

	 ¶
¶
ϕ

ω ϕν
ν

( )
( ) ,

n

XU V
n

t
 � (25a)

	 ¶
¶

f t
t

f tXU V
XU V XU V

( )
( ) . ω � (25b)

It should be emphasized that in order to isolate 
the slowly varying part of the wave function, one 
should neglect the contribution from the saddle 
point neighborhoods ¢t ts ( )  in the time integral in 
(21) and consider only the vicinity of the endpoint 
′ ≈t t . Substituting (24) into (21) and using the 

asymptotic form of the Green’s function for ′ →t t  
(see Eq. (22)), we obtain:

ν

ν
ν∑ ∫∫

− + ′ ′ ×e t G t t
iE t n

atϕ( 1)( , ) = ( , ; , )r r r

	 × ′ ′ ′ ′ ′ ′
′

− ′ ′
′∑V t e t d dtXU V

iE t n( , ) ( , ) .( )r r r
ν

ν
νϕ � (26)

Next, approximating the slow functions ϕν
( )( , )n t¢ ¢r  

on the right-hand side of Eq. (26) by their values at 
¢t t=  and using the relation between the stationary 

and time-dependent atomic Green’s functions:

	 G e G t t dtE
iE t t

at( , ) = ( , ; , ) ,( )r r r r′ ′ ′∫ − ′ � (27)

we obtain:

ν

ν
ν∑ − +e t

iE t nϕ( 1)( , ) =r

= |1
1

( )

′

− ′+
′+ + ′∑ 〉+

ν

ν
ν νϕe G V

iE t
E

n

	 + 〉
′

− ′−
′− − ′∑

ν

ν
ν νϕe G V

iE t
E

n1
1

( )| . � (28)

Note that if the energy of the Green’s function 
coincides with the energy of the ground state, then, 
according to perturbation theory, the Green’s 
function is replaced by the reduced Green’s function 

¢G E0
 [69, 70]:

	 ′ ′ −
′
−















→

G G
E EE

E E
E0

0

0
*

0

0
= ( , )

( ) ( )
.lim r r

r rj j � (29)

Given the weak dependence of the functions ϕν¢
( )n  

and V±  on time [see (25)], we equate the coefficients 
of the “fast-oscillating” exponentials with identical 
exponents in (32) and obtain the equation for the 
functions ϕν

( 1)n+ :

ϕ
ϕ ϕ

ϕ
ν

ν ν ν ν ν
( 1) 1

( )
1

( )

0 1
( )

=
| | , 0,

|

n
E

n
E

n

E
n

G V G V

G V

+ + − − +

+ −

〉+ 〉 ≠

′ 〉+ ′GG VE
n

0 1
( )| , = 0.− + 〉









ϕ ν
�(30)

The iterative method for solving Eq. (30) assumes 
the following expression for the zero iteration:

	 ϕ ϕν νδ
(0)

0 ,0( , ) = ( ) .r rt � (31)

Thus, using the relations (24) and (30), one can 
find the nth-order correction for the slow part of the 
wave function, which formally coincides with the 
expression for the nth-order perturbation theory in 
a monochromatic field [70] (for a monochromatic 
field: f tXU V ( ) 1º , i.e., V±  do not depend on time). 
We write the wave function Ψn

s( )  in the nth order of 
perturbation theory using the integral operator Pn

 :

	 Ψn
s

nt P E t( )
0 0( , ) = ( , ) | ,r  ϕ ñ � (32)

which represents the convolution of the atomic 
Green’s function with all possible n-combinations of 
the operators V+  and/or V- . We present the explicit 
form of the operators Pn

 for the first three orders of 
perturbation theory ( n3 ):

P E t e I
iE t� �

0 0
0( , ) = ,

-

P E t e G V e G V
iE t

E
iE t

E


1 0
1

1
1

1
( , ) = ,

−
+

− −
− −+

P E t e G V G V
iE t

E E


2 0
2

2 1
( , ) =

−
+ + +

+ ′ +
−

− +e G V G V
iE t

E E
0

0 1
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+ ′ +
−

+ − −e G V G V
iE t

E E
0

0 1

+
− −

− − − −e G V G V
iE t

E E
2

2 1
,

P E t e G V G V G V
iE t

E E E


3 0
3

3 2 1
( , ) =

−
+ + +

+ +
−

− + +e G V G V G V
iE t

E E E
1

1 2 1

+ ′ +
−

+ − +e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
−

+ + − −e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
− −

− − − +e G V G V G V
iE t

E E E
1

1 0 1

+ ′ +
− −

− + − −e G V G V G V
iE t

E E E
1

1 0 1

+ +
− −

− + − − − −e G V G V G V
iE t

E E E
1

1 2 1

+
− −

− − − − − −e G V G V G V
iE t

E E E
3

3 2 1
,

where I  is the identity operator. It is evident that the 
slow part of the wave function is the sum of partial 
terms Ψn

s t( )( , )r :

	 Ψ Ψ( )

=0

( )

=0
0 0( , ) = ( , ) = ( , ) ( ).s

n
n
s

n
nt t P E tr r r

∞ ∞

∑ ∑  ϕ �(33)

