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1. INTRODUCTION

Resonant tunneling structures (RTS), which are 
nanoscale heterostructures with field emission, are 
widely used in electronics as sources of very high 
current densities (up  to 1014 A/m²) [1–3]. They 
also form the basis for designing resonant tunneling 
diodes (RTD), transistors, quantum cascade lasers 
(QCL) of the “Stark ladder” type, THz transistors 
and switches [4–11], as well as other devices. For all 
these applications, switching times, response times, 
and overall transient times are crucial [11,12].

RTS is characterized by having one, two, or 
several quantum wells separated by barriers, where 
quasi-stationary resonance levels can arise [13]. We 
will refer to the electron-emitting left electrode as 
the cathode (denoted by the subscript c) and the 
right electrode as the anode (subscript a). For the 
intermediate electrode (grid), the subscript g will be 
used. In the case of equal electrochemical potentials 
of the electrodes μc = μa, the quantum potential V(x) 
between the two electrodes (in a diode structure) 
resembles an inverted parabola on a pedestal and can 
be strictly described by an infinite series of images 
that account for the electron work functions [1]. 
Approximating this series with an inverted parabola is 
rather crude [1,14]. A more accurate approximation 
is a fourth-order inverted parabola [1,2]. In this work, 

we will use an even more precise approximation for 
the potential in the diode 0 < <x d  under anode 
voltage Ua:
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In this formula, α δ= 2 2 1ln( )+( )  represents the 
cathode work function, assumed equal for both the 
cathode and anode W Wc a= , and is related to the 
parameter (gap size) d by the equation:

W ea = 16 .2
0/ πε δ( )

For simplicity, we will further assume equal 
Fermi energies E EFc Fa=  for the electrodes. 
Under potential V(x)V(x)V(x), the boundary 
conditions are V EFa0 =( )  at the cathode and 
V d E eUFa a( ) −= = ma, at the anode, meaning 
the quantum potential V coincides with the 
electrochemical potentials. In cases with different 
work functions (and materials of the cathode and 
anode), an additional term E E x dFa Fc−( ) /  should 
be added to (1). The accuracy of equation (1) is no 
worse than 1%. Diode structures do not allow for 
extremely high current densities. Current increase 
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occurs through resonant tunneling (RT), where one 
or more quantum wells are surrounded by barriers 
[1–3]. Reflections from the barriers interfere, and the 
total reflection coefficient cancels out. For simplicity, 
we further consider a single-well structure with three 
electrodes: cathode (source), grid (gate), and anode 
(drain). Equation (1) applies both to a vacuum gap 
(e = 1), and a dielectric gap between electrodes. In 
the absence of an anode voltage Ua = 0, the potential 
in the center of the gap is:
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For a work function of 3.6 eV, the corresponding 
value is d = 0.1. Thus, for typical work functions of 
materials (2–5 eV) and typical electrode and gap sizes, 
RTS structures on the order of nanometers satisfy the 
inequalities d/d << 1,  a / << 1d .  In the absence of 
anode voltage, the inequality V d E WFc c/ /2( ) ≈ + e
holds. A dielectric with dielectric permittivity e reduces 
the barrier height by a factor of e.

Suitable and convenient dielectrics for RTS 
include CVD (Chemical Vapor Deposition) diamond 
( ,e = 5.6  bandgap 2.5 eV) [15] and beryllium oxide 
(BeO, e = 6.7,  bandgap 10.6 eV). These dielectrics 
significantly reduce the barrier height and have the 
highest thermal conductivity, which is essential 
for high current densities [2,3]. Although CVD 
diamond with 88% sp³ hybridization has a density of 
88.2% of crystalline diamond, its dielectric constant 
can be taken as 5.6 due to the presence of a small 
graphite phase. Electrodes can be made of metals 
or doped semiconductors. Beryllium has the highest 
Fermi energy (14.6 eV), relatively low work function 
(3.92  eV), and the highest thermal conductivity 
among metals. To construct a complex profile V 
(Fig. 1), equation (1) is applied twice – once for the 
cathode-grid gap (replacing U Ua g® )  and once for 
the grid-anode gap, assuming E E eUFc Fc g→ − .  
On the grid, the quantum potential is constant and 
determined by its electrostatic potential Ug.

In RTDs and QCLs, highly conductive layers 
are usually considered electrically free, meaning 
the potential along them is not fixed and decreases 
[4–12]. Figure 1 shows typical profiles of V(x) for 
diode and triode structures under different anode 
(Ua) and grid (Ug) voltages for copper electrodes. 
To form a quantum well, a grid voltage U E eg Fc= /  
was applied. The energy E is measured from the 

conduction band bottom of the cathode, which 
coincides with the bottom of the well.

If an energy level En exists in the formed 
quantum well, it is quasi-stationary, as there is 
always an identical level at both the cathode and 
anode, allowing the electron to tunnel between them. 
Tunneling can occur both leftward to the cathode and 
rightward to the anode. Subsequently, the electron 
transitions from this level to the Fermi level of the 
corresponding electrode, from which it can enter 
the power supply circuit, as only electrons near the 
Fermi level participate in the diffusion current.

The issue of quasi-stationary level lifetime 
(decay time) in a spherically symmetric quantum 
well has been addressed in several works, such as 
[16–18]. However, the lifetime of quasi-stationary 
levels in a one-dimensional Cartesian RTS has not 
been strictly studied. This time is closely related to 
the tunneling time of a single particle through the 
structure (its dwell time). There is extensive literature 
on the introduction of various time definitions (see, 
for example, the reference list in [19]). The topic 
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Fig. 1. Potential Barrier Profile V (eV) as a Function of Distance 
x (nm) in a vacuum diode (curves 0, 3, 5, 7) and a vacuum triode 
(curves 1, 2, 4, 6). The curve numbers for the diode correspond 
to the anode voltage Ua in volts. For the triode curves  2 
and 4, the grid voltage Ug = EF is specified, and their numbers 
correspond to the anode voltage. For curve 1, U = 0, Ug = Wc/e, 
while for curve 6, Ua = 4 V and Ug = 3 V. The work functions are 
EFc

 = 7 eV and Wc = 4.36 eV (copper electrodes).
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of tunneling times remains under discussion, with 
several paradoxes. Tunneling times are closely linked 
to the switching times of tunnel devices [11]. RTS 
devices such as RTDs, QCLs, and other structures 
are typically modeled using rectangular potentials 
modified by the term −eU x da /  [11]. This approach 
is a rough approximation because high voltages lead 
to a barrier shape close to a triangle on a pedestal [1]. 
Schrödinger equation (SE) calculations show that 
such a barrier is orders of magnitude more transparent 
than a rectangular barrier of the same height and base 
width. A semiclassical approximation is often used 
[16], which can be integrated exactly for a triangular 
barrier [20]. However, this method is accurate only 
up to a pre-exponential factor and is quite imprecise 
in the narrow upper part of the barrier, as it neglects 
the reflected electron wave [20]. For narrow barriers, 
the ref lected wave contributes significantly. In 
the analysis of RTS with two or more rectangular 
barriers, resonance levels are usually defined as the 
penetration of a particle through identical barriers 
to the left or right with the same energy as in the 
well [13]. However, real RTS structures differ. 
Upon reaching the cathode or anode with a given 
energy, the particle transitions to the Fermi level 
of the electrode, emitting or absorbing an energy 
quantum, and exits the structure with this energy, as 
any current in conductors is generated by electrons 
near the Fermi level. Under stationary tunneling 
(constant anode voltage), the number of electrons 
tunneling from the cathode is exponentially greater 
than the number tunneling from the anode, resulting 
in a constant emission current closing through the 
power supply. The emergence of resonance levels 
′En  leads to resonant tunneling (RT), accompanied 

by an increase in current, as the barrier becomes fully 
transparent for electrons with energy E En= ′ .  Quasi-
stationary levels arise with increasing well width. 
These energy levels are complex: E E iEn n n= ′ − ′′.  
The parameter ′′En  determines the level lifetime 
τn nE= 2 / ′′.  The smaller the lifetime, the broader 
the energy level, the wider the energy range satisfying 
the condition E En≈ ′ ,  and the greater the number 
of electrons undergoing resonant tunneling. Thus, 
determining the lifetimes (complex energies En )  
of quasi-stationary levels and their dependence on 
quantum potential configurations is crucial, which 
is the primary aim of this study. For field emission, 
the number of electrons incident per second on the 
barrier within a velocity interval v dvz z+  and energy 
range is: d v n k v dvz z zν( ) ( )+= ,

where
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Equation (2) is derived by averaging over all 
transverse velocities of the Fermi gas electrons in the 
metal cathode and is presented for finite temperatures. 
For cold emission (T = 0), the spectrum is limited by 
the Fermi energy:

n k m E E k ve Fc z
+ ( ) − ( )( ) ( )= 2 .2 2 3/ π 

Although the actual tunneling process involves 
a multi-speed electron flux determining the total 
tunnel current density:
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this problem can be treated as single-particle 
tunneling with a specified energy E.

