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Abstract. We investigate field emission in resonant tunneling heterostructures with one quantum well and
two barriers, as well as the influence of the lifetime of resonant metastable levels formed in the well on it.
The problem of the tunneling time of a quantum particle (electron) through a structure with a barrier and
two barriers and a well is also considered. Stationary and nonstationary Schrodinger equations are used. The
lifetimes of metastable levels are determined and their effect on tunnel current is investigated.
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1. INTRODUCTION

Resonant tunneling structures (RTS), which are
nanoscale heterostructures with field emission, are
widely used in electronics as sources of very high
current densities (up to 104 A/m?) [1-3]. They
also form the basis for designing resonant tunneling
diodes (RTD), transistors, quantum cascade lasers
(QCL) of the “Stark ladder” type, THz transistors
and switches [4—11], as well as other devices. For all
these applications, switching times, response times,
and overall transient times are crucial [11,12].

RTS is characterized by having one, two, or
several quantum wells separated by barriers, where
quasi-stationary resonance levels can arise [13]. We
will refer to the electron-emitting left electrode as
the cathode (denoted by the subscript ¢) and the
right electrode as the anode (subscript a). For the
intermediate electrode (grid), the subscript g will be
used. In the case of equal electrochemical potentials
of the electrodes . = p,, the quantum potential V(x)
between the two electrodes (in a diode structure)
resembles an inverted parabola on a pedestal and can
be strictly described by an infinite series of images
that account for the electron work functions [1].
Approximating this series with an inverted parabola is
rather crude [1,14]. A more accurate approximation
is a fourth-order inverted parabola [1,2]. In this work,

we will use an even more precise approximation for
the potential in the diode 0 < x <d under anode
voltage U,

(1—o/d)(1+8/d)" y

V(x)= Ep + W,
)= £ (1-8/d)e

od eU x

(x+8(1—-x/d))(d—x+x3/d)| d

(D

In this formula, o = 3§(2In(2)+ 1) represents the
cathode work function, assumed equal for both the
cathode and anode W, = W, , and is related to the
parameter (gap size) o by the equation:

W, =e?/(16mey3).

For simplicity, we will further assume equal
Fermi energies Ep. = Ep, for the electrodes.
Under potential V(x)V(x)V(x), the boundary
conditions are ¥ (0)= Ep, at the cathode and
V(d)=Ep, —eU, =pn,, at the anode, meaning
the quantum potential V coincides with the
electrochemical potentials. In cases with different
work functions (and materials of the cathode and
anode), an additional term (Ep, — Ep, )x/d should
be added to (1). The accuracy of equation (1) is no
worse than 1%. Diode structures do not allow for
extremely high current densities. Current increase
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occurs through resonant tunneling (RT), where one
or more quantum wells are surrounded by barriers
[1—3]. Reflections from the barriers interfere, and the
total reflection coefficient cancels out. For simplicity,
we further consider a single-well structure with three
electrodes: cathode (source), grid (gate), and anode
(drain). Equation (1) applies both to a vacuum gap
(e = 1), and a dielectric gap between electrodes. In
the absence of an anode voltage U, = 0, the potential
in the center of the gap is:

W, (1—a/d)(1+8/d)
(1-8/d) e '

For a work function of 3.6 eV, the corresponding
value is & = 0.1. Thus, for typical work functions of
materials (2—5 eV) and typical electrode and gap sizes,
RTS structures on the order of nanometers satisfy the
inequalities 8/d <<1, a /d <<1. In the absence of
anode voltage, the inequality V (d/2) ~ Ep, + W, /e
holds. A dielectric with dielectric permittivity . reduces
the barrier height by a factor of €.

V(d/Z) =Ep. +

Suitable and convenient dielectrics for RTS
include CVD (Chemical Vapor Deposition) diamond
(e = 5.6, bandgap 2.5 eV) [15] and beryllium oxide
(BeO, £ =16.7, bandgap 10.6 e¢V). These diclectrics
significantly reduce the barrier height and have the
highest thermal conductivity, which is essential
for high current densities [2,3]. Although CVD
diamond with 88% sp* hybridization has a density of
88.2% of crystalline diamond, its dielectric constant
can be taken as 5.6 due to the presence of a small
graphite phase. Electrodes can be made of metals
or doped semiconductors. Beryllium has the highest
Fermi energy (14.6 V), relatively low work function
(3.92 eV), and the highest thermal conductivity
among metals. To construct a complex profile V
(Fig. 1), equation (1) is applied twice — once for the
cathode-grid gap (replacing U, — U, ) and once for
the grid-anode gap, assuming Ep. — Ep. —eU,.
On the grid, the quantum potential is constant and
determined by its electrostatic potential U,.

In RTDs and QCLs, highly conductive layers
are usually considered electrically free, meaning
the potential along them is not fixed and decreases
[4—12]. Figure 1 shows typical profiles of V(x) for
diode and triode structures under different anode
(U,) and grid (U,) voltages for copper electrodes.
To form a quantum well, a grid voltage U ¢ = Erc/e
was applied. The energy E is measured from the
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Fig. 1. Potential Barrier Profile V' (eV) as a Function of Distance
X (nm) in a vacuum diode (curves 0, 3, 5, 7) and a vacuum triode
(curves 1, 2, 4, 6). The curve numbers for the diode correspond
to the anode voltage U, in volts. For the triode curves 2
and 4, the grid voltage U,= Epis specified, and their numbers
correspond to the anode voltage. For curve 1, U= 0, U, = W,/e,
while for curve 6, U, =4V and U, = 3 V. The work functions are
EFc =7¢eVand W, =4.36 eV (copper electrodes).

conduction band bottom of the cathode, which
coincides with the bottom of the well.

If an energy level E, exists in the formed
quantum well, it is quasi-stationary, as there is
always an identical level at both the cathode and
anode, allowing the electron to tunnel between them.
Tunneling can occur both leftward to the cathode and
rightward to the anode. Subsequently, the electron
transitions from this level to the Fermi level of the
corresponding electrode, from which it can enter
the power supply circuit, as only electrons near the
Fermi level participate in the diffusion current.

The issue of quasi-stationary level lifetime
(decay time) in a spherically symmetric quantum
well has been addressed in several works, such as
[16—18]. However, the lifetime of quasi-stationary
levels in a one-dimensional Cartesian RTS has not
been strictly studied. This time is closely related to
the tunneling time of a single particle through the
structure (its dwell time). There is extensive literature
on the introduction of various time definitions (see,
for example, the reference list in [19]). The topic
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of tunneling times remains under discussion, with
several paradoxes. Tunneling times are closely linked

to the switching times of tunnel devices [11]. RTS

devices such as RTDs, QCLs, and other structures
are typically modeled using rectangular potentials
modified by the term —eU ,x/d [11]. This approach
is a rough approximation because high voltages lead
to a barrier shape close to a triangle on a pedestal [1].
Schrodinger equation (SE) calculations show that
such a barrier is orders of magnitude more transparent
than a rectangular barrier of the same height and base
width. A semiclassical approximation is often used
[16], which can be integrated exactly for a triangular
barrier [20]. However, this method is accurate only
up to a pre-exponential factor and is quite imprecise

in the narrow upper part of the barrier, as it neglects

the reflected electron wave [20]. For narrow barriers,
the reflected wave contributes significantly. In
the analysis of RTS with two or more rectangular
barriers, resonance levels are usually defined as the

penetration of a particle through identical barriers

to the left or right with the same energy as in the

well [13]. However, real RTS structures differ.
Upon reaching the cathode or anode with a given
energy, the particle transitions to the Fermi level
of the electrode, emitting or absorbing an energy
quantum, and exits the structure with this energy, as
any current in conductors is generated by electrons
near the Fermi level. Under stationary tunneling
(constant anode voltage), the number of electrons
tunneling from the cathode is exponentially greater
than the number tunneling from the anode, resulting
in a constant emission current closing through the
power supply. The emergence of resonance levels
E, leads to resonant tunneling (RT), accompanied
by an increase in current, as the barrier becomes fully
transparent for electrons with energy £ = E,. Quasi-
stationary levels arise with increasing well width.
These energy levels are complex: E, = E, —iE.