The similarity between the perturbation series in 
the XUV interaction of the atomic wave function in 
an intense IR field and the well-known perturbation 
result for the quasistationary atomic state in a 
monochromatic laser field, obtained within the 
quasistationary quasienergy state (QQES) method 
[70], is noteworthy. The series (33) formally 
coincides with the QQES result after replacing the 
exact quasienergy e by the ground state energy E0  
and the field strength FXU V  by the instantaneous 
amplitude of the pulse field XU V XU V XU Vt F f t( ) = ( ). 
Thus, if the functional dependence of the QQES wave 
function ΨXU V

QQES
XU Vt F( )( , ; , )r ε  on the quasienergy 

and field strength is known, the same dependence 
defines the wave function Ψ( )( , )s tr :

	 Ψ Ψ( ) ( )
0( , ) = ( , ; , ( )).s

XU V
QQES

XU Vt t E tr r  � (34)

In contrast to the slow part, the time dependence 
of the fast part Ψn

r t( )( , )r  is determined by the rapidly 
oscillating exponential factor e iS- ,  defined by 
the classical action S of the electron in the IR field 
along the closed trajectories (see Eqs. (5b), (9), and 
(11a)). It should be noted that, within the adiabatic 
approximation, the appearance of any products of 
two or more Volkov Green’s functions exceeds the 

accuracy of the method. Therefore, in any order of 
perturbation theory for the XUV interaction, the 
expression for Ψn

r t( )( , )r  contains only one Volkov 
Green’s function. From relation (21), it follows that 
Ψn

r t( )( , )r  is defined as the convolution result of either 
the slow part Ψn t( , )r  with the Green’s function G IR , 
approximated by the Volkov Green’s function (see 
Eq. (22), or the fast part Ψn t( , )r  with the Green’s 
function G IR , approximated by the atomic Green’s 
function (see Eq. (22)):

Ψn
r t+1

( ) ( , ) =r

= (0, ;0, ) | ( ) | ( ) ( )'
( ) ( ) ( )∫ ′ 〈 ′ ′ 〉 ′++ +G t t V t t dtol XU V n

s
v ψ ψK K rΨ

+ ′ ′ ′ ′ ′ ′ ′ ′∫∫G t t V t t d dtat XU V n
r( , ; , ) ( , ) ( , ) ,( )r r r r rΨ � (35)

where the first integral implies an approximate 
evaluation using the saddle-point method, while 
the second integral should be evaluated considering 
only the contribution from the vicinity of ′ ≈t t . 
Accordingly, Ψn

r
+1

( ) can be written as the sum of two 
terms:

	 Ψ Ψ Ψn
r

n
r

n
r

+ + ++1
( )

1
( ,1)

1
( ,2)= , � (36)

where the expressions for для Ψn
r
+1

( ,1) , Ψn
r
+1

( ,2)  are 
discussed below.

We will use the approximate expression (27) for 
the Green’s function Ψn

s( )  in the first integral of (39) 
and then perform the saddle-point integration over 
¢t . As a result, we obtain an expression for Ψn

r
+1

( ,1) :

Ψn
r

t

t G t t+
′

+∑ ∑′ ′ ×1
( ,1) ( )( , ) = ( ) ( , )r r

K
ν

νψ






×〈 ′ 〉+ 〈 ′ 〉



′

+
+ − ′

+
− +ψ ϕ ψ ϕν ν 

 

K K
( )

1
( ) ( )

1
( )| ( ) | | ( ) |V t V tn n ,,  (37)

where  ¢ ¢ ¢K K= ( , )t t ,   K K= ( , )t t ¢ ,  the summation is 
carried out over all allowed values of v with the same 
parity as n +1  in the interval | | 1n n + , and the 
saddle points  t t t' '( )º , defined by the equation:

	  ¢K 2 = 2 .En � (38)

In (37), the following notation is used, defined as:

G t t
e

t t

iS t t iE t

ν

ν

π
( , ) =

2 ( )

( , )

3/2




 

′ −
− ′

×
− ′ − ′

	 × ′ ⋅ ′ − − ′




−� � �K FIR t E t t( ) 2 / ( ) .

1/2

n � (39)

The accuracy of the approximate expression for 
the Green’s function in (22) implies that only those 
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saddle points v should be considered in the sum (37) 
that ensure the solution of Eq. (38) in real numbers.

From expression (37), it follows that the correction 
Ψn

r
+1

( ,1)  to the fast part of the wave function describes 
a rescattering state, formed within the three-step 
scenario:

First stage: as a result of the absorption or 
emission of n XUV photons, the atomic system forms 
states ϕν

( )n .
Second stage: a stimulated single-photon 

transition (with absorption or emission of a photon) 
from one of the states jn(n) to a continuum state with 
asymptotic momentum K~′ occurs at the moment t~′.

Third stage: while in the continuum, the electron 
interacts with the intense IR field and forms, at 
the moment t, the state ψ

K
r( )( )+ , acquiring energy 

while moving along a closed classical trajectory. 
The propagation of the electron wave packet in the 
continuum is described by the multiplier G t tn( , )¢ .