The electron charge is taken as q ee = − ,  so the 
positive electron flux from the cathode results in 
a positive anode current − ( )+J U a  through a unit 
cross-section. The upper limit in equation (3) is on 
the order of several electronvolts, which is consistent 
with non-relativistic quantum mechanics. For 
thermionic-field emission (at T∼2000K), equation 
(2) should be used, with the upper limit in equation 
(3) extended by a few eV due to the logarithmic decay.

For T = 0, the total current density J J J= + −−
is determined by tunneling in both directions with 

transmission coefficients D E R± ±( ) −= 1
2

,  derived 

from reflection coefficients R ± .  To determine R ±,  the 
Schrödinger equation is solved. The expression for J– is 
obtained by substituting µ µc a→ ,  D D+ −→ .

For a symmetric potential (Ua = 0), the tunneling 
coefficient T(E)T(E)T(E) is always D D+ −= .  For a 
weakly asymmetric potentials.

2. LIFETIME OF THE LEVEL BASED  
ON THE STATIONARY SCHRÖDINGER 

EQUATION SOLUTION

The stationary Schrödinger equation (SSE):
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is most conveniently solved for V(x) using the wave 
impedance transformation method. For a constant 
potential Vn in the region x x xn n< < 1+ ,  the wave 
impedance is introduced as:

z E i x x kn n( ) − ( ) ′( )= / = 1 / ,ψ ψ

where:

ψ x A ik xn( ) ( )= exp

is the wave function (WF) of an electron moving in 
the direction of x electron,

k me E Vn n= −2 ( ) ./

Let z xn0 1+( )  be the impedance on the right side. 
It transforms into the input impedance on the left 
side according to the formula:

	 Z x z
z iz k x x
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n n n n
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+
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0 1
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Setting z Z xi n0 = ( ),  we apply this formula 
iteratively for each segment until we obtain the input 
impedance at the cathode Z ic 0( )  and the reflection 
coefficient from the cathode side:

R k Z k Zic ic
+ − ( )( ) + ( )( )= 1 0 / 1 0 .0 0

Here,

k k m Ec e0 = = 2 / .

For the initial iteration at the anode, we assume:

k m E E eUa e Fc a= 2 ,− +( )/
z ka0 = 1 ./

It is worth noting that in typical tunneling through a 
barrier, k ka = 0  is taken, i.e., the motion is considered 
only up to the turning point. Such transparency is 
 D D+ −= .  However, after passing this point, the 

electron moves quasi-classically, gaining energy eU a.  
This results in lowering the Fermi level at the anode by 
eUa, necessitating the use of the adjusted value ka.

This concept can be illustrated using an infinitely 
narrow step-like barrier: V = 0 at x < 0 and V eU a= −  
at x  >  0. For such a barrier, the quasi-classical 
approximation gives full transparency, D = 1,  R = 0.  
However, under the strict solution, the reflection 
from the step is:

R k k k ka a= /0 0−( ) +( )

and D < 1.  Applying formula (4) is equivalent to 
matching the wave function and its derivative. Clearly, 
the energy levels E E iEn n n= ′ − ′′  can be defined as 
the complex roots of the equation:

R En
+ ( ) = 0.

The transparency from the anode to the cathode 
D– is determined by reverse transformation, where at 
the anode we take:

k m Ea e= 2 / ,

z ka0 = 1 /

and

R k Z d k Z dia ia
− − ( )( ) + ( )( )= 1 / 1 .0 0

The difference between D+ and D– increases with 
increasing Ua. When eU Ea Fc> ,  tunneling from 
the anode becomes impossible. After tunneling, the 
electron always transitions to the Fermi level of the 
corresponding electrode, either releasing or absorbing 
energy e E EF a c− ( ),  depending on the sign of the 
energy difference. This process is diffusive, occurring 
over a distance on the order of the electron mean free 
path, and does not affect the wave tunneling process 
itself. If tunneling occurs from a level below the 
Fermi energy, heating of the corresponding electrode 
occurs (Nottingham effect): the departing electron 
is replaced by an electron from the Fermi level. For 
U a = 0,  we obtain a symmetric structure in the form 
of a quantum well between two barriers (see Fig. 1, 
curves 0 and 1). In this case, the condition:

R E R En n
+ −( ) ( )= = 0

yields energy levels from which the particle can tunnel 
equally to the left or right. Otherwise, the condition 
R En
+ ( ) = 0  gives the levels from which the particle 

can escape to the anode, while R En
− ( ) = 0  

corresponds to levels leading to cathode transitions. 
Calculations show that the levels approximately 
coincide within their width. For example, if 
eU Ea FA> ,  all energy levels at the anode become 
negative, making transitions to positive energy levels 
on the cathode impossible. It is evident that for 
E < 0, when R E− ( ) ≡ 1,  i.e. meaning no solutions 
exist for the equation R E− ( ) = 0.  In this case, the 
cathode impedance 1/kc  becomes imaginary, and 
the cathode acts as an infinitely long, fully reflective 
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step for the anode. Positive energies at the anode 
can only exist at non-zero temperatures, i.e., under 
thermionic emission conditions. Solutions to the 
equation R E+ ( ) = 0  always exist for levels on the 
cathode side. Thus, for an asymmetric potential, two 
types of energy levels exist. Resonant tunneling is 
primarily considered for asymmetric potentials, as 
this condition ensures a continuous current.

Another possible approach to solving the stationary 
Schrödinger equation involves using transfer matrices 
[1–3] T E ( ).  The structure matrix is defined by 
piecewise-constant potential V approximations and 
multiplying the segment matrices. The characteristic 
equation for determining tunneling levels at the 
anode takes the form [1, 3]:

	 ik E
T E ik E T E

T E ik E T Ec
a

a
( ) ( ) − ( ) ( )

( ) − ( ) ( )
= .21 22

11 12
� (5)

Another method involves using the sweep method. 
In addition to finding R E± ( )  and D E± ( )  this 
approach allows for determining the wave function 
amplitudes A ik x xn n n

± ± −( )( )ψ  and the charge 
distribution in the barrier and well region under 
known incident particle f luxes from the cathode 
n k v dvz z
+ ( )  and the anode n k v dvz z

− ( ) .

This, in turn, enables the estimation of changes in 
the quantum potential V due to space charge effects 
under high currents [2]. Such estimation requires 
iterative solutions of the Poisson equation (PE) and 
the Schrödinger equation. However, these numerical 

methods are less convenient for our analysis of 
resonant level influence on electron emission.

We derive the exact solution of the Schrödinger 
equation (SE) for the model potential V x( ),  
described by two rectangular barriers of height Vc 
at the cathode and Va at the anode (see Fig. 2). To 
better match the real potential, the barrier widths 
tc and Ta are taken approximately half the size of 
the bases of the actual near-triangular barriers on a 
rectangular pedestal (Fig. 1, curves 2, 4, 6), while 
the well width tu is correspondingly increased. It is 
possible to achieve an exact correspondence between 
the width of a triangular barrier and the width of a 
rectangular barrier with equal heights by equating 
their transparencies D E D Erec tre( ) ( )= .  This 
correspondence depends on the energy. Averaging 
over the energy range, we obtain a coefficient of 
approximately trec ≈ 0.5ttre. In the quantum well, the 
SE solution takes the form:

ψ x A ik x t A ik x tw c w c( ) −( )( ) + − −( )( )+ −= .0 0exp exp

In the barrier region near the cathode, the wave 
function (WF) is:

ψ x A k x A k xc A c A( ) −( ) + ( )+ −= ,exp exp 

Similarly, in the barrier region near the anode, the 
wave function is:

ψ x A k x t ta a c w( ) − − −( )( ) ++= exp 

+ − −( )( )−A k x t ta a c wexp  .

Here, we introduced the following notations:

k m V Ec e c= 2 ,−( )
k m V Ea e a= 2 ,−( )

k m Ee0 = 2 .

The wave function at the cathode represents an 
outgoing wave:

ψ x A ik xc( ) −( )= .0exp

Similarly, at the anode:

ψ x A ik x da( ) −( )( )= .0exp

Here, A ka = 0,  d t t tc w a= + +  is the size of the 
structure. The task is to match the wave functions and 
their derivatives at the boundaries. There are eight 
unknowns, four boundaries, and thus eight conditions. 
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Fig. 2. Schematic potential distribution V in a single-well RTS at 
Ug = EF/e. Dashed lines indicate the energy levels at the cathode, 
anode, and two metastable levels.
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Calculating the eighth-order determinant without 
numerical methods is challenging, so we iteratively 
eliminate unknowns. The results of this elimination 
are provided in the Appendix. By defining the function 
f(E) according to formula (A2) from the Appendix, the 
characteristic equation takes the form:

	 E V
f E

f E f E
a=

1

1 1
.