The parameter £, determines the level lifetime
1, = 2h / E,|. The smaller the lifetime, the broader
the energy level, the wider the energy range satisfying
the condition £ ~ E;, and the greater the number
of electrons undergoing resonant tunneling. Thus,
determining the lifetimes (complex energies £,)

of quasi-stationary levels and their dependence on
quantum potential configurations is crucial, which
is the primary aim of this study. For field emission,
the number of electrons incident per second on the
barrier within a velocity interval v, +dv, and energy
range is: dv(v, ) =n" (k)v dv_,
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where
_ mehyT
2R3

E. —E(k
xln[l+exp(Fck—T()sz.
B

Equation (2) is derived by averaging over all
transverse velocities of the Fermi gas electrons in the
metal cathode and is presented for finite temperatures.
For cold emission (T = 0), the spectrum is limited by
the Fermi energy:

n* (k) =m(Er - E(k))/ (22 Jv..

n* (k)

(2)

Although the actual tunneling process involves
a multi-speed electron flux determining the total
tunnel current density:
He

[D*(EU)(n - E)E, (3
0

—-em,

JT(U,)=

() 2n%h?
this problem can be treated as single-particle
tunneling with a specified energy E.

The electron charge is taken as g, = —e, so the
positive electron flux from the cathode results in
a positive anode current =/ (U,) through a unit
cross-section. The upper limit in equation (3) is on
the order of several electronvolts, which is consistent
with non-relativistic quantum mechanics. For
thermionic-field emission (at T~2000K), equation
(2) should be used, with the upper limit in equation
(3) extended by a few eV due to the logarithmic decay.

For T = 0, the total current density J =J" —J~
is determined by tunneling in both directions with

2
transmission coefficients D*(E) =1 - ‘Ri , derived

from reflection coefficients R*. To determine R, the
Schrodinger equation is solved. The expression for J~ is
obtained by substituting p, — p,, D* — D~.

For a symmetric potential (U, = 0), the tunneling
coefficient T(E)T(E)T(E) is always D* = D~. Fora
weakly asymmetric potentials.

2. LIFETIME OF THE LEVEL BASED
ON THE STATIONARY SCHRODINGER
EQUATION SOLUTION

The stationary Schrodinger equation (SSE):

[_(hax i +V(x)}//(x) 0

2m,
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is most conveniently solved for V(x) using the wave
impedance transformation method. For a constant
potential V,, in the region x, <x <x,,;, the wave
impedance is introduced as:

Z, (E) = —i\y(x) / \y'(x) =1/k,,
where:

y(x) = Aexp(ik,x)

is the wave function (WF) of an electron moving in
the direction of x electron,

k, =\2me(E-V,)/h.

Let zo(x,,;) be the impedance on the right side.

It transforms into the input impedance on the left
side according to the formula:

<0~ izntg(kn (xn+1 —Xp ))

Zn — izOtg(kn (xn+l —Xp ))
Setting zo =Z;(x,), we apply this formula

iteratively for each segment until we obtain the input

impedance at the cathode Z,, (0) and the reflection
coefficient from the cathode side:

R* =(1-koZ;(0))/ (1+koZ,. (0)).

Zi (xn)zzn (4)

Here,
kg =k, = 2m,E / h.
For the initial iteration at the anode, we assume:
ko, =\2m,(E - Ep, +eU,)/h,
z9 = 1/k,.

It is worth noting that in typical tunneling through a
barrier, k, = k istaken, i.e., the motion is considered
only up to the turning point. Such transparency is
D* = D~. However, after passing this point, the
electron moves quasi-classically, gaining energy eU .
This results in lowering the Fermi level at the anode by
eU,, necessitating the use of the adjusted value k,,.

This concept can be illustrated using an infinitely
narrow step-like barrier: V=0atx<0and V = -eU,
at x > 0. For such a barrier, the quasi-classical
approximation gives full transparency, D =1, R = 0.
However, under the strict solution, the reflection
from the step is:

R =(k0 _ka)/(kO +ka)

and D <1. Applying formula (4) is equivalent to
matching the wave function and its derivative. Clearly,
the energy levels E, = E, —iE, can be defined as
the complex roots of the equation:

R*(E,)=0.

The transparency from the anode to the cathode
D~ is determined by reverse transformation, where at
the anode we take:

k, = \2m,E / h,

20 =1/ kg
and
R™ =(1-koZ;y(d))/ (1+koZ;4(d)).

The difference between D" and D~ increases with
increasing U,. When eU, > Ef., tunneling from
the anode becomes impossible. After tunneling, the
electron always transitions to the Fermi level of the
corresponding electrode, either releasing or absorbing

depending on the sign of the

energy e‘E - EF(a,c)
energy difference. This process is diffusive, occurring
over a distance on the order of the electron mean free
path, and does not affect the wave tunneling process
itself. If tunneling occurs from a level below the
Fermi energy, heating of the corresponding electrode
occurs (Nottingham effect): the departing electron
is replaced by an electron from the Fermi level. For
U, = 0, we obtain a symmetric structure in the form
of a quantum well between two barriers (see Fig. 1,
curves 0 and 1). In this case, the condition:

R*(E,)=R (E,)=0

yields energy levels from which the particle can tunnel
equally to the left or right. Otherwise, the condition
R*(E,) =0 gives the levels from which the particle
can escape to the anode, while R (E,)=0
corresponds to levels leading to cathode transitions.
Calculations show that the levels approximately
coincide within their width. For example, if
eU, > Ep,, all energy levels at the anode become
negative, making transitions to positive energy levels
on the cathode impossible. It is evident that for
E <0, when ‘R‘ (E )‘ =1, i.e. meaning no solutions
exist for the equation R™(E) = 0. In this case, the
cathode impedance 1/k, becomes imaginary, and
the cathode acts as an infinitely long, fully reflective

JETP, Vol. 167, No. 1, 2025



ON THE LIFETIME OF QUASI-STATIONARY LEVELS 7

Fig. 2. Schematic potential distribution V'in a single-well RTS at
U, = Ep/e. Dashed lines indicate the energy levels at the cathode,
anode, and two metastable levels.

step for the anode. Positive energies at the anode
can only exist at non-zero temperatures, i.e., under
thermionic emission conditions. Solutions to the
equation R"(E) =0 always exist for levels on the
cathode side. Thus, for an asymmetric potential, two
types of energy levels exist. Resonant tunneling is
primarily considered for asymmetric potentials, as
this condition ensures a continuous current.

Another possible approach to solving the stationary
Schrddinger equation involves using transfer matrices
[1-3] T(E). The structure matrix is defined by
piecewise-constant potential V approximations and
multiplying the segment matrices. The characteristic
equation for determining tunneling levels at the
anode takes the form [1, 3]:

_ Ty (E) - ik, (E) Ty (E)
T, (E) - ik, (E)T;5 (E)

ik, (E) &)

Another method involves using the sweep method.
In addition to finding R*(E) and D*(E) this
approach allows for determining the wave function
amplitudes Ajy(+ik,(x —x,)) and the charge
distribution in the barrier and well region under
known incident particle fluxes from the cathode
n"(k)v,dv_ and the anode n~ (k)v_dv..