As follows from Eqs. (5b) and (37), the fast part 
of the wave function is determined by the rapidly 
oscillating factor e iS t t− ′( , ) , which defines the IR-
controlled propagation of the electron in the 
continuum, and the continuum state function ψK

( )+ .  
The same components determine the correction 
Ψn

r( ,2) , so, without loss of generality, we represent 
Ψn

r( ,2)  as:

	 Ψn
r

s
s
n

s
a t( ,2) ( ) ( )= ( ) | ,∑ + 〉 ψK � (40)

where a t es
n iS t t s

( ) ( , )( ) ∝ − ′  is a certain integral 
operator, and the summation is performed over 
all real ionization moments t s

¢ ,  induced by the IR 
or XUV field. In the zero approximation for the 
XUV interaction: t ts s

′ ≡ ′  (see relation (7)), and 
a a t Is s
 

(0)
( )º  (see relation (9)). It is worth noting 

that the operator a ts
n



( )( ) can be defined by two terms 
(denoted below by the indices a and b), describing 
two different scenarios of the electron interaction 
with the IR and XUV pulses:

a) The atomic electron tunnels into the IR-
modified continuum and, while propagating along 
closed classical trajectories in the IR field, absorbs v 
and emits n–v of XUV photons (parity of n and v is 
the same).

b) The atomic electron transitions into the IR-
modified continuum with energy E ¢n  by absorbing 
¢n  of XUV photons, where, during propagation 

along the closed classical trajectories in the IR field, 
it absorbs and emits additional XUV photons.

According to the described mechanisms, we 
represent the function Ψn

r( ,2)  as a sum:

	 Ψ Ψ Ψn
r

n
r

n
r( ,2) ( ,2 ) ( ,2 )= .a b+ � (41)

The mathematical expression for the operator 
a ts

n


( )
( ),  corresponding to the realization of Scenario 

(a), can be easily obtained from (35) (see the second 
integral term on the right-hand side), assuming that 
the “zero iteration” Ψ Ψ0

( ) ( )=r
IR
r  for the fast part of 

the wave function is defined in (5). By sequentially 
calculating the time integrals in (35) and considering 
the contribution from the vicinity of the point ¢t t= , 
we obtain the general expression for Ψn

r t( ,2 )( , )a r :

	 Ψn
r

s
s n

s

s
t a t P t( ,2 )

2
( )( , ) = ( )

2
, ( ),a r

K
rK∑












+

 ψ � (42)

where the summation includes all solutions of Eq. (7). 
It is worth noting that, similar to the previously 
considered case of the functions Ψ( )( , )s tr , the 
summation of the perturbation series in n, taking 
into account the explicit form of (46), leads to a 
result formally coinciding with the expression for the 
quasienergy scattering state ΨK r( )( , ; , ( ))+ t tXU Vε   of 
the atomic electron in a monochromatic XUV field 
[70] with the quasienergy e = / 22K s , the asymptotic 
momentum K K= s , and the XUV field strength, 
equal to the instantaneous value XU V t( ) :

n

n
s

s
P t∑











+



K
rK

2
( )

2
, ( ) =ψ

	 = , ;
2

, ( ) ( , ),( )
2

( )Ψ ΨK Kr
K

r
s

s
XU V

s
t t t+ +












≡ � (43)

and therefore,

  Ψ Ψ Ψ( ,2 ) ( ,2 ) ( )( , ) = ( , ) = ( ) ( , ).r

n
n
r

s
s

s
t t a t ta ar r rK∑ ∑ + �(44)

The correction Ψn
r( ,2 )b  to the fast part of the 

wave function, responsible for the realization of 
Scenario (b), arises in the second and higher orders 
of perturbation theory. As the “zero iteration” for 
obtaining this correction, we use the term Ψ1

( ,1)r  
(Ψ Ψ0

( )
1
( ,1)=r r ), corresponding to the absorption of a 

XUV photon (see the first term in the square brackets 
in (37)):
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  Ψ0
( )

'

( )
1 '

( )
0( , ) = ( ) ( , ) | ( ) | ,r

t

t G t t V tr r
K K



 

 ∑ + +
+′ 〈 ′ 〉ψ ψ ϕ �(45)

where t'  is determined from Eq. (38) with n = 1.  
Substituting (45) into the second term in (35) and 
evaluating the time integral in the vicinity of ′ ≈t t , 
we obtain the desired second-order correction:

Ψ2
( ,2 )

'

1

2
( )( , ) =

2
, ( )r

t

t P tb r
K

r
K

�
�

� �
∑











×+ψ

	 × ′ 〈 ′ 〉′
+

+G t t V t1
( )

0( , ) | ( ) | . 



ψ ϕ
K

� (46)

It is easy to give a transparent physical meaning to 
relation (46): the electron, being in the bound state, 
absorbs a XUV photon and passes to a continuum 
state with asymptotic momentum K '  (that 
corresponds to the matrix element 〈 ′ 〉′

+
+ψ ϕ





K
( )

0| ( ) |V t  
in (46)). The electron propagates in the IR-dressed 
continuum along a closed trajectory (see the 
multiplier G t t1( , ') ). As a result, it forms a continuum 
state at time t  through a single-photon channel of 
interaction with XUV radiation (i.e., by absorbing or 
emitting a XUV photon).

