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1. INTRODUCTION

Recent research has been actively focused on low-
threshold nonlinear phenomena in the interaction 
of high-power microwaves with plasma in toroidal 
magnetic confinement devices. Among them is the 
anomalous scattering of the pump wave with frequency 
shifts of the scattered signal both downward and 
upward relative to the generator (gyrotron) frequency, 
which has been observed in various experimental 
facilities [1–4]. At first glance, the experimental 
manifestation of these effects contradicts theoretical 
results, since according to established views from 
the 1990s, the thresholds for exciting nonlinear 
phenomena in inhomogeneous plasma (particularly 
in various scenarios of parametric decay instability 
of microwaves) exceed 5 MW [5]. This value, caused 
by large convective losses of daughter waves from the 
finite-sized decay region along the inhomogeneity 
direction, is significantly higher than the output 
power of currently available microwave generators. 
Analysis of the contradiction between theory [5] and 
experiment [1–4] has led to significant progress in 
understanding the nature of observed phenomena 
and their development scenarios in inhomogeneous 

plasma [6]. It was shown experimentally [2] and 
theoretically [6] that low-threshold nonlinear effects 
typically occur near local plasma density maxima, 
where two-dimensional localization of daughter waves 
in the poloidal cross-section is possible, preventing 
their losses along the plasma inhomogeneity direction 
from the nonlinear interaction region with the pump 
wave. Localization occurs due to the excitation of a 
plasma channel (waveguide) for microwaves along 
the toroidal direction due to non-monotonic density 
profile and external magnetic field inhomogeneity [7, 
8]. In experiments, non-monotonic density profile 
behavior is observed both on the discharge axis and 
in magnetic islands due to transport features in these 
structures [9]. However, cases where the plasma density 
profile can be non-monotonic are not limited to these 
examples. It should be noted that in the edge plasma 
of current toroidal facilities, there are large-scale 
coherent structures elongated along magnetic field 
lines – ​filaments or blobs – ​appearing as a result of 
primary drift wave evolution in the nonlinear stage of 
low-frequency drift-resistive turbulence development 
[10]. These structures are related to zonal flows [10] 
and streamers [11], which are observed in laboratory, 
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ionospheric, and space plasma. However, unlike zonal 
flows that lead to drift instability stabilization and thus 
limit anomalous transport, blobs and filaments, like 
streamers in dense plasma, are considered responsible 
for ballistic heat and particle transport across the 
magnetic field in the rarefied plasma of the wall region 
in toroidal facilities [12]. As measurements performed 
by different diagnostic methods show [13, 14], the 
plasma density in these structures significantly exceeds 
the background plasma density, with its distribution 
across the blob being reasonably approximated by a 
Gaussian function. The latter was also confirmed 
through gyrokinetic modeling independently performed 
by various scientific groups [14, 15]. The existence 
of such structures is associated with the anomalous 
radiation effect observed at ASDEX-Upgrade tokamak 
at half-harmonic of the heating microwave radiation 
in electron cyclotron resonance (ECR) heating 
experiments [2]. Obviously, similar structures will be 
present in future reactor-scale facilities. Therefore, 
the interaction of powerful microwave radiation with 
these objects represents not only theoretical interest 
as one of the important nonlinear problems in plasma 
electrodynamics but also direct practical significance. 
Until now, close attention has been paid to studying 
the effects of anomalous microwave radiation and 
microwave absorption of the extraordinary pump 
wave, which is typically used in current facilities for 
ECR plasma heating [2, 16]. At the same time, in the 
next decade, it is planned to use powerful beams (up to 
67 MW) of ordinary microwaves for additional plasma 
heating and control of neoclassical magnetic islands in 
the ITER experimental fusion reactor. In particular, to 
obtain high-density hot plasma, the possibility of using 
ordinary wave heating at the second ECR harmonic 
is being discussed [17–19]. Anomalous phenomena 
in ordinary wave propagation have not been studied 
in detail until now. In this work, the gap is partially 
filled by investigating the decay scenario of an ordinary 
wave with frequency corresponding to the second ECR 
harmonic, leading to the excitation of two electron 
Bernstein (EB) waves, two- dimensionally localized in 
the blob and corresponding to whispering gallery modes 
[20]. Note that whispering gallery modes are resonant 
standing waves that can be excited in axisymmetric 
systems due to total internal reflection. They were first 
observed for acoustic waves and were investigated by 
Rayleigh in St. Paul’s Cathedral’s whispering gallery, 
from which they got their name [21]. These normal 
modes are common not only in acoustics problems but 
also in electrodynamics for gigahertz [22] and terahertz 

[23] radiation. In particular, their parametric excitation 
in model experiments was associated with anomalous 
absorption of microwaves in a linear facility [16].