This, in turn, enables the estimation of changes in
the quantum potential V due to space charge effects
under high currents [2]. Such estimation requires
iterative solutions of the Poisson equation (PE) and
the Schrodinger equation. However, these numerical

JETP, Vol. 167, No. 1, 2025

methods are less convenient for our analysis of
resonant level influence on electron emission.

We derive the exact solution of the Schrodinger
equation (SE) for the model potential V(x),
described by two rectangular barriers of height V,
at the cathode and ¥ at the anode (see Fig. 2). To
better match the real potential, the barrier widths
t. and T, are taken approximately half the size of
the bases of the actual near-triangular barriers on a
rectangular pedestal (Fig. 1, curves 2, 4, 6), while
the well width ¢, is correspondingly increased. It is
possible to achieve an exact correspondence between
the width of a triangular barrier and the width of a
rectangular barrier with equal heights by equating
their transparencies D, (E)=D,,(E). This
correspondence depends on the energy. Averaging
over the energy range, we obtain a coefficient of
approximately 7,,. = 0.5¢,,. In the quantum well, the
SE solution takes the form:

y(x) = A, exp(iky (x —1,)) + A, exp(—iky (x —1.)).

In the barrier region near the cathode, the wave
function (WF) is:

y(x)=4; exp(—lgAx) +A; exp(lgAx),

Similarly, in the barrier region near the anode, the
wave function is:

y(x)= A;exp(—lga (x —t. -1, )) +
+A;exp(l€a (x—t. -1, ))

Here, we introduced the following notations:

k., = \2m,(V, - E),
k, = \2m,(V, - E),
kO = ,¢2meE.

The wave function at the cathode represents an
outgoing wave:

y(x) = A, exp(—ikyx).
Similarly, at the anode:
y(x)=A,exp(iky(x - d)).

Here, A, = ko, d =t, +1, +1t, is the size of the
structure. The task is to match the wave functions and
their derivatives at the boundaries. There are eight
unknowns, four boundaries, and thus eight conditions.
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Calculating the eighth-order determinant without 5 2 -
numerical methods is challenging, so we iteratively _(81 / 2){A +24 (twk ) +(A+ 1)(1 +1yk )}}
eliminate unknowns. The results of this elimination

are provided in the Appendix. By defining the function For the left side of equation (A2), we get

S(F) according to formula (A2) from the Appendix, the 1+ ik, //}a e 1+ iJA
] 3 . . ~ |+ 1~ 5>
characteristic equation takes the form: 1 - iky /k, ( A+ ])2
2 . . .
(7 (E)-1) from which the correction §, can be found, expanding

EZVa(f(E)—l)z—(f(E)H)z. 6)  further:

16exp(—21€tc )

This equation allows for the iterative search for 1 (1 1/ A) (1 +1, ,g)
complex roots E,. Assuming the function f is large 3
in magnitude (corresponding to wide barriers), we 45 exp(—Qkfc)
obtain E ~ -V f(E)/4. As the well expands from a +(1 N I/A)(l oy ];) x
very narrow width, the energy level first appears near N
V, [21]. For such a level, the decay rate k, = 0 is: 4 1+ ,\/X2 ~ (1 . 1/A)(1 . tWIE) .

tg(koty ) ~ ko /kq- (A+1)
We can neglect the second-order term. To find

Assume there is such a level: the exact roots of equation (6), let us consider a well

El -y (1 -3, )’ surrounded by infinitely wide barriers, i.e., potential
¢ steps of height V. and V. In such a well, stationary
where 8, is small. Also, let: energy levels E, <V, are possible. The problem of
an asymmetric well has been solved and studied in
§<<A=V./V, -1 [21]. With the notation
Calculating the function f, we obtain: ko, = 2m.E, /h
ke ~ k(1+38/(24)), it has the solution
exp(ZkCtC) ~ exp(ZktC )(1 +8/(24)), kot = n— arcsin koah |
\2m,V,
Where
k= \2m,V,A/h. _arcsin| <o | s(E,) (7)
J2m,V,
As well as: which gives real energy levels. Rewrite equation (7)
ko = k(1-58/2)/VA, as
ko / ke = (1-8(1+1/8) / 2+ 87/ (44)) VA, t&(Kouty ) = Konln»
Let us set k, =0, and rewrite the introduced Where
condition as - f‘qn +k, .
(tWIE/\/Z)=\/Z. kcka_kgn

Choosing the well width from the condition of the
existence of one level:

N exp(ZIEtC) . Csy =1:/2—arcsin(Va/Vc)
48 -8, (A+ )(1+1,k) v N

Then we have

{8 (A + D(1+1.,k) - we get

JETP, Vol. 167, No. 1, 2025
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_ (g (E)/m )

no 2m

e

From this equation, we find the real values of £/ by
the bisection method in the interval [(O, Vy). For the
existence of multiple levels, the well must be several
times wider than #,. Then we find E,, n =1,2,...,N.
The values of E,, are used as initial approximations

E,(,O) = E, for the iterations according to equation

(6). As a result, we obtain all the levels from which
a particle can escape to both the anode and the
cathode. To increase the current, the widest possible
well should be used, for which the electrode material
should have the maximum electron mean free path
(MFP). The MFP can be significantly increased by
using cryogenic temperatures. Let us consider the
derivation of equation (7), where the wave functions
(WF) on the cathode and anode sides are taken as

y(x)=A4, exp(lga (1- iSC)x),
\V(x) = Aa eXp(_lga (1 N iéa)(x —1y ))’

i.e., the barriers are partially transparent. Here
ke = \2m, (V. = E)/n,
ko =\2m, (Vo - E,) /1,
and small corrections are taken as
8. =Ep/(2V, - 2E;,),
0 = Ey (2, - 2E,).

In reality, they are associated with the finite width
of the barriers and the finite lifetime of the levels. In
the well 0 <x <¢,, we take

y(x) = Asin(kg, (1+8,)x +35),
where
En = (1 + 6n )2 (kOnh)2 /(2me )’

and the small correction &, needs to be found. As
a result, we obtain the characteristic equation for it:

tg(kOn (1 + 8n )tw) = kOn (1 + 8n)><
ko (1-i8,)+k, (1-1i8,)
koo (1= i8,)(1- 8, )~ k3, (148, )

Introducing the notations

X

JETP, Vol. 167, No. 1, 2025

8;1}1 =8L1/8}’l’ 62‘}’! =6c/8n‘

Primed quantities are not small. Considering (8),
to obtain the correction, expansion up to the second
order in 82 should be used. We obtain 8, = 4,,/B,,
where

ke

' ' 2
(8, + 8., ) + 2k,
lgclga - kgn

+2lca

For the calculation of the correction, one can
assume E', = E,, and then

Ey/E, =-3(8,),
while the real part also changes:
E, = E,(1+Re(3,)).

In Fig. 2, two levels are shown. From the cathode,
tunneling to both levels with exit to the anode is
possible. In this case, the cathode heats up because
its level is above the Fermi level (Nottingham effect).
When transitioning from the first level to the anode,
the anode cools, while transitioning from the second
level heats it up. Tunneling from the anode to the
second level at 7=0 is impossible. The lifetime of
the level exponentially decreases with the narrowing
of the barriers. The barriers narrow as the field U,
increases (Schottky effect), i.e., with an increase in
well depth. At U, > U, + Eg, / I, stationary levels
are possible in the well. Narrowing of the barriers
also occurs with increasing voltage U and decreasing
sizes t, and ¢,. There is a critical voltage at which
the barrier relative to the Fermi level disappears,
becoming nearly triangular. Indeed, using equation
(1), where we denote

y (-o/d)(1+ 5/d)

W=
(1-5/d) &
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assuming d = 1, and neglecting small terms, this
condition can be written as:

V(xo)

= Ep + W/ (1-8d/(xo(d - x0))) - eUyx,/d.