In the third order of perturbation theory, the 
calculations are carried out similarly, and the 
corresponding correction takes the form:

Ψ3
( ,2 )

( =1)
2

2
( )( , ) =

2
, ( )r

t

t P tb r
K

r
K

�
�

� �

′

+∑










×

ν
ψ

× ′ 〈 ′ 〉++
+G t t V t1 '

( )
0( , ) | ( ) | 



ψ ϕ
K

+










×

′

+∑
�

�
� �

t

P t
( =2)

1

2
( )

2
, ( )

ν

K
r

K
ψ

	 × ′ 〈 ′ ′ 〉′
+

+ +G t t V t G V tE2
( )

1 0( , ) | ( ) ( ) | ,  



ψ ϕ
K

� (47)

where the times ¢t  for the first (second) sum are 
found from Eq. (38) for ν = 1 (ν = 2) respectively. 
The interpretation of the f irst sum in (47) is 
analogous to that provided for relation (46), except 
that at the final stage, the continuum state is formed 
through the two-photon interaction with the XUV 
radiation. The partial terms in the second sum 
reflect the following physical mechanism: the bound 
electron, having absorbed two photons, passes into 
a continuum state, where it propagates along a 
closed trajectory driven by the IR field and forms a 
continuum state through a single-photon channel of 
interaction with XUV radiation. It should be noted 
that, although the determination of higher-order 
corrections presents no significant difficulties, they 

are not considered in this work due to the complexity 
of the final expressions.

4. GENERATION OF RADIATION BY AN 
ATOM IN SYNCHRONIZED IR AND XUV 

PULSES

4.1. Generation channels

We will use the obtained expressions for the 
wave function to determine the radiation generation 
amplitude by an atom in the field of synchronized, 
linearly polarized IR and XUV pulses:

	 F F F( ) = ( ) ( ),t t tIR XU V+ − t � (48)

where t is the time delay between the pulses, defined 
as the time interval between the peaks of their 
envelopes. The amplitude of radiation generation is 
given by Eq. (12) with the substitution:

Ψ Ψ Ψ ΨIR IRt t t t( , ) ( , ), ( , ) ( , ),r r r r® ® 

where Ψ( , )r t is dual wave function, defined from 
Ψ( , )r t  by the same procedure as ΨIR t( , )r  (see 
discussion below Eq. (12)).

As shown in the previous section, the wave 
function Ψ( , )r t  is represented as the sum of “slow” 
( Ψ( )( , )s tr ) and “fast” ( Ψ( )( , )r tr ) components. 
Accordingly, the radiation generation amplitude can 
be written as:

D(W) = D(s)(W) + D(r)(W) +

+ D
~ (r)(W) + D̂(r)(W),� (49a)

( ) ( ) ( )( ) = ( , ) | | ( , ) ,s s s i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉 r r r � (49b)

( ) ( ) ( )( ) = ( , ) | | ( , ) ,r s r i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉 r r r � (49c)

 ( ) ( ) ( )( ) = ( , ) | | ( , ) ,r r s i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉r r r � (49d

� �( ) ( ) ( )( ) = ( , ) | | ( , ) ,
r r r i tt t e dtΩ Ψ Ψ Ω∫ 〈 〉r r r � (49e)

where each term is discussed in detail below.
The “slow” term D(s)(W) describes harmonic 

generation of the XUV field by the atomic system. 
Considering that Ψ( )( , )s tr  is def ined by the 
perturbation series (see Eqs.  (33) and (34)), it is 
evident that D(s)(W) can be expressed in terms of 
nonlinear susceptibilities cn at the frequencies of the 
generated harmonics:
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	 ( )( ) = ( ) ( ),s i

n
n XU V XU V

n
ne F fΩ ΩΩτ χ ωå � (50)

	 fn(W)f f t e dtn n XU V
n i t( ) =

1

2
( ) .

−∞

∞

∫ iWtdt.� (51)

It is worth noting that, due to dipole selection 
rules for centrally symmetric systems, the nonlinear 
susceptibilities χ ωn XU V( )  for even number n vanish. 
However, if we more accurately account for the 
IR-field effects in the zero-order approximation 
ΨIR t(0)( , )r , it can be shown that the susceptibilities 
χ ωn XU V( )  should be replaced by generalized 
nonlinear susceptibilities of the atomic system in a 
static electric field with a strength corresponding to 
the IR pulse at the delay time τ:

	 χ ω χ ω τn XU V n
DC

XU V DC IRF( ) ( ; = ( )).® ( )  � (52)

In this case, the prohibition on the generation of 
even harmonics is lifted, and the spectrum of the 
generated radiation exhibits peaks corresponding to 
the frequencies N XU Vω , where N is an integer (see, 
for example, [39]). Let us consider the “fast” term 
D(r)(W) in Eq. (49). Taking into account that the fast 
part of the wave function in the synchronized IR and 
XUV pulses is the sum of two terms (see Eq. (36)), 
we write D(r)(W) as:

	 D(r)(W) = D(r,1)(W) + D(r,2)(W),� (53)

where D(r,i)(W)(i  =  1,2) are determined by the 
corresponding corrections for the fast part of the 
wave function. Using Eqs. (32) and (37), we obtain 
D(r,1)(W) in the form:

D(r,1)(W) ( ,1) ( ,1)( ) = ( ) ,r r i tt e dt ò eiWtdt,� (54a)

( ,1)

=1 '

( ) ( )( ) = ( ') | | ,r

t

st M t G
ν

ν ν ψ
∞

+∑∑ 〈 〉





Ψ r

K
� (54b)

| = [ ( , ) ] ,( )
0 0

*� �Ψ s P E t〉 −∑
ν

ν ϕ � (54c)

where G G t tn n≡ ′( , ) is defined in (39), ¢t  are roots of 
Eq. (38), and M tn( )¢  is the sum of matrix elements 
describing the v-photon XUV-induced excitation of 
the atomic system from the initial state j0  to the 
continuum state ψ