2

2 2

( ) −( )
( ) −( ) − ( ) +( )

� (6)

This equation allows for the iterative search for 
complex roots En .  Assuming the function f is large 
in magnitude (corresponding to wide barriers), we 
obtain E V f Ec≈ − ( )/4.  As the well expands from a 
very narrow width, the energy level first appears near 
Va [21]. For such a level, the decay rate k~a ≈ 0 is:

tg /k t k kw a0 0 .( ) ≈ 

Assume there is such a level:

E Va1 1= 1 ,−( )δ

where d1 is small. Also, let:

δ << = 1.∆ V Vc a/ −

Calculating the function f, we obtain:

 k kc ≈ + ( )( )1 2 ,δ/ ∆

exp exp2 2 1 2 , k t ktc c c( ) ≈ ( ) + ( )( )δ/ ∆

Where
� �k m Ve a= 2 ∆ / .

As well as:

k k0 1 2 ,≈ −( ) δ/ / ∆

k kc0 1 1
2/ 1 1 1 / 2 4 . ≈ − +( ) + ( )( )δ δ/ / /∆ ∆ ∆

Let us set ka = 0,  and rewrite the introduced 
condition as
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from which the correction d1 can be found, expanding 
further:

δ1 =
16 2
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We can neglect the second-order term. To find 
the exact roots of equation (6), let us consider a well 
surrounded by infinitely wide barriers, i.e., potential 
steps of height Vc and Va. In such a well, stationary 
energy levels E Vn a<  are possible. The problem of 
an asymmetric well has been solved and studied in 
[21]. With the notation

k m En e n0 = 2 /

it has the solution

k t n
k

m V
n w

n

e c
0

0=
2
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
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which gives real energy levels. Rewrite equation (7) 
as

tg k t k tn w n n0 0= ,( )

where

t
k k

k k k
n

n c

c a n

= .0

0
2

+

−



 

Choosing the well width from the condition of the 
existence of one level:

t t
V V

m V
w

a c

e c

> =
/ 2

2
,0

π − ( )arcsin /

/

we get



	 ON THE LIFETIME OF QUASI-STATIONARY LEVELS� 9

JETP,  Vol. 167,  No. 1,  2025

E
g E t

mn
n w

e
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2
.

2
 ( )( )/

From this equation, we find the real values of E1 by 
the bisection method in the interval 0, 0V( ) .  For the 
existence of multiple levels, the well must be several 
times wider than t0. Then we find En, n N= 1,2,..., .  
The values of En are used as initial approximations 
E En n

0 =( )  for the iterations according to equation 
(6). As a result, we obtain all the levels from which 
a particle can escape to both the anode and the 
cathode. To increase the current, the widest possible 
well should be used, for which the electrode material 
should have the maximum electron mean free path 
(MFP). The MFP can be significantly increased by 
using cryogenic temperatures. Let us consider the 
derivation of equation (7), where the wave functions 
(WF) on the cathode and anode sides are taken as

ψ δx A k i xc a c( ) −( )( )= 1 ,exp 

ψ δx A k i x ta a a w( ) − −( ) −( )( )= 1 ,exp 

i.e., the barriers are partially transparent. Here

� �k m V Ec e c n= 2 ,− ′( )/
� �k m V Ea e a n= 2 ,− ′( )/

and small corrections are taken as

δc n c nE V E= 2 2 ,′′ − ′( )/

δa n a nE V E= 2 2 .′′ − ′( )/

In reality, they are associated with the finite width 
of the barriers and the finite lifetime of the levels. In 
the well 0 < <x tw ,  we take

ψ δ δx A k xn n( ) +( ) +( )= 1 ,0sin

where

� �E k mn n n e= 1 2 ,
2

0
2+( ) ( ) ( )δ /

and the small correction dn needs to be found. As 
a result, we obtain the characteristic equation for it:

tg k t kn n w n n0 01 = 1+( )( ) +( ) ×δ δ

×
−( ) + −( )

−( ) −( ) − +( )

 

 

k i k i

k k i i k

a a c c

c a a c n n

1 1

1 1 1
.

0
2 2

δ δ

δ δ δ

Introducing the notations

′ ′δ δ δ δ δ δan a n cn c n= , = ./ /

Primed quantities are not small. Considering (8), 
to obtain the correction, expansion up to the second 
order in dn

2  should be used. We obtain dn n nA B= / ,  
where

A
t
t

k t t
i k k

k k
n

w

n
n n w

an a cn c

a c

= 10
2+ − +

′ + ′( )
+

−
δ δ 

 

−
′ + ′( ) +

−

2 2
,0

0
2

ik k k

k k k

c a an cn n

c a n

 

 

δ δ

B
k k k

k k k
k t tn

c a an cn n

c a n
n n w= 0

2

0
2 0

2
 

 

′ ′ +

−
− +

δ δ

+
′ + ′( ) +

−












+4 0

2

0
2

2
ik k k

k k k

c a an cn n

c a n

 

 

δ δ

+
′ + ′( ) +

−

2 2
.0

2

0
2

ik k k

k k k

c a an cn n

c a n

 

 

δ δ

For the calculation of the correction, one can 
assume E En n' = ,  and then

′′ −ℑ( )E En n n/ = ,δ

while the real part also changes:

′ + ( )( )E En n n= 1 .Re δ

In Fig. 2, two levels are shown. From the cathode, 
tunneling to both levels with exit to the anode is 
possible. In this case, the cathode heats up because 
its level is above the Fermi level (Nottingham effect). 
When transitioning from the first level to the anode, 
the anode cools, while transitioning from the second 
level heats it up. Tunneling from the anode to the 
second level at T=0 is impossible. The lifetime of 
the level exponentially decreases with the narrowing 
of the barriers. The barriers narrow as the field Ug 
increases (Schottky effect), i.e., with an increase in 
well depth. At U U Eg a Fc> /+ ,  stationary levels 
are possible in the well. Narrowing of the barriers 
also occurs with increasing voltage U and decreasing 
sizes tc and ta. There is a critical voltage at which 
the barrier relative to the Fermi level disappears, 
becoming nearly triangular. Indeed, using equation 
(1), where we denote

′
−( ) +( )

−( )
W W

d d

d
c=

1 1

1
,

2

2

α δ

δ

/ /

/ ε
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assuming d  =  tg and neglecting small terms, this 
condition can be written as:

V x EFc0 = =( )
= 1 .0 0 0E W d x d x eU x dFc c g+ ′ − −( )( )( ) −δ / /

From this, we find the point x0 where this occurs. 
It is very close to the cathode, so we simplify the 
cubic equation by replacing d x− 0  with d:

x eU x W dg c0 0
2= ./ ′( ) + δ

Solving this quadratic equation iteratively, first 
assuming

x0 = d

and then refining:

x eU W dg c0
2= .δ δ+ ′( )/

The refinement is very small, so we obtain the 
critical voltage:

U W d e W d eg = 1 2 2 .′ −( ) ( ) ≈ ′ ( )/ / /δ δ

For a work function of about 4 eV at d=2 nm, this 
corresponds to a critical electric field strength at the 
cathode of 2.35 1010⋅  V/m. Thus, in RT structures 
with well widths of a few t0 and narrow barrier 
widths tc and ta, a significant increase in emission 
current is possible simply by increasing the size tw. 
However, tunneling is ballistic transport without 
energy loss, so the width tw must be significantly 
less than the electron mean free path (MFP) in the 
corresponding material. The characteristic size tw at 
room temperature is a few nanometers. To reduce the 
lifetime of levels and increase current, the barriers 
should be made narrow. Their narrowing is also 
achieved by increasing electrode voltages. It is not 
difficult to obtain exact solutions to equation (6), but 
these equations are model-based. For real potentials 
(Fig. 1), one should solve the exact equations 

(5) or R E± ( ) = 0.  The table above presents the 
results of iterative calculations of complex energies. 
Calculations based on equation (5) and the 
conditions R E± ( ) = 0  agree well.

A very simple method for determining complex 
levels is calculating the transparency of the 
structures. Figure 3 shows an example of calculating 
D+ for several double-well RT structures with 2 to 
4 metastable levels. Such structures are obtained 
with a double grid [1–3] and are more convenient 
for achieving resonance tunneling because two 
approximately equal barriers can be formed under a 
significant electrostatic potential Ua.