=EFC=

From this, we find the point x;, where this occurs.
It is very close to the cathode, so we simplify the
cubic equation by replacing d — x, with d:

Xy = eng(z)/(Wc’d)+8.

Solving this quadratic equation iteratively, first
assuming

XO =393
and then refining:
o =08+8%U,/(W).

The refinement is very small, so we obtain the
critical voltage:

U, = W'(d/s - 1)/(2e) ~ W'd/(2e8).

For a work function of about 4 ¢V at d=2 nm, this
corresponds to a critical electric field strength at the
cathode of 2.35-10" V/m. Thus, in RT structures
with well widths of a few 7, and narrow barrier
widths 7, and 7,, a significant increase in emission
current is possible simply by increasing the size 7,
However, tunneling is ballistic transport without
energy loss, so the width 7, must be significantly
less than the electron mean free path (MFP) in the
corresponding material. The characteristic size 7, at
room temperature is a few nanometers. To reduce the
lifetime of levels and increase current, the barriers
should be made narrow. Their narrowing is also
achieved by increasing electrode voltages. It is not
difficult to obtain exact solutions to equation (6), but
these equations are model-based. For real potentials
(Fig. 1), one should solve the exact equations

10+00 - 2

10“2: 3
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10-06 :/

10-08 :

10-10 :\1)/

1012 4

1071 -

10716 -

107® T T T T ]

0.5 0.6 0.7 0.8 0.9 1.0

E/Ep

Fig. 3. Tunneling coefficient D = D" in a double-well RT
structure as a function of the ratior = | =1, = 13 depending on

E/EF att=t,= 1 nm (curves 1, 3)andt—2nm t,= 1.5 nm,

d=9nm (curve 4). Work function W, = W, =4. 6 eV, Fermi

energyEF Ep SeV, U,= 11V, U, = 13\5(1 4; U, =20V (2);
=25V (3

(5) or R*(E)=0. The table above presents the
results of iterative calculations of complex energies.
Calculations based on equation (5) and the
conditions R* (E) = 0 agree well.

A very simple method for determining complex
levels is calculating the transparency of the
structures. Figure 3 shows an example of calculating
D™ for several double-well RT structures with 2 to
4 metastable levels. Such structures are obtained
with a double grid [1—3] and are more convenient
for achieving resonance tunneling because two
approximately equal barriers can be formed under a
significant electrostatic potential U,,.

Table. Metastable levels (eV) in the range (0, Er.) for the potential in Fig. 1 at different anode voltages U, (V):

U, 1.0 2.0 3.0 4.0
E| - iE} 0.14467—i3.1-10~* | 0.1445—i2.9-10~* | 0.1399—i2.7-10~% | 0.1405—i2.7-10~*
Ey —iEY 1.815-i2.5-1073 | 1.807—i2.6-10~3 | 1.798—i2.8-1073 | 1.789—i2.9-10~3
Ej —iEY 4.4938—i8.9-1073 | 4.369—i9.5-1073 | 4.328—i9.9-1073 | 4.279—i1.2-102
Ey —iE} 6.872—i7.2:102 | 6.982—i8.3-10~2

JETP, Vol. 167, No. 1,
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Notably, the peaks for Dt and D~ differ slightly,
particularly at low energies. At E > Ep., D* ~1
always holds. This case corresponds to thermionic
emission if the electrode temperatures 7% > 0. It
should be noted that for different barriers, peaks may
not reach unity (incomplete resonance tunneling),
associated with partial suppression of reflected
electron waves. The values E, are determined by
the peak maxima, which can be done accurately.
The lifetimes E; are determined by the resonance
widths. Typically, the levels are located near the
upper regions of the well.

Let us consider how the position and width of the
level affect the current contribution. Suppose there is
one level E| —iE|. Approximating it as an equilateral
triangle with unit height, the contribution from the
level is

Y = —em, (Ep, - E{)Ef/ (4°h°).

For levels near the Fermi level of the cathode, it

It is known to be relativistically non-covariant.
Here, the operator for a free particle’s Hamiltonian
is denoted as

2
oy aa L (h0y)
S(t,X) = lﬁ@, + W

This implies that the Green’s propagator function
(GPF), which describes the propagation of a particle
from point x' at time ¢ to point x at time t, has the
following form [22, 23]:

Ko(t—1'x—x")=

— ) e
sen(t t)\/Zm'h|t—t’|X

. "2
e i(x—x")"m,
P 2nft -t | (®)

This expression suggests infinitely fast propagation of
the perturbation. Indeed, GPF (8) defines the particle’s
presence at point x at time t based on its amplitude

is small. Therefore, it is important to obtain low- v (x’') at point x' at the initial moment 7"

lying levels with a short lifetime (large width). For a
single triangular potential barrier at a critical field, the
semiclassical approximation gives its transparency D as

D =~ exp(—4d./2meW3/2/3h€Ua )s

see [20]. Here, the barrier height Wis measured from
the kinetic energy of the incoming electron, i.e., in
ourcase, W=V —F.

For deep levels, the transparency of a single barrier
is exponentially small compared to D = 1 in resonance
tunneling. The formula works well for deep levels, but
for E =V, its limitation becomes apparent: D = 1 at
W = 0, while solving the Schrodinger equation gives
D < 1. This limitation restricts the applicability of the
Fowler—Nordheim formula to single barriers.

Nevertheless, the result can be used to estimate
the lifetimes of deep levels by calculating D, , at

W =V,,-E, and determining §, = D, and §, = D,.

3. LIFETIME OF THE LEVEL
IN THE NONSTATIONARY APPROACH

The nonstationary Schrodinger equation (SE) is
written as

~

S(t,x)y(t,x) =V (t,x)y(t,x),

JETP, Vol. 167, No. 1, 2025

vy (1,x) = .[KO (x = x"t =1 ) o (¢',x")dx".

If at the initial moment #,, a probability density
o (o, x,) = 8(x —x¢),

emerges at point x, meaning the particle is localized
there, then for any later time ¢ > #,,, the wavefunction
exists throughout the entire infinite space:

\lfo (x,t) = KO (x —xO,t _to),

Thus, the propagation speed of the probability
density is infinite, though the density itself rapidly
decreases at distant points. Here, the subscript “0”
denotes a free particle (V=0).

Such a particle is generally described as a wave
packet (WP) with a certain spectrum of wave
numbers k and energies F. It is worth noting that the
incoming particle flow described by distribution (2)
also represents a WP.

The GPF (8) satisfies the initial condition

Ko(t-tx-x"), ,=8(x-x')

tot'

and the differential equation
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S’KO (t -t x —x’) = ih8(t —t')S(x —x'),

(see [22]). Solving the nonstationary SE requires
setting appropriate initial conditions. A convenient
approach is to use the stationary case at the initial
moment ¢ =t,, i.e., the wavefunction y,(x) and
the potential V) (x).