K '
( )+ , considering the re-emission 

channels. The explicit form of M tn( )¢  can be 
determined within the perturbation theory using the 
recurrence relation (30):

M t V1 '
( )

0( ') = | |





〈 〉+
+ψ ϕ

K

+〈 ′ 〉++
+ − + +ψ ϕω�
� � � �

K '
( )

0 0 0| | ,V G V G VE E XU V

M t V G VE XU V2 '
( )

0 0( ') = | |� � � ��〈 〉++
+ + +ψ ϕωK

M t V G V G VE XU V E XU V3 '
( )

0 2 0 0( ') = | | ,� � � � ��〈 〉++
+ + + + +ψ ϕω ωK

where  V V t± ±≡ ( , ')r  (note that for the case of a linearly 
polarized XUV pulse,  V V+ −= ). The third factor in 
(54b) (the matrix element 〈 〉+



Ψ( ) ( )| |s r
K

ψ ) determines 
the amplitude of XUV-assisted recombination into 
the atomic state at the moment t (see expression (34)).

The function ( ,1)( )r t  rapidly changes with 
variations in the time t due to the presence of the 
rapidly oscillating factor e iS t t− ′( , )  in G nn .  Given 
that the time interval between ionization and 
recombination (i.e., the time of electron propagation 
in the continuum driven by the IR field) is on the order 
of the IR field period ( | ' |� �t t TIR- ∼ ), ionization and 
recombination cannot occur throughout the duration 
XU V  of the attosecond XUV pulse (XU V IRT ). 
This circumstance allows us to omit all terms in the 
sum over v in (54c) except for n = 0 , and to write 
the recombination amplitude 〈 〉+



Ψ( ) ( )| |s r
K

ψ in the 
lowest-order approximation in FXU V  (i.e., assuming 
FXU V = 0  for the state Ψ( )s ):

	 〈 〉 ≈ 〈 〉+ +


 

Ψ( ) ( ) 0
0

( )| | | | .s iE t
er r

K K
ψ ϕ ψ � (55)

Estimation of the integral (54а) by the stationary 
phase method leads to the result:

	 D(r,1)(W) ( ,1) ( ,1)( ) = ( ) ,r

t

r i tt e 





å eiWt~,� (56)

where the summation is performed over all times that 
satisfy the equation:

	




 

K
K K

2

02
= , = ( , ) + ′E t t . � (57)

When solving this equation, one should take into 
account the implicit dependence of   ¢ ¢t t t= ( )  
according to Eq.  (38). Based on the obtained 
analytical relations, it is easy to give a physical 
interpretation of the radiation generation mechanism 
described by D(r,1)(W): the atomic electron absorbs n 
XUV photons and passes into the continuum, where 
it propagates along a closed trajectory driven by of 
the intense IR field. At the moment of return to the 
atomic core, the energy gained by the electron is 
emitted as a photon with the frequency W through 
recombination into the ground state. This generation 

W
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mechanism is called the “XUV-initiated HHG 
channel” [44, 46, 71–73].

We represent the dipole moment D(r,2)(W), 
determined by the wave function Ψ( ,2)r , as the sum:

	 D(r,2)(W) = D(r,2a)(W) + D(r,2b)(W),� (58)

where the partial dipole moments D(r,2a)(W) and 
D(r,2b)(W) correspond to the corrections Ψ( ,2 )r a  and 
Ψ( ,2 )r b of the fast part of the wave function (see the 
discussion of Eq. (41)). Taking into account (42), we 
write D(r,2a)(W) as:

	 D(r,2a)(W) ( ,2 ) ( ,2 )( ) = ( ) ,r r i tt ea a ò eiWt,� (59a)

	 ( ,2 ) ( ) ( )( ) = ( ) | | ,r

s
s

s

s
t a ta ∑ 〈 〉+Ψ Ψr K � (59b)

where ΨK s

( )+  is defined by relation (43). Considering 
the definition of the dual function Ψ( )s , constructed 
from Ψ( )s  (see relation (34)), we express the matrix 
element in (59b) as:

     〈 〉 ≈+ −∑Ψ Ψ( ) ( )| | ( ) ,s

s n
n
rec

XU V
n in XU V t

A f t er K
( ) ω �(60)

where  A Fn
rec

XU V
n( ) µ i s  the  ampl i tude  of 

photorecombination with the absorption ( )n > 0  
or emission ( n < 0 ) of n XUV photons. Since the 
function a ts ( )  is rapidly oscillating, the integral in 
(59a) can be evaluated using the stationary phase 
method. As a result, for the partial amplitude 
( ,2 )( )r a (W), we obtain:

D(r,2a)(W)( ,2 )

,

( ) = ( )r

n s
s s n

reca t Aa  ∑ ×( )

	 × −
−

f t eXU V
n

s
i n XU V ts( ) ,
( )

τ
ωΩ � (61)

where the recombination times ts are found from the 
stationary phase equation:

	 K 2

0
( , ( ))