Table. Metastable levels (eV) in the range (0, EFc) for the potential in Fig. 1 at different anode voltages Ua (V):

Ua 1.0 2.0 3.0 4.0

′ − ′′E iE1 1
0.14467–i3.1⋅10–4 0.1445–i2.9⋅10–4 0.1399–i2.7⋅10–4 0.1405–i2.7⋅10–4

′ − ′′E iE2 2
1.815–i2.5⋅10–3 1.807–i2.6⋅10–3 1.798–i2.8⋅10–3 1.789–i2.9⋅10–3

′ − ′′E iE3 3
4.4938–i8.9⋅10–3 4.369–i9.5⋅10–3 4.328–i9.9⋅10–3 4.279–i1.2⋅10–2

′ − ′′E iE4 4
6.872–i7.2⋅10–2 6.982–i8.3⋅10–2
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Fig. 3. Tunneling coefficient D  =  D+ in a double-well RT 
structure as a function of the ratio t = t1 = t2 = t3 depending on 
E/EFc

 at t = tg = 1 nm (curves 1, 3) and t = 2 nm, tg = 1.5 nm, 
d = 9 nm (curve 4). Work function Wc = Wg = Wa =4.0 eV, Fermi 
energy EFc

 = EFa
 5 eV, Ua = 11 V. Ug = 13 V (1, 4); Ug = 20 V (2); 

Ug = 25 V (3)
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Notably, the peaks for D+ and D– differ slightly, 
particularly at low energies. At E EFc> ,  D ± ≈ 1  
always holds. This case corresponds to thermionic 
emission if the electrode temperatures T ± > 0.  It 
should be noted that for different barriers, peaks may 
not reach unity (incomplete resonance tunneling), 
associated with partial suppression of ref lected 
electron waves. The values ′En  are determined by 
the peak maxima, which can be done accurately. 
The lifetimes ′′En  are determined by the resonance 
widths. Typically, the levels are located near the 
upper regions of the well.

Let us consider how the position and width of the 
level affect the current contribution. Suppose there is 
one level ′ − ′′E iE1 1.  Approximating it as an equilateral 
triangle with unit height, the contribution from the 
level is

∆J em E E Ee Fc
+ − − ′( ) ′′ ( )= 4 .1 1

2 3/ π 

For levels near the Fermi level of the cathode, it 
is small. Therefore, it is important to obtain low-
lying levels with a short lifetime (large width). For a 
single triangular potential barrier at a critical field, the 
semiclassical approximation gives its transparency D as

D d m W eUe a≈ −( )exp 4 2 3 ,3/2 / 

see [20]. Here, the barrier height W is measured from 
the kinetic energy of the incoming electron, i.e., in 
our case, W = V – E.

For deep levels, the transparency of a single barrier 
is exponentially small compared to D = 1 in resonance 
tunneling. The formula works well for deep levels, but 
for E = V, its limitation becomes apparent: D = 1 at 
W = 0, while solving the Schrödinger equation gives 
D < 1. This limitation restricts the applicability of the 
Fowler–Nordheim formula to single barriers.

Nevertheless, the result can be used to estimate 
the lifetimes of deep levels by calculating D(c,a) at 
W V Ec a n= , −  and determining dc = Dc and da = Da.

3. LIFETIME OF THE LEVEL  
IN THE NONSTATIONARY APPROACH

The nonstationary Schrödinger equation (SE) is 
written as

S t x t x V t x t x , , = , , ,( ) ( ) ( ) ( )ψ ψ

It is known to be relativistically non-covariant. 
Here, the operator for a free particle’s Hamiltonian 
is denoted as

S t x i
mt

x

e

� �
�

, =
2

.
2

( ) ∂ +
∂( )

This implies that the Green’s propagator function 
(GPF), which describes the propagation of a particle 
from point x′ at time t′ to point x at time t, has the 
following form [22, 23]:

K t t x x0 , =− ′ − ′( )

=
2

sgn t t
m

i t t
e− ′( )
− ′

×
π 

		  ×
− ′( )

− ′















exp
i x x m

t t
e

2

2
,



� (8)

This expression suggests infinitely fast propagation of 
the perturbation. Indeed, GPF (8) defines the particle’s 
presence at point x at time t based on its amplitude 
ψ0 ,′ ′( )x t  at point x′ at the initial moment t′:

ψ ψ0 0 0, = , , .t x K x x t t t x dx( ) − ′ − ′( ) ′ ′( ) ′
−∞

∞

∫

If at the initial moment t0, a probability density

ψ δ0 0 0, , = ,t x x x( ) −( )

emerges at point x0 meaning the particle is localized 
there, then for any later time t t> 0,  the wavefunction 
exists throughout the entire infinite space:

ψ0 0 0 0, = , ,x t K x x t t( ) − −( )

Thus, the propagation speed of the probability 
density is infinite, though the density itself rapidly 
decreases at distant points. Here, the subscript “0” 
denotes a free particle (V=0).

Such a particle is generally described as a wave 
packet (WP) with a certain spectrum of wave 
numbers k and energies E. It is worth noting that the 
incoming particle flow described by distribution (2) 
also represents a WP.

The GPF (8) satisfies the initial condition

K t t x x x x
t t0 , =− ′ − ′( ) − ′( )→ ′ δ

and the differential equation
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SK t t x x i t t x x� �0 , = ,− ′ − ′( ) − ′( ) − ′( )δ δ

(see [22]). Solving the nonstationary SE requires 
setting appropriate initial conditions. A convenient 
approach is to use the stationary case at the initial 
moment t t= 0 , i.e., the wavefunction ψ0 x( )  and 
the potential V x0 ( ).

At t t≥ 0,  when the potential V x t,( ) starts 
changing, the wavefunction satisfies the nonstationary 
SE. The wavefunction for t0 > 0  is governed by the 
Lippmann–Schwinger-type integral equation:

ψ ψx t x i K t t x x
t

, = ,0
1

0

0( ) ( ) − − ′ − ′( ) ×−

−∞

∞

∫ ∫

		  × ′ ′( ) − ′( )  ′ ′( ) ′ ′V t x V x t x dx dt, , .0 ψ �(9)

Indeed, at t ″ 0, , we have ψ ψx t x, = 0( ) ( ). . 
Taking the time t > 0  derivative of (9) and applying 
the operator S,  we obtain the SE:

S x t V t x t xψ ψ, = , , .( ) ( ) ′ ′( )

Assume the potential

∆V t x V t x V x, = , 0( ) ( ) − ( )

is localized within a certain region. In this case, for 
small times, equation (9) can be solved rather simply. 
An example for a double-barrier resonant tunneling 
diode (RTD) is provided in [12]. This equation 
is particularly convenient for analyzing transient 
processes and tunneling times. Two cases can be 
considered: (a) ∆V x0, = 0( )  (smooth potential 
change) and (b) ∆V x0, 0( ) ≠ .  We focus on the 
second case here. Assume a well with one metastable 
level between two barriers exists at t < 0. This level 
cannot be populated, as it would decay over infinite 
time. For simplicity, consider identical barriers of 
height V.  The metastable level between identical 
barriers V is defined by the condition

th k t ktb w1 =( )( )

= =
2

,
1 1

1

α
 



E V E

E V

−( )
− /

see [13], where

� � �
�

�
k k ik

m V Ee
1 1 1

1
= ' ' =

2
+ ′

−( )

This equation determines the level’s lifetime, 
t1  =  t2  =  tb is the barrier width. A convenient 
numerical solution can be sought in the form

E V E k tb1 0
2

1
2

1= ,α( )( ) ( )/th 

V m te w0
2 2= 2 , /

expressing the arctangent via logarithmic functions. 
The quantities

α α α= = 21 1 1′ + ′′ −( ) −( )i E V E E V/ /

and

  ′ ′ + ′′k k ik= 1 1

are complex. For wide barriers, we obtain

� �′ − ′( )k m V Ee1 1= 2 ,/

� �′′ ′′ − ′( )k E m V Ee1 1 1= 2 2 ,/ /

th2
1 1 11 4 2 2 .  k t k t ik tb b b( ) ≈ − − ′( ) − ′′( )exp exp

It is easiest to estimate the level by assuming it 
arises at the barrier boundary. In this case, a′, and

′′ ≈ ′ ′′α α3 21 1E V/

To simplify further calculations, introduce the 
dimensionless parameter

δ = 4 2 2 ,1 1exp exp− ′( ) − ′′( ) k t ik tb b

and obtain the energy as

E V V V V V E1 0 0
2

0 1= 2 4 3 2 ,+( ) + + +/ / / δ∆

where

∆E
V VV

V V V

V
1

0
2

0

0
2

0

0=
4 3 4

4 3 2 2
.

/ /

/

+( )
+

+

If the well deepens by an amount DV, the energy 
at the bottom becomes negative. Assume only one 
stable level exists. If the center of the well is at x=0, 
the wavefunction inside the well takes the form of 
either an even or odd function:

For an even wavefunction:

ψ0 1= ,x A k xc( ) ( )cos

For an odd wavefunction:
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ψ0 1= ,x A k xs( ) ( )sin

herewith

ψ ψ0 02 0, 2 0,t tw w/ /( ) ≠ ′ ( ) ≠

k m Ee1 1= 2 ./

Let's mark
� �

� �
� � �

k m V E

k m V V E

z i k z i k z

e

e

0 1

1 1

0 0 1 1

= 2

= 2

∆

∆

−( )
+ −( )

= − = −

/

/

/ /

,

,

, , 11 11= /k .