At t>t,, when the potential V(x,t)starts
changing, the wavefunction satisfies the nonstationary
SE. The wavefunction for #, > 0 is governed by the
Lippmann—Schwinger-type integral equation:

y(x,1) =y (x)- ihleKO (r—1,x —x")x

0—o
x[V (1'.x") =V, (x’)}w(t',x')dx'dt'. 9)

Indeed, at " 0,, we have y(x,r)=yq(x)..
Taking the tirge t > 0 derivative of (9) and applying
the operator §, we obtain the SE:

S’\y(x,t) = V(t,x)\y(t',x’).
Assume the potential
AV (t,x) =V (t,x)-Vy(x)

is localized within a certain region. In this case, for
small times, equation (9) can be solved rather simply.
An example for a double-barrier resonant tunneling
diode (RTD) is provided in [12]. This equation
is particularly convenient for analyzing transient
processes and tunneling times. Two cases can be
considered: (a) AV (0,x)=0 (smooth potential
change) and (b) AV (0,x)=0. We focus on the
second case here. Assume a well with one metastable
level between two barriers exists at # < 0. This level
cannot be populated, as it would decay over infinite
time. For simplicity, consider identical barriers of
height V. The metastable level between identical
barriers V'is defined by the condition

th ki, )(kt,, ) =
. E (v -£)
=q=¥_V U
E V)2
see [13], where
b=y ey = e 7B (hV “5)

This equation determines the level’s lifetime,
ty = t, = 1, is the barrier width. A convenient
numerical solution can be sought in the form

E; = Vo’ (a(E)))/th? (kiy ),
Vo = h%/2mt2,

expressing the arctangent via logarithmic functions.
The quantities

a=a'+ia"=E(V-E)/(E -V/2)
and
k' = ki + k]
are complex. For wide barriers, we obtain
ki = \2m.(V — E{)/n,
ki = E{\m,/(2V = 2E])/h,
th? (l%ltb ) ~1- 4exp(—2l€{tb )exp(—2il€1”tb )

It is easiest to estimate the level by assuming it
arises at the barrier boundary. In this case, o', and
o" = 3 E]/2V

To simplify further calculations, introduce the
dimensionless parameter

5 = dexp(—2kity )exp(-2ikit, ),

and obtain the energy as

Ey = (V +Vy)/2+\VE/4+3VyV /2 + 8AE,,
where

B (V02 /4 +3VV, /4)

AE, =
JVE4+3VV )2

If the well deepens by an amount AV, the energy
at the bottom becomes negative. Assume only one
stable level exists. If the center of the well is at x=0,
the wavefunction inside the well takes the form of
either an even or odd function:

Vo
+7.

For an even wavefunction:
o (x) = 4, cos(kyx).
For an odd wavefunction:

JETP, Vol. 167, No. 1, 2025
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yo (x) = A sin(kx),

herewith
Vot /2) % 0. i (1,./2) %0,
ki = \2m E, /h.
Let's mark

ko = \2m, (AV - E})/h,

ky = \2m,(V + AV - E))/h,
29 = —i/ko, 2y = —i/ky, 7y = 1/k;.

Then, in the case of an odd wave function, we
have the characteristic equation:

tg(kit, /2) =iZ; /py,
And for the even function:
tg(kit, /2) = -ip1/Z;.
The value
;- /51(/50 - lslth(lglt))
pr — poth (ky7)

1

is imaginary, so the equations are real and determine
the real energies. We take the normalization of the wave
function (WF) from the condition of finding the particle
in the well region |x| " #, /2. This is an approximate
condition, as there is some probability leakage through
the barriers. However, with sufficiently wide barriers, it
is negligible. A strict normalization can be performed,
but it results in cumbersome amplitude values. In our
case, the amplitudes are:

4, =t (L sin(t, k) /(h k)]

|AS|2 - |:tw (1 - Sin(twkl)/(twkl)):lil'

It is clear that the even level should appear first, as its
wave function approximately corresponds to the half-
wave of de Broglie. Thus, for 7 < 0, such a populated
level exists. At the moment = 0, the potential AV > 0
is suddenly switched on, and the bottom of the well rises
to zero energy. In such a well, the particle cannot exist
indefinitely, and the state begins to decay, described by
the integral equation (IE):

y(x,t) =y (x) - i AV x

JETP, Vol. 167, No. 1, 2025

0.0

1.0 3.0 4.0

/T

Fig. 4. Transition probability P(f) according to formula (12)
for the decay of a single level. The dashed curve represents
exponential decay Py(7) = exp(—1/1;).

tty/2
><J. J. Ko(t—t',x —x")y(t',x")dx'dr’.
01, /2

(10)

This problem can be solved numerically or by
perturbation theory. In the latter case, the first
approximation is:

70 (x,0) =y (x) - i AV x

t 1ty /2
><J. J. Ko(t—1',x = x")yq (x")dxdr'.
0-1,, /2

The probability of finding the particle in the well

region now becomes:
ty /2

I |\|J (t,x)|2 dx.
-+, /2

It decreases over time. Solving IE (10), we
compute (11). Obviously, with the chosen
normalization P(O) =1. Approximating (11) with
the function P (¢) = exp(—/r;), we determine the
level lifetime. The corresponding result is shown in
Fig. 4, corresponding to the value E|'/ E; = 0.021,

P(t)= (11)
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Fig. 5. Normalized particle number density p in the well as a
function of energy F for three resonance levels (eV): 0.140552,
1.78936 €V, 4.27933 eV (see Table, U, =4 V)
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1, = 59.5 fs. It should be noted that the decay of such
a state generally does not follow an exponential law
[24—35], which holds only for infinitely long-lived
levels [36]. There exist continuous-spectrum states
in the well that distort the exponential law. The
continuous spectrum and interference lead to faster
initial decay, followed by a slowdown [17, 24]. An
even more complex case corresponds to multiple
levels. The non-stationary approach is significantly
more complicated than determining complex roots.
Interestingly, for tunneling problems, calculating the
probability density:

p(E) = [lvo (x.E)[ dx

both in the well region and in the barrier region shows
maxima at energies corresponding to the resonance
levels E’ (see Fig. 5). The result is normalized to the
particle number density in both flows:

n(E)y=n"(E)+n (E)=
= 2Em}/*(Ep. - E)/n*R°.

This is because all incident flows from the left
and right with resonance energies E, pass into the
well, while for other energies they are significantly

DAVIDOVICH, NEFEDOV

reflected. Both the tunnel current density J and the
probability current density j are continuous along the
entire structure, including the electrodes, reflecting
the conservation law of particles (probability) in non-
relativistic quantum mechanics.

4. APPLICATION OF NON-STATIONARY
SCHRODINGER EQUATION
FOR DETERMINING TUNNELING TIME

Since the introduction of the concept of
tunneling time in 1930, there has been no established
understanding in the literature (see [ 19] and references
therein). Paradoxes such as the Hartman effect,

“superluminal” tunneling, negative tunneling time, and
others are still discussed. IE (10) is quite convenient for
resolving such issues and studying transient processes
[12]. The level lifetime (residence time in the structure)
is often associated with tunneling time. Here, instead of
IE (9), we consider another approach based on series
expansion for solving the non-stationary Schrodinger
equation. Suppose that at 7 < 0, in the region 0 < x < d,
we have a structure with three electrodes: U, = 0, and
U, =-W,/e. Also, let the value ddd be sufficiently
large. In this case, the potential is close to a rectangular
shape with width d and height W, relative to the Fermi
level (see Figure 1, curve 0). Relative to zero, its height
is V=W, + Eg,. If the grid voltage were zero, the
potential (relative to £.) would appear as two peaks of
height W, separated by a gap with zero height. Curve
1in Fig. 1 demonstrates the potential at a negative grid
voltage U, = -W,, when the entire curve is elevated
by W.,. Such a potential blocks the current. Suppose
that at time 7 = 0, the potentials switch such that
U,>0and U, = Ep, /e, i.e., the problem becomes
equivalent to resonant tunneling (RT). Accordingly, we
need to consider the transient processes of tunneling
establishment when ¢ > 0 during the switch from curve 1
to curves like 2, 4. For a diode structure, this switch
corresponds to curve 0 transitioning to curves 3, 5, 7,
but without RT. The macroscopic change in current
during such a process is quite easy to measure, unlike
the tunneling time of an individual particle. It should
be noted that for 7 < 0, the current was absent due to
the symmetry of the structure. Also, at these times, the
particle density in the structure was negligible, as the
tunneling probability through a wide barrier was nearly
zero. Near the edges, the density decays exponentially.
By choosing a large ddd, one can assume that particles
were absent in the barrier region. Switching the
potentials leads to the appearance of current. It cannot

JETP, Vol. 167, No. 1, 2025
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appear instantaneously, as particles need to traverse
the region d, thus creating a finite transient time. We
will solve the non-stationary Schrodinger equation by
expanding into series in the region 0 < x < d:

Y(r,x)=
ian( )cos(x,x +ZBn sin(y,x) |, (12)
n=0 n=1
V(tx)= ivn (t)cos(x,x), (13)
n=0

where y, = nn/d. This method is applicable for
multiple electrodes, but further numerical results
are presented for the diode. It is not possible to
use only cosines or sines in the expansion (12), as
this would always result in zero probability current
density. For simplicity, we will apply the method to
the diode structure. The amplitude A is introduced

for normalization, meaning that when it is specified,
we can assume o = 1. To perform the calculations,
we truncate the series (12) and (13) by an index N.