2
= ,

t t t
E ns s

XU V

′
+ −Ω ω � (62)

and the corresponding ionization times ¢t ts( )  satisfy 
Eq. (7) when substituting t ts= . In the following, we 
will number possible solution pairs of the system of 
equations (7) and (62) with a single index s: ( , )t ts s¢ .  
The analytical relation (61) allows us to give a 
simple quasiclassical interpretation of the radiation 
generation mechanism described by the term D(r,2a)

(W): at the moment ¢ts , the bound electron tunnels 
and propagates along a closed trajectory until 

the moment of recombination ts. Recombination 
occurs with the emission of a photon with frequency 
W, simultaneously with the absorption of n XUV 
photons. Moreover, the envelope of the XUV 
pulse acts as a “temporal separator”, cutting off 
recombination moments for which the difference 
| |ts - t  exceeds the duration of the XUV pulse. This 
radiation generation mechanism defines the XUV-
assisted HHG channel [52, 53].

Now let us show that the remaining terms 
D(r,2b)(W), D~(r)(W) and  D̂(r)(W) are negligibly 
small. The calculation of the partial dipole 
moment D(r,2b)(W), using relations (46), (47), and 
(33), shows that it is determined by terms that 
were discarded during the analysis of D(r,1)(W). 
In particular, the dipole matrix element of the 
transition between Ψ2

( ,2 )r b  and Ψ( )s  has a second 
order in FXU V  and defines a linear ( µ FXU V ) 
correction to the dipole moment in the one-photon 
XUV-initiated generation channel, through the 
XUV-interaction at the recombination step (i.e., it 
includes, along with the the XUV-initiated channel, 
also the one-photon XUV-assisted recombination 
channel). Similarly, it can be shown that Ψ3

( ,2 )r b

gives a correction µ FXU V
2  to the one-photon 

XUV-initiated channel due to the two-photon 
interaction in the XUV-assisted channel, as well 
as a correction µ FXU V  to the two-photon XUV-
initiated channel via the one-photon XUV-assisted 
mechanism. These corrections should be discarded 
due to the significant difference in the time scales 
between the dynamics of the atomic electron’s 
interaction with the IR and attosecond XUV pulses: 
the characteristic time scale between sequential 
processes of ionization and recombination is 
comparable to the IR-field period. Therefore, the 
ionization and recombination stages cannot occur 
within the duration of a single attosecond XUV 
pulse.

To estimate the contribution of the dipole 
moment D~(r)(W), defined by expression (49d), note 
that it describes the time-inverted process relative 
to the previously considered generation channels 
for the term D(r)(W). This directly follows from the 
definition of the dual wave function. For example, the 
generation of radiation in the XUV-assisted channel 
for D~(r)(W) occurs under the following scenario: the 
bound electron emits radiation at the frequency W, 
with the simultaneous absorption of n XUV photons. 
As the result, the electron goes into a virtual state 
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with a larger negative energy and returns to the 
initial state, interacting with the intense IR field. 
Since all radiation formation stages occur at negative 
energy, within the quasiclassical approximation, 
this mechanism is strongly suppressed, and its 
contribution is negligibly small (see, for example, the 
discussion in [63]). Using similar reasoning for the 
XUV-initiated generation channel, we conclude that 
it can also be neglected.

Finally, the term D̂(r)(W) must also be discarded in 
our consideration, as it is determined by the product 
of two fast parts of the wave function, and its inclusion 
exceeds the accuracy established in this analysis. Thus, 
we have shown that radiation generation by an atomic 
system, interacting with intense IR radiation and an 
attosecond XUV pulse, whose duration is much shorter 
than the IR field period, can occur within the framework 
of three channels: 1) XUV harmonic generation, defined 
by the corresponding atomic nonlinear susceptibilities; 
2) the XUV-initiated generation channel; 3) the XUV-
assisted generation channel.

4.2 Contribution of different radiation 
generation channels

Let us consider the general properties of the 
radiation generation channels, such as the position 
and width of the spectral region [Wmin;Wmax] for 
a given channel. These properties depend on the 
characteristics of the atomic target (the energy of 
the initial bound state) and the parameters of the 
laser field interacting with the atomic system. The 
contribution of different generation channels and 
their spectral overlap is of particular interest.

The frequency interval [Wmin;Wmax] can be 
determined from the requirement for the existence 
of real solutions to the saddle-point equations for 
the classical ionization and recombination times. To 
find them, we parametrize the electric field of the IR 
pulse through the vector potential A IR t( ) :

	 F
A

IR
IRt

t
t

( ) =
( )

,−
∂
∂

� (63a)

	 A eIR x
IR

IR
IR IRt

F
f t t( ) = ( ) ( ),-

ω
ωsin � (63b)

	 f t

t
t

t

IR
IR

IR

IR

( ) =
| |

2

0 | |
2

2cos
≠
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











 ≤

≥








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� (63c)

pt

where IR IRT= 5 is the pulse duration, TIR IR= 2π ω/ .  
In all numerical calculations, we assume the initial 
bound state energy E0 = 13.6-  eV, corresponding to 
the ground state of the hydrogen atom.