Then, in the case of an odd wave function, we 
have the characteristic equation:

tg / /k t iZw i1 12 = ,( ) ρ

And for the even function:

tg / /k t i Zw i1 12 = .( ) − ρ

The value

Z
k t

k t
i =

1 0 1 1

1 0 1

  



 



ρ ρ ρ

ρ ρ

− ( )( )
− ( )

th

th

is imaginary, so the equations are real and determine 
the real energies. We take the normalization of the wave 
function (WF) from the condition of finding the particle 
in the well region x tw″ /2.  This is an approximate 
condition, as there is some probability leakage through 
the barriers. However, with sufficiently wide barriers, it 
is negligible. A strict normalization can be performed, 
but it results in cumbersome amplitude values. In our 
case, the amplitudes are:

A t t k t kc w w w
2

1 1
1

= 1 ,+ ( ) ( )( ) 
−

sin /

A t t k t ks w w w
2

1 1
1

= 1 .− ( ) ( )( ) 
−

sin /

It is clear that the even level should appear first, as its 
wave function approximately corresponds to the half-
wave of de Broglie. Thus, for t < 0, such a populated 
level exists. At the moment t = 0, the potential DV > 0 
is suddenly switched on, and the bottom of the well rises 
to zero energy. In such a well, the particle cannot exist 
indefinitely, and the state begins to decay, described by 
the integral equation (IE):

ψ ψx t x i V, = 0
1( ) ( ) − ×−

 ∆

	 × − ′ − ′( ) ′ ′( ) ′ ′∫ ∫
−0 /2

/2

0 , , .
t

tw

tw

K t t x x t x dx dtψ � (10)

This problem can be solved numerically or by 
perturbation theory. In the latter case, the first 
approximation is:

ψ ψ1 0
1, =( )
−( ) ( ) − ×x t x i V ∆

× − ′ − ′( ) ′( ) ′ ′∫ ∫
−0 /2

/2

0 0, .
t

tw

tw

K t t x x x dx dtψ

The probability of finding the particle in the well 
region now becomes:

	 P t t x dx
tw

tw

( ) ( )
−
∫= , .

/2

/2
2

ψ � (11)

It decreases over time. Solving IE (10), we 
compute (11). Obviously, with the chosen 
normalization P 0 = 1( ) .  Approximating (11) with 
the function P t t0 1=( ) −( )exp ,/τ  we determine the 
level lifetime. The corresponding result is shown in 
Fig. 4, corresponding to the value ′′ ′E E1 1/ = 0.021,  

0.0 1.0 2.0 3.0 4.0
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t /�1

Fig. 4. Transition probability P(t) according to formula (12) 
for the decay of a single level. The dashed curve represents 
exponential decay P0(t) = exp(–t/t1).



JETP,  Vol. 167,  No. 1,  2025

14	 Davidovich, Nefedov

t1 = 59.5 fs. It should be noted that the decay of such 
a state generally does not follow an exponential law 
[24–35], which holds only for infinitely long-lived 
levels [36]. There exist continuous-spectrum states 
in the well that distort the exponential law. The 
continuous spectrum and interference lead to faster 
initial decay, followed by a slowdown [17, 24]. An 
even more complex case corresponds to multiple 
levels. The non-stationary approach is significantly 
more complicated than determining complex roots. 
Interestingly, for tunneling problems, calculating the 
probability density:

ρ E x E dx( ) ( )∫= ,0
2

ψ

both in the well region and in the barrier region shows 
maxima at energies corresponding to the resonance 
levels E′ (see Fig. 5). The result is normalized to the 
particle number density in both flows:

n E n E n E( ) ( ) + ( )+ −= =

= 2 .3 2 2 3Em E Ee Fc
/ /−( ) π 

This is because all incident flows from the left 
and right with resonance energies ′En  pass into the 
well, while for other energies they are significantly 

reflected. Both the tunnel current density J and the 
probability current density j are continuous along the 
entire structure, including the electrodes, reflecting 
the conservation law of particles (probability) in non-
relativistic quantum mechanics.

4. APPLICATION OF NON-STATIONARY 
SCHRÖDINGER EQUATION 

FOR DETERMINING TUNNELING TIME

Since the introduction of the concept of 
tunneling time in 1930, there has been no established 
understanding in the literature (see [19] and references 
therein). Paradoxes such as the Hartman effect, 

“superluminal” tunneling, negative tunneling time, and 
others are still discussed. IE (10) is quite convenient for 
resolving such issues and studying transient processes 
[12]. The level lifetime (residence time in the structure) 
is often associated with tunneling time. Here, instead of 
IE (9), we consider another approach based on series 
expansion for solving the non-stationary Schrödinger 
equation. Suppose that at t < 0, in the region 0 < x < d, 
we have a structure with three electrodes: Ua = 0, and 
U W eg c= − / .  Also, let the value ddd be sufficiently 
large. In this case, the potential is close to a rectangular 
shape with width d and height Wc relative to the Fermi 
level (see Figure 1, curve 0). Relative to zero, its height 
is V W Ec Fc= + .  If the grid voltage were zero, the 
potential (relative to EFc) would appear as two peaks of 
height Wc, separated by a gap with zero height. Curve 
1 in Fig. 1 demonstrates the potential at a negative grid 
voltage U Wg c= − ,  when the entire curve is elevated 
by Wc. Such a potential blocks the current. Suppose 
that at time t = 0, the potentials switch such that 
Ua > 0 and U E eg Fc= / ,  i.e., the problem becomes 
equivalent to resonant tunneling (RT). Accordingly, we 
need to consider the transient processes of tunneling 
establishment when t > 0 during the switch from curve 1 
to curves like 2, 4. For a diode structure, this switch 
corresponds to curve 0 transitioning to curves 3, 5, 7, 
but without RT. The macroscopic change in current 
during such a process is quite easy to measure, unlike 
the tunneling time of an individual particle. It should 
be noted that for t < 0, the current was absent due to 
the symmetry of the structure. Also, at these times, the 
particle density in the structure was negligible, as the 
tunneling probability through a wide barrier was nearly 
zero. Near the edges, the density decays exponentially. 
By choosing a large ddd, one can assume that particles 
were absent in the barrier region. Switching the 
potentials leads to the appearance of current. It cannot 
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Fig. 5. Normalized particle number density r in the well as a 
function of energy E for three resonance levels (eV): 0.140552, 
1.78936 eV, 4.27933 eV (see Table, Ua = 4 V)
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appear instantaneously, as particles need to traverse 
the region d, thus creating a finite transient time. We 
will solve the non-stationary Schrödinger equation by 
expanding into series in the region 0 < x < d:

Ψ t x, =( )

	 = ,
=0 =1

A t x t x
n

n n
n

n n

∞ ∞

∑ ∑( ) ( )






+ ( ) ( )






α χ β χcos sin �(12)

	 V t x t x
n

n n, = ,
=0

( ) ( ) ( )
∞

∑ν χcos � (13)

where χ πn n d= / .  This method is applicable for 
multiple electrodes, but further numerical results 
are presented for the diode. It is not possible to 
use only cosines or sines in the expansion (12), as 
this would always result in zero probability current 
density. For simplicity, we will apply the method to 
the diode structure. The amplitude A is introduced 
for normalization, meaning that when it is specified, 
we can assume a0 = 1. To perform the calculations, 
we truncate the series (12) and (13) by an index N. 
Substituting (12) and (13) into the Schrödinger 
equation and using the orthogonality of trigonometric 
functions, we obtain the coupled differential equations:

′ ( ) +∑α ω αn
m

N

nm
cc

m mt i A t( ) =
=0

+ ( ) −
∞

∑i A t x
m

nm
cs

m m m
=1

( )ω β χsin

− ( ) ( ) +




 ∑

i
V t t

m

N

nm
cc

m


=0

α α

		 + ( ) ( ) ( )






∞

∑
m

nm
cs

m mV t t x
=1

,β β χsin � (14)

′ ( ) ( ) +∑β ω αn
m

N

nm
sc

m mt i A t=
=0

+ ( ) ( ) −
∞

∑i A t x
m

nm
ss

m m m
=1

ω β χsin

	 − +




 ∑

i
V t t

m

N

nm
sc

m


=0

( ) ( )α α

	 + ( ) ( ) ( )






∞

∑
m

nm
ss

m mV t t x
=1

.β β χsin �(15)

Here, ω πn en m d= 22 2 2
 / ( )  are the frequencies, 

and the matrix elements, detailed in the Appendix. 
These equations are quite complex if the potential 
depends arbitrarily on time. In the case of an 
abrupt potential switch, it stops depending on time, 
simplifying the equations. Rewriting the matrix 
elements, the first equation can be simplified to:

′ ( ) − ( )α ω αn n nt i t =

= =
=1

f t
i

V t i A t tn nn
cc

m
nm
cs

m( ) − ( ) + ( ) ( ) +
∞

∑�
�α β

+ ( ) ( )
≈

∑i A t t
m m n

N

nm
cc

m
=0,

. α

Solving this equation using the Bernoulli method 
or the method of variation of arbitrary constants gives:

α α ωn n nt i t( ) ( ) ( ) += 0 exp

	 + ( ) ′( ) − ′( ) ′∫exp expi t f t i t dtn

t

n nω ω
0

. � (16)

Similarly, we obtain:

β βn n nt i t( ) ( ) ( ) += 0 exp ω

+ ( ) ′( ) − ′( ) ′∫exp expi t g t i t dtn

t

n nω ω
0

.