Substituting (12) and (13) into the Schrodinger
equation and using the orthogonality of trigonometric
functions, we obtain the coupled differential equations:

N
o, (t) =i ZAf,inwmocm 1)+
m=0

+12Anm @y By @SN (%) —

_ ZV(xcc +

ZVB” (t)sin(x,,x) |, (14)
_ZZAnm @y Oy
+12A” @By (£)sin (3, X) -
—% ZVO‘SC(t)oc ) +
ZVB” (£)sin (3, x) |- (15)

JETP, Vol. 167, No. 1, 2025

Here, o, = sznz/(2med2) are the frequencies,
and the matrix elements, detailed in the Appendix.
These equations are quite complex if the potential
depends arbitrarily on time. In the case of an
abrupt potential switch, it stops depending on time,
simplifying the equations. Rewriting the matrix
elements, the first equation can be simplified to:

o, (t) —im,o, (t) =

m=1
N ~
oy A (), (1)
m=0,m=n

Solving this equation using the Bernoulli method
or the method of variation of arbitrary constants gives:

o, (1) = o, (0)exp(io,t) +

+exp(imnt)Ifn (t")exp(—iw,t")dr'.

0

(16)

Similarly, we obtain:

By (1) = By (0)exp(io,t) +
t
+exp(iwnt)jgn (t")exp(—iw,t")dr".
0
Here, the following functions are introduced:

£0 ()= B 0041 2 A5, () (1)

__VBss

+ Z Afzsm (I)Bm (t)
m=1l,m~n

The solution in time is sought using the
discretization method: ¢,, = mAt, m =1,2,..., with
integrals calculated using the midpoint method. If
the initial values o, (0), B,(0), are known, the
equations allow us to find o, (mAt), B, (mAt), using
either explicit or implicit schemes.

The modified matrix elements here take a simple
and clear form, for example:
Ay (8) = A =Vt (1)
If such a barrier instantaneously changes its shape
at = 0to V(x), these elements stop depending on time:

Jace _ cc ace
Anm - (DmAnm _Vnm /h
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Their exact values can be found if the shape V(x)
is simple. For large U, it resembles a triangle placed
on a rectangular base (see Fig. 1, curves 3, 5, 7). At
eU, = Ep, the height of the base can be taken as
W, and the height of the triangle as Er. Due to the
Schottky effect, the barrier is actually somewhat
lower. Calculating the integrals, we obtain:

Ve = (Voam +Vim )/ (14 80,

Bss — (4, s
Vnm Vusm ~Vin-n /(1 + 5;10)!
asc _ .8 K
Vnm “Vaem T Vaims
Bss — ¢ c
Vnm Vin-n ~Vm+n-

Here, the values of the following integrals are
introduced:

For the initial symmetric wide barrier (curve 0),
the height Vi, = W+ Ef, and the coeficients o,,(#) = 0
and B,,(f) = 0 at # < 0, as the probability density inside
is practically absent. This approximation improves
with increasing d, implying a,,(7) = 0, B,(¢) = 0, i.e.
within W(x,7) = 0, < 0. We take the initial barrier as
rectangular. Then the integrals are easily computed,
for example:

v, (0) = Vysine (nm) = V3 .

When this barrier under applied voltage
U, = Er /e takes the form:

V(x)~W + Ep(1-x/d)
(see Fig. 1, curve 7), we obtain:
vy, =(W + Ep )3, + Epconc(nm),
vy, = Weonce (nn) + Epsinc (nr).
In our case:
vy, = Weonce (nm).

We assume that at the moment of voltage
application, some coefficients a,(0) and B(0)

instantly change from zero. This happens due to the
appearance of probability current density. We find
them from the continuity condition of this current
density.

To the left of the barrier, the spectral wave
function has the form:

w(x,k) = a" (k)| exp(ikr) + R* (k )exp(ikx) |,

and to the right:

= &~ (k) exp(=ik (x - ) - exp(ik (x ~ ) |
Here:
y(d,k) =0, y'(d.k)=-2ika (k),
At high voltage:
v (d.k) (0.5 << 1.

Upon voltage application, the electrochemical
potential on the cathode jumps, hence:

J2meeU, /b <k <2m,(Ep, +eU,)/h,
0 <k <.\2m,Eg, /h.

Now the coefficients «,,, 3, in the wave function
(13) at # > 0 become non-zero. They are dimensionless,
so the amplitude A must be determined from the
normalization to particle flux. The flux to the right,
at large U,, can be taken as zero:

J(d) =0.

The flux to the left for the wave function:
v (x,k) = a* (k)| exp(ikx) + R* (k)exp(ikx) |

is given by:

m_(")\(l R )

The total flux is obtained by integration:

Jj(0)= mie f a+(k)‘2(1 —‘R*(k)‘zjkdk =

Ep
-

j(0,k) =

m
- 2n2;13 '([

R* (E)‘QJ(EF ~ E)dE.

JETP, Vol. 167, No. 1, 2025
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Calculating the flux inFo. the barrier from the left Bi(0) = icy (0), g (0)=1.
at x = 0, we find the condition:
_ h , . Then:
j(0)= —zm—eRe‘P (0,0)¥ (0,0) = o 4nh|A|2
J =
2 0 o) . med
R|i 0 0) |
[lnz_lxn B )} {mz_“oam ( )J and the wave function takes the form:
For the flux on the right (from the anode), we ‘P(t x) - j(O)med y
find: ’ 4rh

—Re{iZ(—l)n YnB (O)Jx x[ian( cos(y,x Zﬁ’n sin (3, x J (17)
¢ n=1 n=0

ek o, (0)] = 0. From this, we find ‘P(t,d). and V' (.t,d).
Another method for solving equations (14) and

] ) (15) involves Fourier transforms:
It is also necessary to equate the wave functions (WF)

and their derivatives at the boundaries of the region: Qy (’ ) _ 1L I Ay (‘”) ex ( .
p(io)do,
. Bu(r)) 272 (By(o)
\P(O’O) =4 Z()a" (0)’ which requires calculating integrals. This can be done
';_ using the residue method, but this approach requires
W (0 0) -4 ZX B (0) separate consideration. To solve the problem, we
s nPn s

need to determine the initial wave function ¥ (0,x)
and its derivative, which will be done below. It is

¥(0,d)=4 Z (-1)" o, (0) = 0, convenient to introduce the frequency o = E/h.
n=0 The incident wave packet (WP) from the left can be
0 written as:
w(0.d) = A (-1)" 1,8, (0) = 0. E/n
n=l1 ‘P(t,O) = J‘ Al (O,m)exp(—imt)dco,
The last equality is set to zero because we assume 0
a high voltage and measure the energy from the o
conduction band edge of the cathode. We obtain six vt (0’@) = Zln J‘ ‘P(O,m)exp( i(ot) do.