4.2.1 XUV-assisted channel

For the XUV-assisted generation channel, the 
ionization times st′ and recombination times st satisfy 
the system of equations (7) and (62):

′ ⋅ ′ ′ + −K K Ks s s s XU Vt t E n = 0, ( , ) = 2( ).2
0Ω ω � (64)

As seen from Eq. (64), the solution of this system 
for an arbitrary n can be obtained from the solution 
for n = 0  by a corresponding frequency shift of the 
generated radiation: Ω Ω→ + n XU Vω .  Therefore, 
below we analyze the case n = 0 , which corresponds 
to harmonic generation in the absence of the XUV 
field. The system (64) has real solutions for W > | |E0  
and Ω < 2 | |= | |2

0 0 0max ,K / + +E u Epα  where 
u Fp IR IR= (4 )2 2/ ω ,  a0 is a numerical factor depending 
on the pulse envelope shape. For example, for a 
long monochromatic pulse ( f tIR ( ) 1º ), we obtain 
a0 3.17» .

Fig. 1 shows the dependence of the frequency Ω of 
the generated radiation on the recombination times tj. 
The color represents the absolute value of the tunneling 
factor aj

tun( ) , which enters the expression (14b) for the 
partial HHG amplitude for the IR field. It is seen from 
the figure that for fixed parameters of the laser pulse, 
the number of solutions of system (64) increases with 
decreasing Ω, which leads to the formation of a complex 
interference structure in the plateau region [17]. In the 
vicinity of the global maximum for W (i.e., the cutoff of 
the IR-induced HHG plateau), only two solutions exist, 
determining the well-known interference oscillations of 
the HHG yield near the cutoff region [74, 75].

4.2.2 XUV-initiated channel

For the XUV-initiated channel (consisting of an 
n-photon transition of the electron from the ground 
state to the continuum, its laser-driven propagation, 
and subsequent recombination), the ionization and 
recombination times are determined by the following 
system of equations:

	
 ′

+
K 2

02
= ,E XU Vνω � (65a)

	
K 2

02
= ,E + W,� (65b)
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where   ¢ ¢ ¢K K= ( , )t t ,    K K= ( , )t t ¢ .

Equation (65a) has real solutions under the 
following necessary condition:

	 νω αXU V pE E umax | |
2

=| | .0

2

0 0+
′









+

K � (66)

To determine the boundaries of the spectral region 
[Wmin;Wmax] of classically allowed frequencies 
of the generated radiation, note that the system 
of equations (65) is invariant with respect to the 
replacement ( , ) ( , ) 

′ ↔K KEν Ω ,  where W~ = W + E0. 
The maximum values  ¢K 2 2/  and K 2 2/  are identical 
due to the obvious symmetry in the dependence of 
K ( , )t t ¢  and ¢ ¢K ( , )t t  on the times t, ¢t  (see Eqs. (6) 
and (8)). Therefore, in the plane of the variables 
W
~ and Ev, the desired region of real solutions 

(or classically allowed energies W~ and Ev is symmetric 
with respect to the line Ω = Eν . Moreover, since the 
momenta K and ¢K  are proportional to FIR IR/ω ,  
the region of real solutions in the coordinates W~, 
Ev scales by the magnitude up. From the above, it 
follows that the boundary of classically allowed 
energies can be expressed using a symmetric function 
g x y g y x( , ) = ( , )  of the two arguments x = W~/up and 
y E up= n /  in the form of the following equation:

g
u

E
up p

Ω
, = 0.ν











Fig. 2 shows the region of classically allowed energies 
W
~ and Ev, obtained from the numerical analysis of the 
system of equations (65). The desired region is well 
approximated by two straight lines [76]:
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
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
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� (67)

where

b0 0 0= ( ) / ( ),F t F tIR IR¢

¢t0  and t0  are ionization and recombination times, 
corresponding to the global maximum of K 2 / 2  (for 
the monochromatic field b0 = 0.324 ).

The dependence of the solutions of the system 
of equations (65) on the frequency of the generated 
radiation W is shown in Fig. 3. Each pair of solutions 
( ', ) t t  is represented by a point, the color of which 
corresponds to a specific value of ωXU V . As can 
be seen from the presented figure, as well as from 
the above estimate (66), the number of real roots 
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Fig. 1. Dependence of the recombination time on the frequency 
of the generated radiation for an IR pulse with a carrier 
frequency w = 1 eV and a peak intensity 2 ⋅ 1014 W/cm². The color 
represents the value of the tunneling factor (10), calculated for 
the ionization and recombination times satisfying the system of 
equations (64) up = 26.89 eV. |E0| = 13.65 eV.

Fig. 2. Region of existence for solutions of the saddle-point 
equations (65). The dark gray area represents the parameter 
region obtained from the numerical solution, while the red 
dashed line shows the linear law (67).
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of the system (65) decreases with the increase of 
ωXU V , while the region of possible values for the 
ionization and recombination times shrinks (see 
the regions bounded by closed curves in Fig. 3). 
We remind that in the theory being developed, the 
interaction of the XUV pulse with the atomic system 
is determined by the specific moments of ionization 
and recombination (see Section 3), which define the 

closed trajectory of the free electron in the IR field. 
Therefore, at certain time delays, the considered 
generation channel can be suppressed due to the lack 
of overlap between the solution region of the system 
(65) and the time interval of interaction with the 
XUV pulse. For example, in Fig. 3c, it is shown that 
for an XUV pulse with a time delay t = 0.5- T,  the 
region of acceptable values for ¢t  does not intersect 
with the time interval of the XUV pulse duration.