Here, the following functions are introduced:

g t
i

V t i A t tn nn
ss

m

N

nm
sc

m( ) − ( ) + ( ) ( ) +∑=
=0

�
�β α

+ ( ) ( )
≈

∞

∑i A t t
m m n

nm
ss

m
=1,

. β

The solution in time is sought using the 
discretization method: t m tm = ∆ ,  m = 1,2,...,  with 
integrals calculated using the midpoint method. If 
the initial values αn 0( ),  βn 0( ),  are known, the 
equations allow us to find αn m t∆( ),  βn m t∆( ),  using 
either explicit or implicit schemes.

The modified matrix elements here take a simple 
and clear form, for example:

A t A V tnm
cc

nm
cc

nm
ccα α( ) − ( )=

If such a barrier instantaneously changes its shape 
at t = 0 to V(x), these elements stop depending on time:

� �A A Vnm
cc

m nm
cc

nm
ccα αω= − /
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Their exact values can be found if the shape V(x) 
is simple. For large Ua, it resembles a triangle placed 
on a rectangular base (see Fig. 1, curves 3, 5, 7). At 
eUa  =  EF, the height of the base can be taken as 
W, and the height of the triangle as EF. Due to the 
Schottky effect, the barrier is actually somewhat 
lower. Calculating the integrals, we obtain:

V v vnm
cc

n m
c

n m
c

n
α δ= 1 ,0+ −+( ) +( )/

V v vnm
ss

n m
s

n n
s

n
β δ= 1 ,0+ −−( ) +( )/

V v vnm
sc

n m
s

n m
sα = ,− ++

V v vnm
ss

m n
c

m n
cβ = .− +−

Here, the values of the following integrals are 
introduced:

ν χn
c

d

nd
V x x dx=

1
,

0
∫ ( ) ( )cos

ν χn
s

d

nd
V x x dx=

1
.

0
∫ ( ) ( )sin

For the initial symmetric wide barrier (curve 0), 
the height V0 = W + EF, and the coefficients an(t) = 0 
and bn(t) = 0 at t < 0, as the probability density inside 
is practically absent. This approximation improves 
with increasing d, implying an(t) = 0, bn(t) = 0, i.e. 
within Y(x,t) = 0, t < 0. We take the initial barrier as 
rectangular. Then the integrals are easily computed, 
for example:

ν π δn nV inc n V0 = = .0 0 0( ) ( )s

When this barrier under applied voltage 
U E ea F= /  takes the form:

V x W E x dF( ) ≈ + −( )1 /

(see Fig. 1, curve 7), we obtain:

ν δ πn
c

F n FW E E onc n= ,0+( ) + ( )c

ν π πn
s

FW onc n E inc n= .c s( ) + ( )

In our case:

ν πn
s W onc n= .c ( )

We assume that at the moment of voltage 
application, some coeff icients an(0) and b(0) 

instantly change from zero. This happens due to the 
appearance of probability current density. We find 
them from the continuity condition of this current 
density.

To the left of the barrier, the spectral wave 
function has the form:

ψ x k a k ikx R k ikx, = ,( ) ( ) ( ) + ( ) ( )





+ +exp exp

and to the right:

ψ x k, =( )

= .a k ik x d ik x d− ( ) − −( )( ) − −( )( )





  exp exp

Here:

ψ ψd k d k ika k, = 0, , = 2 ,( ) ′( ) − ( )−
  

At high voltage:

′( ) ′( )ψ ψd k k, 0, << 1./ 

Upon voltage application, the electrochemical 
potential on the cathode jumps, hence:

2 < < 2 ,m eU k m E eUe a e Fc a/ / +( )

0 < < 2 .� �k m Ee Fa /

Now the coefficients an, bn in the wave function 
(13) at t > 0 become non-zero. They are dimensionless, 
so the amplitude A must be determined from the 
normalization to particle flux. The flux to the right, 
at large Ua, can be taken as zero:

j(d) = 0.

The flux to the left for the wave function:

ψ x k a k ikx R k ikx, =( ) ( ) ( ) + ( ) ( )





+ +exp exp

is given by:

j k
k a k

m
R k

e
0, = 1 .

2
2

( )
( )

− ( )







+
+



The total flux is obtained by integration:

j
m

a k R k kdk
e

kF

0 = 1 =
0

2 2
( ) ( ) − ( )






∫ + +

=
2

1 .
2 3

0

2m
R E E E dEe

EF

F
π  ∫ − ( )






 −( )+
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Calculating the flux into the barrier from the left 
at x = 0, we find the condition:

j i
me

0 = 0,0 0,0 =*( ) − ′( ) ( )

ReΨ Ψ

= 0 0 .
2

=1 =0

*− ℜ ( )










 ( )












∞ ∞

∑ ∑ A

m
i

e n
n n

m
mχ β α

For the flux on the right (from the anode), we 
find:

− −( ) ( )











×

∞

∑ A

m
i

e n

n
n n

2

=1

1 0Re χ β

× −( ) ( )












∞

∑
m

m
m

=0

*1 0 = 0.α

It is also necessary to equate the wave functions (WF) 
and their derivatives at the boundaries of the region:

Ψ 0,0 = 0 ,
=0

( ) ( )
∞

∑A
n

nα

′( ) ( )
∞

∑Ψ 0,0 = 0 ,
=1

A
n

n nχ β

Ψ 0, = 1 0 = 0,
=0

d A
n

n
n( ) −( ) ( )

∞

∑ α

′( ) −( ) ( )
∞

∑Ψ 0, = 1 0 = 0.
=1

d A
n

n
n nχ β

The last equality is set to zero because we assume 
a high voltage and measure the energy from the 
conduction band edge of the cathode. We obtain six 
additional equations to determine the infinite number 
of initial conditions an(0), an(0) bn(0). However, 
using the full set of sines in (12) is redundant because 
the cosine system is sufficient for approximating the 
wave function. We introduced sines to obtain nonzero 
fluxes and nonzero WF derivatives at the boundaries. 
It is quite reasonable to assume: an(0) = 0, n > 2, 
bn(0) = 0, n > 3. Thus, we have six unknowns, as well 
as six conditions. It is sufficient to consider nonzero 
coefficients a0(0), a1(0), b1(0), b2(0). Then:

α α1 0 2 10 = 0 , 0 = 0 2,( ) ( ) ( ) ( )β β /

and all six equations are satisfied, with:

j
A

m d
i

e
0 =

4
0 0 .

2

1 0
*( ) − ( ) ( )( )π

β α


Re

It is convenient to choose:

β1 0 00 = 0 , 0 = 1.( ) ( ) ( )iα α

Then:

j
A

m de
0 =

4
,

2

( )
π

and the wave function takes the form:

Ψ t x
j m de, =

0

4
( ) ( )

×
π

× ( ) ( ) + ( ) ( )












∞ ∞

∑ ∑
n

n n
n

n nt x t x
=0 =1

.α χ χcos sinβ � (17)

From this, we find Ψ t d,( )  and ′( )Ψ t d, .