additional equations to determine the infinite number
of initial conditions a,(0), a,(0) B,(0). However,

using the full set of sines in (12) is redundant because Here:
the cosine system is sufficient for approximating the o= k2h /2m,, k= 2m,w/h.
wave function. We introduced sines to obtain nonzero
fluxes and nonzero WF derivatives at the boundaries. Neglecting back tunneling, we have on the left:
It is quite reasonable to assume: o, (0) = 0, n > 2, E/h
B,(0) =0, n > 3. Thus, we have six unknowns, as well ¥ (1,0) = I at ((,))(1 +R* (m)) exp(—iot)do,
as six conditions. It is sufficient to consider nonzero 0
coeflicients 0y(0), a;(0), B;(0), B5(0). Then: and on the right:
o (0) = ay(0), 0) = p,(0)/2, Ep/h
1(0)= 0 (0). £2(0)= A1(0)/ Y(r,d)= J. a" (0)T" (o)exp(-iot)do.
and all six equations are satisfied, with: 0
4r h| 4 |2 . The incident WP from the left is denoted as:
Jj(0)=- Re(if; (0)otg (0))- E/n
med v ()= [ a (o)exp(-i
p(-iot)do.
It is convenient to choose: 0

JETP, Vol. 167, No. 1, 2025
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Here:
v (O,oo) =q" (co), v (d,oo) =a* (oo)TJr (o))

Defining ¥(x,) as the solution to the
nonstationary Schrodinger equation at time t, we
construct the function:

¥ (x,1) =¥ (x,1) - ¥(x,0).
It is zero outside the interval (0,f), meaning it has
a limited support, and:

t
1
P (x,0)= 2_£ 1")exp(iot')dt',

t
1 ’ * ! ’
¥ (x.0) = 5 [ ¥(x1")exp(ior)dr.
We can construct the time-dependent reflection and
transmission coefficients R (), T"(¥). Specifically, we
take:

R* (1) =W (0,0)/¥" (1)1,
T (1) =¥ (d.t) /¥ ().

Considering back tunneling, we define the
incident WP from the right:
E/h
Ia‘(m)exp(—imt)d(o.
0

Yo (1) =

Thus, we obtain:
W (1,0) =W (1) (1+ R (1)) + T (1)¥7 (1),
W (6d) =W ()T (1) + ¥ (1)(1+ R (1)),

To find all coefficients, we also need to determine
W¥'(¢,x),¥'" and ¥'". Derivatives can be found by
differentiating the series. The current density at the
anode is defined through the probability current
density:

J(tm) =

For this, when normalizing the wave function to
the probability density, we use [20]:

J(t,.x)=

[ (t,,,x)0, P (¢

—j(t,,.,d).

ih
2m

m?x) -
X )0 ().

e

Y (r

For an arbitrary moment in time, we obtain:

i (0)

j(t,x) = 7] X

0

xRe(—i z [oc;kn (£)cos (mx) + By (t)sin(xmx)} x

m=0

Zn[a )sin (1, ) + B, (1) <05 (1,x) ]
j(td)= j(40) x

an

xRe| =i Y (=1)" o, (1)- D (-1
m=0 n=1
From this equation, it follows that:

J(0,d)=0, j(Atd)~

i.e., instantaneous tunneling and negative tunneling
time are not possible. Using the spectra ¥ (d,0) and
¥'(d,), the result can be represented as:

jtd)y=—"

(2n)’ m

X

e

0

xRe [[(<i)¥" (d,0)¥'(d,0)exp(i (00

—00

)t)dm’doo.
For the steady-state process, the spectral wave
function at the anode is:
y(x,k)=a" (k)T* (k)exp(ik, (x —d))
The probability flux density for this wave function is:

dj(d.k) = v, (k) a*(k)T*(k)‘zdk,

where the speed at the anode is:

vo (k)= W2 (k)+2eU,/m,.

It should be noted that this speed is greater
than v(k) due to the acceleration of electrons
passing through the barrier by the anode. Over the
free path length, they scatter and transition to the
Fermi level of the anode, with v,(k) decreasing to
v(k), causing the anode to heat up. The method
of series used here is also convenient for solving
the Schrodinger equation (SE) together with the
Poisson equation (PE).
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5. RESULTS AND DISCUSSION

Figs. 6 and 7 present the results of the transient
process calculations, showing the establishment of
the anode current in a diode with a Fermi energy of
7 eV and the probability density distribution |‘P (x,t)|2
when stepwise voltages of 3, 5, and 7 V appear at
the anode. Fig. 7 shows the probability density
distribution for curve 1 of Fig. 6 at different moments
in time. The oscillations in probability density result
from the finite sums used in the calculations. As
the number of terms in the sums increases, both
the oscillation amplitude and period decrease. The
SE was integrated using the series method with 40
terms and an explicit calculation of the coefficients
in equation (12). Expanding in other bases in (12)
allows eliminating the oscillations. For example,
finite elements can be used. However, the proposed
series method is convenient when solving the SE and
PE simultaneously, as applied in [2].

Calculations were performed using 200 time points.
Curves 2 and 3 in Fig. 6 were constructed using 50
time points. For copper (Fermi energy 7 eV), we
have an electron concentration of 8.5-102®m=3 and
a Fermi velocity vy = 1.57- 10® m/s, meaning that a
particle with this speed travels a distance d = 10 nm in
atime t = 6.35 fs. We assumed that at the moment the
voltage is applied, the probability density inside the
barrier was zero. More precisely, it is symmetrically
distributed relative to the center, approximately
following a hyperbolic cosine distribution, increasing
towards the edges, but extremely small at the edges
themselves due to the near-complete reflection
by the wide, nearly rectangular barrier. In this
case, there is no inward probability flux into the
barrier. The results shown in Fig. 6 indicate that the
average transport speed of the probability density is
somewhat greater than v, leading to the conclusion
that the movement of the probability density is a
collective effect caused by the interference of partial
waves of the wave packet. An electron inside the
barrier, or generally within a potential field, behaves
as a quasiparticle defined by its interaction with many
other particles. This averaged interaction determines
the potential. A clear example is the potential of the
image method. Such a quasiparticle is not required
to behave like a free electron. Additionally, after
passing the turning point for a single barrier, the
electron moves quasi-classically and is accelerated
by the anode. The additional velocity gained at
U, =5 Vis 1.33 x 106 m/s, approximately equal to
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Fig. 6. Transient processes (—/ in A/cm?, time in fs) during
switching from the nearly rectangular barrier I to barriers 2, 3,
and 4 in Fig. 1 (corresponding to curves 1, 2, and 3).

v Accordingly, the transit time is halved. A similar
problem for resonant tunneling (RT) leads to a
significantly longer transient process time. This can
be explained by the need to form reflections from the
barriers for RT to occur.

Formally, the lifetimes of the levels can be
considered as an additional contribution to the
transient process time. In Fig. 6, it is evident that
the probability density is very small at short times.
This function is asymmetric and, on average, higher
near the start of the barrier but stabilizes at longer
times. Similar calculations of transient processes
for switching from a wide barrier to a structure with
narrow, unequal barriers and a quantum well show
slower current growth. This is explained by the
reflections from the barriers required to form resonant
levels in the well. To achieve complete RT, the
barrier heights must be sufficiently close. Numerical
calculations of the transparency coefficients show not
only full resonances but also peaks with incomplete
RT, where the maxima D < 1. Regarding lifetimes
1, = 2h/E,, they are significantly shorter than
the corresponding times determined at short times
from transient processes as a result of wave packet
evolution. This is because the wave packet contains
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Fig. 7. Particle number density (m3) as a function of the
coordinate x (nm) in a vacuum diode structure at different
moments in time (fs): 0.1 (1), 0.3 (2), 0.5 (3), 1.0 (4).

a broad energy spectrum. At longer times, the non-
exponential nature of the level decay becomes evident
(see, for example, [30—34]), with contributions from
algebraic terms. Determining level lifetimes this way
is feasible only for very narrow wave packets, which
is challenging to achieve experimentally for non-
relativistic quantum particles, and even more difficult
to observe their passage through a barrier. This raises
problems with reflecting a spectrally narrow (i.e.,
spatially very broad) wave packet from the barrier
[18], especially when the barrier itself changes over
time. However, the macroscopic current density can
be measured with high accuracy.