Dependence of the generated radiation frequency on 
the recombination times for all the discussed generation 
channels is shown in Fig. 3. The regions corresponding 
to elastic scattering of the XUV photon by the atomic 
system (Rayleigh scattering) and the second harmonic 
generation are indicated by the horizontal dashed lines 
in the figure (solid bold horizontal lines correspond to 
Ω = ωXU V  and Ω = 2ωXU V ). At IR-pulse intensities 
of I  2 1014×  W/cm2, we observe a spectral overlap 
between the harmonic generation channel in the 
IR field (black bold lines in Fig. 3) and the elastic 
scattering channel of the XUV photon, leading to 
the specific oscillations in the harmonic generation 
spectrum [60]. As the IR pulse intensity increases, 
overlap with the XUV harmonic generation channels 
occurs (see Fig. 3(c), where overlap with the second 
XUV harmonic generation channel is observed at 
I = 4 1014× W/cm2). We note, that for the occurrence 
of interference between different radiation generation 
channels, necessary conditions are spectral overlap of 
the channels and comparable generation probabilities 
within the desired channels. The XUV-initiated 
channels (green and orange lines) overlap spectrally 
only with the harmonic generation channel in the single 
IR pulse. Moreover, as seen in Fig. 3, as the number 
of photons in the XUV-initiated channel increases, 
the spectral overlap region shrinks, which is obviously 
related to the reduced energy gain by the electron during 
its propagation in the IR-field after absorbing n  XUV 
photons (see Fig. 2). Thus, the observation of XUV-
initiated generation channels with n > 1 is difficult due 
to suppression by the more intense HHG channel in 
the absence of the XUV pulse and is possible only with 
a significant increase in the XUV-field intensity. For 
n = 1 , the XUV-initiated channel can be distinguished 
under the orthogonal geometry of the IR and XUV 
pulses [77]. In contrast, the XUV-assisted channels 
(thin gray lines in Fig. 3) contribute to the generation 
of higher-frequency radiation, forming sequential 
plateau-like structures in the HHG spectra [53]. 
Typically, the XUV-assisted channels interfere with the 
harmonic generation channels of the XUV radiation 
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[39]. Note that it is possible to select conditions for 
spectral overlap between the harmonic generation 
channel in the single IR pulse and the XUV-assisted 
and XUV-initiated channels [see Fig. 4(c)].

5. CONCLUSION

In this work, an adiabatic approach has been 
developed for analyzing the interaction effects 
of an IR-dressed atomic system with a short 
(attosecond) XUV pulse. The nonlinear effects 
due to XUV interaction result in the emergence 
of additional XUV-induced radiation generation 
channels. Depending on the nature of the XUV 
pulse’s influence on the atom, these channels can be 
classified into three types. The first one is the XUV-
induced modification of nonlinear susceptibilities 
of the atomic system. For initially non-polarized 
targets, the odd-order susceptibilities (e.g., atomic 

polarizability, describing Rayleigh scattering of the 
XUV photon [60], or the third-order susceptibility, 
responsible for third XUV harmonic generation) do 
not vanish in the absence of the IR field. Thus, at 
moderate field intensities, they can be approximated 
by the susceptibilities of the free atom. In contrast, 
even-order susceptibilities (e.g., those describing 
the XUV rectification effect [61] or the second XUV 
harmonic generation [39]) vanish when the IR field 
is switched off, as they are caused by the IR-induced 
symmetry breaking of the atomic state. The first type 
of channels has been thoroughly studied in the works 
cited above.

The main focus of this study is on the second 
and third types of channels  – the XUV-induced 
ionization channels, involving the absorption of 
XUV photons during the first stage of the three-
step rescattering mechanism, and the XUV-assisted 
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show the boundaries of the spectral regions for the first and second XUV harmonics. The XUV photon energy is wXUV = 80 eV, and 
the initial-state energy, carrier frequency of the IR field, and XUV pulse envelope parameters are the same as in Fig. 1.
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recombination channels, where XUV photons are 
absorbed at the moment the electron returns to 
the atomic core. Analysis of the contributions of 
partial amplitudes associated with various closed 
classical trajectories of the electron in the IR field, 
in accordance with the described XUV-initiated 
and XUV-assisted channels, revealed that for 
moderate IR pulse intensities, the spectral region 
of XUV-initiated channels overlaps only with the 
harmonic spectrum of the IR field in the absence of 
the XUV pulse, while the probability of interference 
with XUV harmonic generation channels is 
negligibly small. In contrast, XUV photon 
absorption during recombination (XUV-assisted 
channel) significantly expands the spectrum of the 
generated radiation, enabling the interference of 
different generation channels.

It is worth noting that for short XUV pulses, the 
energy range of the generation channels strongly 
depends on the time delay between the XUV and 
IR pulses. For example, in the case of high XUV 
photon energies, there are delay intervals where the 
XUV-initiated generation channel is suppressed. It is 
important to emphasize that interference phenomena, 
caused by the spectral overlap of different 
XUV-induced generation channels with the IR-field 
HHG channel, are key to a deeper understanding 
of atomic photoprocesses occurring in the field of 
synchronized XUV and IR pulses. These phenomena 
can also form the basis for optical methods to 
extract the temporal profile of the IR pulse from the 
measured generation spectra [39, 77, 78].
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