Another method for solving equations (14) and 
(15) involves Fourier transforms:

α
β π

α ω
β ω

ω ωn

n

n

n

t

t
i d

( )
( )











( )
( )









 ( )

−∞

∞

∫=
1

2
,exp

which requires calculating integrals. This can be done 
using the residue method, but this approach requires 
separate consideration. To solve the problem, we 
need to determine the initial wave function Ψ 0,x( )  
and its derivative, which will be done below. It is 
convenient to introduce the frequency ω = E /.  
The incident wave packet (WP) from the left can be 
written as:

Ψ t i t d
E

,0 = 0, ,
0

/

( ) ( ) −( )∫ +


ψ ω ω ωexp

ψ ω
π

ω ω ω+

−∞

∞

( ) ( ) ( )∫0, =
1

2
0, .Ψ exp i t d

Here:

ω ω= 2 , = 2 .2k m k me e / /

Neglecting back tunneling, we have on the left:

Ψ t a R i t d
E

,0 = 1 ,
0

/

( ) ( ) + ( )( ) −( )∫ + +


ω ω ω ωexp

and on the right:

Ψ t d a T i t d

EF

, = .
0

/

( ) ( ) ( ) −( )∫ + +


ω ω ω ωexp

The incident WP from the left is denoted as:

Ψ+ +( ) ( ) −( )∫t a i t d
E

= .
0

/

ω ω ωexp
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Here:

ψ ω ω ψ ω ω ω+ + + + +( ) ( ) ( ) ( ) ( )0, = , , = .a d a T

Def ining Ψ x t,( )  as the solution to the 
nonstationary Schrödinger equation at time t, we 
construct the function:

Ψ Ψ Ψx t x t x, = , ,0 .( ) ( ) − ( )

It is zero outside the interval (0,t), meaning it has 
a limited support, and:

 Ψ Ψx x t i t dt
t

, =
1

2
, ,

0

ω
π

ω( ) ′( ) ′( ) ′∫ exp

Ψ Ψx x t i t dt
t

, =
1

2
, .ω

π
ω( ) ′( ) ′( ) ′

−∞
∫ exp

We can construct the time-dependent reflection and 
transmission coefficients R+(t), T+(t). Specifically, we 
take:

R t t t+ +( ) ( ) ( ) −= 0, 1,Ψ Ψ/

T t d t t+ +( ) ( ) ( )= , .Ψ Ψ/

Considering back tunneling, we def ine the 
incident WP from the right:

Ψ− −( ) ( ) −( )∫t a i t d
E

= .
0

/

ω ω ωexp

Thus, we obtain:

Ψ Ψ Ψt t R t T t t,0 = 1 ,( ) ( ) + ( )( ) + ( ) ( )+ + − −

Ψ Ψ Ψt d t T t t R t, = 1 .( ) ( ) ( ) + ( ) + ( )( )+ + − −

To find all coefficients, we also need to determine 
′( ) ′+Ψ Ψt x, ,  and ′−Ψ .  Derivatives can be found by 

differentiating the series. The current density at the 
anode is defined through the probability current 
density:

J t ej t dm m( ) − ( )= , .

For this, when normalizing the wave function to 
the probability density, we use [20]:

j t xm , =( )

=
2

[ , ,*− ( )∂ ( ) −i
m

t x t x
e

m x m


Ψ Ψ

− ( )∂ ( )Ψ Ψt x t xm x m, , ].*

For an arbitrary moment in time, we obtain:

j t x
j

, =
0

4
( ) ( )

×

× − ( ) ( ) + ( ) ( )



 ×

∞

∑Re cos sin(
=0

* *i t x t x
m

m m n mα χ χβ

× − ( ) ( ) + ( ) ( ) 
∞

∑
n

n n n nn t x t x
=1

),α χ β χsin cos

j t d
j

, =
0

4
( ) ( )

×

× − −( ) ( ) ⋅ −( ) ( )












∞ ∞

∑ ∑Re i t n t
m

m
m

n

n
n

=0

*

=1

1 1 .α β

From this equation, it follows that:

j d j t d t0, = 0, , ,( ) ( )∆ ∆

i.e., instantaneous tunneling and negative tunneling 
time are not possible. Using the spectra Ψ d,ω( )  and 
′( )Ψ d,ω ,  the result can be represented as:

j t d
me

, =
2

2( )
( )

×


π

× −( ) ( ) ′ ′( ) ′−( )( ) ′
−∞

∞

∫Re expi d d i t d dΨ Ψ* , , .ω ω ω ω ω ω

For the steady-state process, the spectral wave 
function at the anode is:

ψ x k a k T k ik x da, =( ) ( ) ( ) −( )( )+ + exp

The probability flux density for this wave function is:

dj d k v k a k T k dka, = ,
2

( ) ( ) ( ) ( )+ +

where the speed at the anode is:

v k v k eU ma a e( ) ( ) += 2 .2 /

It should be noted that this speed is greater 
than v(k) due to the acceleration of electrons 
passing through the barrier by the anode. Over the 
free path length, they scatter and transition to the 
Fermi level of the anode, with va(k) decreasing to 
v(k), causing the anode to heat up. The method 
of series used here is also convenient for solving 
the Schrödinger equation (SE) together with the 
Poisson equation (PE).
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5. RESULTS AND DISCUSSION

Figs. 6 and 7 present the results of the transient 
process calculations, showing the establishment of 
the anode current in a diode with a Fermi energy of 
7 eV and the probability density distribution Ψ x t,

2( )  
when stepwise voltages of 3, 5, and 7 V appear at 
the anode. Fig.  7 shows the probability density 
distribution for curve 1 of Fig. 6 at different moments 
in time. The oscillations in probability density result 
from the finite sums used in the calculations. As 
the number of terms in the sums increases, both 
the oscillation amplitude and period decrease. The 
SE was integrated using the series method with 40 
terms and an explicit calculation of the coefficients 
in equation (12). Expanding in other bases in (12) 
allows eliminating the oscillations. For example, 
finite elements can be used. However, the proposed 
series method is convenient when solving the SE and 
PE simultaneously, as applied in [2].

Calculations were performed using 200 time points. 
Curves 2 and 3 in Fig. 6 were constructed using 50 
time points. For copper (Fermi energy 7  eV), we 
have an electron concentration of 8.5 ⋅ 1028m–3 and 
a Fermi velocity vF = 1.57 ⋅ 106 m/s, meaning that a 
particle with this speed travels a distance d = 10 nm in 
a time τ = 6.35 fs. We assumed that at the moment the 
voltage is applied, the probability density inside the 
barrier was zero. More precisely, it is symmetrically 
distributed relative to the center, approximately 
following a hyperbolic cosine distribution, increasing 
towards the edges, but extremely small at the edges 
themselves due to the near-complete ref lection 
by the wide, nearly rectangular barrier. In this 
case, there is no inward probability f lux into the 
barrier. The results shown in Fig. 6 indicate that the 
average transport speed of the probability density is 
somewhat greater than vF, leading to the conclusion 
that the movement of the probability density is a 
collective effect caused by the interference of partial 
waves of the wave packet. An electron inside the 
barrier, or generally within a potential field, behaves 
as a quasiparticle defined by its interaction with many 
other particles. This averaged interaction determines 
the potential. A clear example is the potential of the 
image method. Such a quasiparticle is not required 
to behave like a free electron. Additionally, after 
passing the turning point for a single barrier, the 
electron moves quasi-classically and is accelerated 
by the anode. The additional velocity gained at 
Ua = 5 V is 1.33 × 106 m/s, approximately equal to 

vF. Accordingly, the transit time is halved. A similar 
problem for resonant tunneling (RT) leads to a 
significantly longer transient process time. This can 
be explained by the need to form reflections from the 
barriers for RT to occur.

Formally, the lifetimes of the levels can be 
considered as an additional contribution to the 
transient process time. In Fig. 6, it is evident that 
the probability density is very small at short times. 
This function is asymmetric and, on average, higher 
near the start of the barrier but stabilizes at longer 
times. Similar calculations of transient processes 
for switching from a wide barrier to a structure with 
narrow, unequal barriers and a quantum well show 
slower current growth. This is explained by the 
reflections from the barriers required to form resonant 
levels in the well. To achieve complete RT, the 
barrier heights must be sufficiently close. Numerical 
calculations of the transparency coefficients show not 
only full resonances but also peaks with incomplete 
RT, where the maxima D < 1. Regarding lifetimes 
τn nE= 2/ ′′,  they are significantly shorter than 
the corresponding times determined at short times 
from transient processes as a result of wave packet 
evolution. This is because the wave packet contains 
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Fig. 6. Transient processes (–J in A/cm², time in fs) during 
switching from the nearly rectangular barrier 1 to barriers 2, 3, 
and 4 in Fig. 1 (corresponding to curves 1, 2, and 3).
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a broad energy spectrum. At longer times, the non-
exponential nature of the level decay becomes evident 
(see, for example, [30–34]), with contributions from 
algebraic terms. Determining level lifetimes this way 
is feasible only for very narrow wave packets, which 
is challenging to achieve experimentally for non-
relativistic quantum particles, and even more difficult 
to observe their passage through a barrier. This raises 
problems with reflecting a spectrally narrow (i.e., 
spatially very broad) wave packet from the barrier 
[18], especially when the barrier itself changes over 
time. However, the macroscopic current density can 
be measured with high accuracy.