The quantity with the dimension of velocity:
v (e,t) = ji(x,t) /| (xo0)f

can be interpreted as the speed of the probability
density movement at point x at time t. This
corresponds to the concept introduced by N.A. Umov,
but it cannot be interpreted as the speed of an
individual particle. For a single-speed particle flow,
it coincides with the particle velocity in the flow. The
increase in current is accompanied by an increase in
the probability density of particle presence inside the
barrier. The average instantaneous speed of the wave
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packet (WP) passing through point x over time 1 can
be defined as:

t

v(erm) =1

T
t

J(x.t")

dt'. 18
¥ (") .

=T
If the WP is finite in time, its average speed can
also be determined.

Short lifetimes of quasi-stationary levels are
essential for achieving high current densities in field
emission. It is desirable to have as many such levels
as possible, and sufficiently deep ones. Increasing
the number of levels is achieved by increasing the
width of the quantum well, while reducing lifetimes
is achieved by using narrow-width barriers. Current
growth is also facilitated by leveling the barrier
heights, which can be controlled by the gate voltage
and the change in the gate work function.
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APPENDIX

For the well, from the conditions at the cathode-
side barrier, we have:

. A exp(—lgctc)+Ac’ exp(lgctc) N

A, >
kA exp(lgctc ) —k A} exp(—lgctc)
’ 2ik ’
A] exp(—lgctc ) +A; exp(lgctc)
A, = 3 -
kA exp(lgctc ) —k A} exp(—lgctc)
- 2ik ‘

In the case of wide barriers, neglecting
exponentially small terms (reflections from the left
edge of the barrier with amplitude A."), we find from
the matching conditions at the cathode-side barrier:
. A, exp(lgctc )(1 - ilga/ko)

w

A

b

2
N A exp(lgctc )(1 + ilga/ko)
- 2

JETP, Vol. 167, No. 1, 2025



ON THE LIFETIME OF QUASI-STATIONARY LEVELS 21

On the other hand, the matching conditions at the Dividing the first by the second, we obtain the

anode-side barrier give: approximate characteristic equation:
p exp(—ikqt,, )[A; +Ag vi(A] —A;)/Ea/koJ (1 ik g ko )(1 = iky /Ko ) (2ky,).  (AD
— , _ - = exp(-2i .
v 2 (14 ik g Jh)(1+ ik /o ) v
kot [A++A‘—'A+—A‘ k,/k J
4= = exp (it )| Aa a l( a a ) a/ko To obtain the exact equation, all amplitudes must
» .
2 be retained. In this case, equating the coefficients gives:
At the cathode boundary, we have the relations: A% My My (AL
— a
A (1 ikg /K, ) [A;] {le My |\ 4,
L -
A (1= iky /R, ) [A;J{Mnl " {A:J
—1 - -1 -1 -
Ag =Cf0c Aa M21 M22_ AC

) The matrix elements M are given by:
At the anode boundary, we have accordingly:

_ A exp(Eaza)(l _ika/lgg) My = exp(kAtc )M“ = exp(kAtc)x

AF 5 : Xcos(kotw )(I+k, /. H/;a Jko—ko /k 4 )sin (kt,, )’
P A, exp(—lgata )(1 - ika/lga)
e 2 ' M, = exp(lEAtC )]\7[12 = exp(lEAtC)x
For wide barriers, the amplitudes A, and A} are cos(kot,, )(1_]€a Jk 4 )_( k, /kqo+ko /K 4 )sin( kt,,)
small. Assuming them to be zero, we obtain: 3 )
Ay = M, = exp(—lgAtc)le = exp(—lgAtc)x
Aq exp(kata )(l_lko /kq Z(lﬂk“ /ko )exp(—lk()tw ), ><COS(kol‘w )[l—lga Jk 4 J*’(/Ea Jko+ko /k, )Sin(kofw )
7 . -~ .7 2 ’
Ay = ool )i liO/kC)(l = /kO)’ Moy = exp(—kyt, )M, = exp(~kyt, ) x
A, = Xcos(kotw ) (kg fee H kg fg—ko /k, )sin (Kot )
A exp(kgt, )(1iko kg )1k, /g )exp ik, ) 2 '
4 ’ Now
- A exp(ket, ) A, (1= ikg /k, )(1+ ik /ko ) AL = AL+ iky /R, =
w = 4 .
) =2(My A + M4,
Equating the coefficients A4,,, we get two ~
equations: A, = A, (1 - iko/kc) -
A, exp(/gata )(l—iko /lga)(1+ilga ko )exp(—ikotw ) = - Q(MZIA;' n M22A;).
= A, exp(l%ctc )(1 — ikq ke )(1 — ik, /kq ), Substituting 4 in these expressions, we obtain:
Aqexp(kty )(1- ik kg )(1— iky ko )exp(ikot,, ) = A, (Wiko /e, =M 1A exp (Kot ) (1ik kg
= A exp(ket, )(1—iko /k, )(1+ ik, /Ko )- +M 1A, exp( kot )(1 - iko /Ky ),
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A(Wik fle oM 31 A exp(kot, ) (1-ikg /g I

+M A, exp(—k i, )(1—iko /k, ).

Dividing the first equation by the second, we

obtain the characteristic equation:
1+ iky /k
e = (5) =

1 iky /k,
_ My, exp(kt, + ko, )+ Myyexp(kot. — ki, )
M yyexp(kyty —keto )+ Moy exp(—kot, — ket )

For wide barriers, small terms can be neglected,

resulting in the simplified form:
f(E)=~ exp(2l€ctc)><

1+ kg ke + (kg /g = ko /K ) (Kot )
e kolke + (kg kg + ko /e ) (kotyy )

The matrix elements appearing in equations (14)

and (15) are expressed as:

sinc ((xn —Am )d) +sinc ((Xn + Am )d) _

cc _
Anm 1+ sinc(2y,d)
— Sum
1+ 6110 ’
4o — conc((xn — A )d)—conc((xn + Uom )d) _
o 1+ sinc(2y,d)
_ (_1)n+m _(_l)n—m
1+38,, ’ (A3)
s conc((xn A )a’)+conc((xn + U )d) _
o 1+ sinc(2y,d)

IR ) o)

1438, ’
45 = sinc ((xn A )d) —sinc ((xn + U )d) _s
o 1 —sinc(2y,d) e

These expressions involve the following integrals:

d
2
Ve (1) = mIV (1,x)cos(x,x )cos(x,,x )dx,
n 0
5 d
Bss — :
Vs () o) 'EV(t,x)cos(xnx)sm(xmx)dx,

(A2)

d
Vs () = 2IV (7,x)sin(y,x )sin(yx,,x )dx,
0

d
Vose (1) = ZIV (7,x)sin(y,x )cos(yx,,x )dx.
0

In equation (A3), the functions sinc (x) = sin(x)/x

and conc(x) = (1-cos(x))/x are included. These
functions at zero should be defined as sinc (0) =1,

conc(0) =0 ensuring proper boundary conditions.
Moreover, the condition sinc(2nn) = §,, applies at
the barrier edge.

._
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