The quantity with the dimension of velocity:

v x t j x t x t, = , ,
2( ) ( ) ( )/ Ψ

can be interpreted as the speed of the probability 
density movement at point x at time t. This 
corresponds to the concept introduced by N. A. Umov, 
but it cannot be interpreted as the speed of an 
individual particle. For a single-speed particle flow, 
it coincides with the particle velocity in the flow. The 
increase in current is accompanied by an increase in 
the probability density of particle presence inside the 
barrier. The average instantaneous speed of the wave 

packet (WP) passing through point x over time t can 
be defined as:

	 v x t
j x t

x t
dt

t

t

, , =
1 ,

,
.

2
τ

τ
τ

( )
′( )
′( )

′
−
∫
Ψ

� (18)

If the WP is finite in time, its average speed can 
also be determined.

 Short lifetimes of quasi-stationary levels are 
essential for achieving high current densities in field 
emission. It is desirable to have as many such levels 
as possible, and sufficiently deep ones. Increasing 
the number of levels is achieved by increasing the 
width of the quantum well, while reducing lifetimes 
is achieved by using narrow-width barriers. Current 
growth is also facilitated by leveling the barrier 
heights, which can be controlled by the gate voltage 
and the change in the gate work function.
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APPENDIX

For the well, from the conditions at the cathode-
side barrier, we have:

A
A k t A k t

w
c c c c c c+
+ −−( ) + ( )

+=
2

exp exp 

+
( ) − −( )− +

   k A k t k A k t

ik
c c c c c c c cexp exp

2
,

A
A k t A k t

w
c c c c c c−
+ −−( ) + ( )

−=
2

exp exp 

−
( ) − −( )− +

   k A k t k A k t

ik
c c c c c c c cexp exp

2
.

In the case of wide barriers, neglecting 
exponentially small terms (reflections from the left 
edge of the barrier with amplitude Ac

+ ),  we find from 
the matching conditions at the cathode-side barrier:

A
A k t ik k

w
c c c a+
−

≈
( ) −( )exp  1

2
,

0/

A
A k t ik k

w
c c c a−
−

≈
( ) +( )exp  1

2
.

0/
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Fig. 7. Particle number density (m3) as a function of the 
coordinate x (nm) in a vacuum diode structure at different 
moments in time (fs): 0.1 (1), 0.3 (2), 0.5 (3), 1.0 (4).
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On the other hand, the matching conditions at the 
anode-side barrier give:

A
ik t A A i A A k k

w

w a a a a a+
+ − + −−( ) + + −( )



=

2
,

0 0exp  /

A
ik t A A i A A k k

w

w a a a a a−
+ − + −( ) + − −( )



=

2
.

0 0exp  /

At the cathode boundary, we have the relations:

A
A ik k

c
c c+ +( )

=
1

2
,

0 /

A
A ik k

c
c c− −( )

=
1

2
.

0 /

At the anode boundary, we have accordingly:

A
A k t ik k

a
a a a a a+ ( ) −( )

=
1

2
,

exp  /

A
A k t ik k

a
a a a a a− −( ) −( )

=
1

2
.

exp  /

For wide barriers, the amplitudes A a
−  and A A

+  are 
small. Assuming them to be zero, we obtain:

Aw
+ ≈

≈
( ) −( ) +( ) −( )A k t ik k ik k ik ta a a a a wexp exp  1 1

4
,

0 0 0/ /

A
A k t ik k ik k

w
c c c c c+ ≈

( ) −( ) −( )exp   1 1

4
,

0 0/ /

Aw
− =

=
1 1

4
,

0 0 0A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) −( ) ( )/ /

A
A k t A ik k ik k

w
c c c c c c− ≈

( ) −( ) +( )exp   1 1

4
.

0 0/ /

Equating the coeff icients Aw
± ,  we get two 

equations:

A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) +( ) −( ) =1 10 0 0/ /

= 1 1 ,0 0A k t ik k ik kc c c c cexp   ( ) −( ) −( )/ /

A k t ik k ik k ik ta a a a a wexp exp  ( ) −( ) −( ) ( )1 1 =0 0 0/ /

= 1 1 .0 0A k t ik k ik kc c c c cexp   ( ) −( ) +( )/ /

Dividing the first by the second, we obtain the 
approximate characteristic equation:

1 1

1 1
= 2 .

0 0

0 0
0

−( ) −( )
+( ) +( )

−( )
ik k ik k

ik k ik k
ik t

A a

A a
w

 

 

/ /

/ /
exp (( 1)A

To obtain the exact equation, all amplitudes must 
be retained. In this case, equating the coefficients gives:

A

A

M M

M M

A

A

A

A

a

a

+

−

+

−


































= ,11 12

21 22

A

A

M M
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A

A

a

a

c

c

+

−

− −

− −

+

−





































= .11
1

12
1

21
1

22
1

The matrix elements M are given by:

M k t M k tA c A c11 11= =exp exp  ( ) ( ) ×

×
( ) +( )+ −( ) ( )cos sink t k k k k k k ktw a c a A w0 0 01

2
,

   / / /

M k t M k tA c A c12 12= =exp exp  ( ) ( ) ×

×
( ) −( )− +( ) ( )cos sink t k k k k k k ktw a A a A w0 0 01

2
,

   / / /

M k t M k tA c A c21 21= =exp exp−( ) −( ) ×  

×
( ) − + +( ) ( )cos sink t k k k k k k k tw a A a c w0 0 0 01

2
,

   / / /

M k t M k tA c A c22 22= =exp exp−( ) −( ) ×  

×
( ) +( )− −( ) ( )cos sink t k k k k k k k tw a c a c w0 0 0 01

2
.

   / / /

Now

A A ik kc c c
+ +( )= 1 =0 /

= 2 ,11 12M A M Aa a
+ −+( )

A A ik kc c c
− −( )= 1 =0 /

= 2 .21 22M A M Aa a
+ −+( )

Substituting A a
±  in these expressions, we obtain:

A ik k M A k t ik kc c a a a a1 = 10 11 0+( ) ( ) −( )+/ /  exp

+ −( ) −( )M A k t ik ka a a a12 01 ,exp  /
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A ik k M A k t ik kc c a a a a1 = 10 21 0−( ) ( ) −( )+/ /  exp

+ −( ) −( )M A k t ik ka a a a22 01 .exp  /

Dividing the first equation by the second, we 
obtain the characteristic equation:

	 1

1
= =0

0

+
−

( )ik k

ik k
f Ec

c

/

/





� (A2)

=
11 12

21

     

  

M k t k t M k t k t

M k t k

c c a a c c a a

a a c

exp exp
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+( ) + −( )
− tt M k t k tc a a c c( ) + − −( )  

22

.
exp

For wide barriers, small terms can be neglected, 
resulting in the simplified form:

f E k tc c( ) ≈ ( ) ×exp 2

×
+ + −( )( )
− + +( )

1

1

0 0 0

0 0

   

   

k k k k k k k t

k k k k k k k

a c a c w

a c a c

/ / /

/ / / 00

.
tw( )

The matrix elements appearing in equations (14) 
and (15) are expressed as:

A
inc d inc d

inc dnm
cc n m n m

n
=

1 2
=

s s

s

χ χ χ χ

χ

−( )( ) + +( )( )
+ ( )

=
1

,
0

δ
δ

nm

n+

A
onc d onc d
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cs n m n m

n
=

1 2
=

c c

s

χ χ χ χ

χ

−( )( ) − +( )( )
+ ( )

	 =
1 1

1
,

0

−( ) − −( )
+

+ −n m n m

nδ
� (A3)

A
onc d onc d

inc dnm
sc n m n m

n
=

1 2
=

c c

s

χ χ χ χ

χ

−( )( ) + +( )( )
+ ( )

=
1 1

1
,

0

2 − −( ) − −( )
+

− +n m n m

nδ

A
inc d inc d

inc dnm
ss n m n m

n
nm=

1 2
= .

s s

s

χ χ χ χ

χ
δ

−( )( ) − +( )( )
− ( )

These expressions involve the following integrals:

V t
d

V t x x x dxnm
cc

n

d

n m
α

δ
χ χ( )

+( ) ( ) ( ) ( )∫=
2

1
, ,

0 0

cos cos

V t
d

V t x x x dxnm
ss

n

d

n m
β ( )

+( ) ( ) ( ) ( )∫=
2

1
,

0 0
δ

χ χcos sin ,

V t V t x x x dxnm
ss

d

n m
β ( ) ( ) ( ) ( )∫= 2 , ,

0

sin sinχ χ

V t V t x x x dxnm
sc

d

n m
α χ χ( ) ( ) ( ) ( )∫= 2 , .

0

sin cos

In equation (A3), the functions s /inc x x x( ) ( )= sin  
and c /onc x x x( ) − ( )( )= 1 cos are included. These 
functions at zero should be defined as sinc 0 = 1( ) ,  
conc 0 = 0( )  ensuring proper boundary conditions. 
Moreover, the condition sinc n n2 = 0π δ( )  applies at 
the barrier edge.
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