2. THEORETICAL MODEL

Let us consider the parametric decay instability 
of an ordinary wave in a blob or filament elongated 
along the magnetic field line and having a local 
density maximum in the cross-section. It is quite 
natural to describe these plasma objects in a local 
cylindrical coordinate system (r, q, z), assuming that 
its origin is located on the filament axis. Following 
the measurement results and numerical calculations 
[13–15], we represent the plasma density as the sum 
of the background density n and the blob density

δ δn n r rb= ,0
2 2exp −( )/

where δn0  and rb  are the height and radius of the 
blob. Since the characteristic scales of background 
plasma profiles are much larger than the filament 
radius, which was experimentally confirmed in 
works [13–15], we will further ignore any spatial 
dependence except for the inhomogeneity of this 
structure. We will assume that the temporal variation 
of the density distribution in the blob is negligibly 
small, at least during the time of transition of the 
considered instability into the saturation regime. Let 
us consider a beam of plane ordinary waves with 
power P0, which has a frequency and propagates 
at w0 the edge of plasma across the magnetic field 
inwards. In the WKB approximation, the pump 
ordinary wave field in the blob located in the vicinity 
of the point with coordinate xb, can be represented as

E e0
0 0=
( , )
2 ( )z

x b

E y z
ck x

w
´

	 × − −( )exp ik x x x i tx b b( )( ) ,0w � (1)

where x and z are local Cartesian coordinates along 
the flux variable and magnetic field respectively, y is 
the coordinate perpendicular to both of them. In 
expression (1)

k cx = ( )0 0ω η ω / ,

where

η ω ω= 1 2
0
2- pe /
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is the parallel component of the cold plasma 
dielectric tensor [24], and wpe  is the electron 
Langmuir frequency. Furthermore, we will assume 
that the beam width across the magnetic field is 
much larger than the blob size, w ry,z b . In this 
case, we can represent (1) in the following form:

E e0
0 0=
(0, )
2 ( )z

x b

E z
ck x

w
´

	 × −
−∞

∞

∑
s

s x bJ k x is i t
=

0( ( )) ( ),exp θ ω � (2)

where Js  is the Bessel function.
Next, we will analyze the decay of an 

electromagnetic wave into two EB waves with 
oppositely directed group velocities and frequencies 
approximately equal to half the pump wave frequency:

w w w1,2 0 2 , / £ U H

where

w w wU H ce pe= 2 2+

is the upper hybrid frequency, wce is the electron 
cyclotron frequency. The wave numbers of EB waves 
are solutions of local dispersion equations
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2

2
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c
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ω
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which take into account resonant and collisional 
dissipation. The term g2 in equation (3) describes 
a small electromagnetic wave component near the 
upper hybrid resonance (UHR), g is the off-diagonal 
element of the cold plasma dielectric tensor [24]. The 
linear plasma susceptibility is given by the known 
equation [24]
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where Z is the plasma dispersion function, υte  is 
the electron thermal velocity, Im  is the modified 
Bessel function. The parametric decay of the pump 
wave in an axisymmetric blob plasma can lead to 
the excitation of a pair of whispering gallery EB 

modes [20], moving in opposite directions along 
the azimuthal coordinate. The basic set of coupled 
equations for the daughter wave potentials, describing 
three-wave interaction at fixed pump wave amplitude, 
has the form [6]

	
D D

D D

l nl

nl l
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φ φ

φ φ
1 2

1 2
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where the integral operators have the form
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In equation (5), the kernel of the linear operator 
is defined in equation (3), and the kernel of the 
nonlinear operator equals [25]
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where B  is the local value of the external magnetic 
field. When solving the system of equations (4), we 
will use the perturbation theory procedure. In the 
first step, we assume that the damping of daughter 
waves and nonlinear pumping are weak, and set in 
equations (4) D l ¢¢ = 0,  D nl = 0.  This reduces the 
system of coupled equations to two independent 
linear equations D̂lφ1,2 = 0, the solution of each will 
be sought in the form

φ ϕ1 1= ( )a rp ´
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assuming the azimuthal mode number of both waves 
is large, m  1.  In this case, the EB wave field will 
be shifted from the near-axis part of the blob to the 
UHR region. It localizes near the point rm, where the 
condition is met

∂ ∂ ∂ ∂′ ′D r D rl l m qr
/ | / |0 ,= = 0,
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q m r q q q qr zθ θ ω ω= , = , = 0, = 2.2 2 2
1,2 0/ /⊥ +

The EB wave in this case represents a whispering 
gallery mode, described by eigenfunctions ϕp  and 
ϕn  obeying the reduced differential equation [16]
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The eigenvalues δωp n,  and qz
p n,  are determined by 

finding localized solutions of equation (8) and have 
the form
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In the next step of the perturbation theory 
procedure, we take into account the damping of 
daughter waves and their nonlinear excitation, leading 
to changes in amplitudes a1,2  in time and along the 
magnetic field. Multiplying both sides of equations 
(4) by complex conjugate zero-order eigenfunctions 
ϕp  and ϕn , which are solutions of equation (8), and 
performing integration over transverse coordinates, 
we obtain
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where U U Up n =  are longitudinal group 
velocities averaged over the radial localization region 
of corresponding close radial modes p n p- / 1  
of daughter waves ν ν νpd nd d = , and ν0  
are coefficients describing linear damping and 
inhomogeneous nonlinear pumping. Further, for 

analytical consideration, we will use a piecewise-
defined distribution model of the microwave field 
along coordinate z:

ν0( ) = 0, < 2,z z w z- /

	 ν ν0 0( ) = , 2 2,z w z wz z- / /  � (11)

ν0( ) = 0, 2 < .z w zz /

The exponentially growing in time solution of the 
system of equations, a t1,2 ∝ ( )exp ,γ  which behaves 
continuously at z w z= 2± /  and exponentially decays 
at infinity z → ±∞ , has the following growth-rate

	 γ ν ν= ,0 - -U w z d/  � (12)

and the threshold is determined by the balance of 
pumping and losses:

ν ν0 0( ) = .P U wth
z d/ +

3. INSTABILITY THRESHOLD IN VARIOUS 
EXPERIMENTAL FACILITIES

Let us illustrate the proposed model using the 
example of two toroidal magnetic plasma confinement 
facilities. Fig. 1 shows the trajectory of the EB wave 
(corresponding to azimuthal mode m = 112, radial 
mode n = 6 and fm,n = 70.41 GHz) [13] for ASDEX-
Upgrade tokamak conditions (pump wave frequency 
f0 = 140 GHz) in the perpendicular cross-section of 
the blob, obtained using ray-tracing procedure [26], 
i.e., calculating the trajectory of electromagnetic 
wave power flow through inhomogeneous magnetized 
plasma considering its real geometry. The dash-dot 
line shows the position of the boundary of the blob 
(rb =0.6 cm). It can be seen that the wave trajectory 
envelope is not perfectly circular, which is caused by 
the influence of the inhomogeneous magnetic field.

In Fig. 2 for the conditions of the Wendelstein 7-X 
stellarator (pump wave frequency f 0 = 140   GHz) 
[14], the trajectory of the EB wave (corresponding 
to azimuthal mode m = 113 , radial mode, 
n = 5 , f m n, = 70.24   GHz) in the perpendicular 
cross-section of the blob is shown, also calculated 
using ray tracing procedure. As in Fig. 1, the dash-
dot line shows the position of the blob boundary 
( rb = 0.6  cm). The EB wave trajectories in Figs. 1 
and 2 demonstrate that in both cases these waves 
do not leave the decay region and correspond to 
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the normal (whispering) mode of the standing wave 
localized in a narrow region at the blob periphery.

Fig.  3 shows the dependence of the instability 
growth-rate on the pump power. The theoretical 
dependencies calculated according to equation (12) 
for the model rectangular field distribution (11) 
with size wz  =  2  cm are shown by lines. Symbols 
represent numerical solution results for the Gaussian 
beam with width w wy z= = 2  cm. Solid line and 
circles represent the ASDEX-Upgrade case for 
experimental parameters specified in work [18]. The 
threshold value, according to the analytical model 
(11), (12), equals Pth

0 = 297  kW, and obtained from 
numerical solving of equations (9) for the Gaussian 
beam is Pth

0 = 282  kW. Dashed line and diamonds 
represent the Wendelstein 7-X case for experimental 
parameters specified in work [19]. The threshold 
value according to the analytical model equals 
Pth

0 = 285  kW. The threshold value obtained from 
calculation is Pth

0 = 243  kW. The difference in 
threshold values is related to the model representation 
of the field distribution (11) used in deriving equation 
(12). At microwave power significantly exceeding the 
threshold value, the dependencies of the growth-
rate on the pump power obtained analytically and 
numerically asymptotically converge.

It should also be noted that the predictions of 
the developed theory can be verified in a model 
experiment on the linear facility “Granit” [16], 
where the plasma column is created by RF discharge 
in a long glass tube with an internal diameter of 
2 = 22a   mm, oriented in the direction of the 
magnetic field and filled with argon (under pressure 

Fig. 1. EB wave trajectory (azimuthal mode m  =  112, radial 
mode n = 6, fm,n = 70.41 GHz) in perpendicular cross-section 
of the blob for ASDEX-Upgrade tokamak conditions [13]. Dash- 
dot line – ​blob boundary position

Fig. 2. EB wave trajectory (azimuthal mode m = 113, radial 
mode n  =  5, and fm,n  =  70.24  GHz) in perpendicular cross-
section of the blob for Wendelstein 7-X stellarator conditions [14]. 
Dash dot line – blob boundary position

Fig.  3. Dependence of the growth-rate on the pump power. 
Theoretical dependencies (12) for the model field distribution 
(11) are shown by lines. The result of numerical solution (of 
equations (10) for Gaussian beam is shown by symbols. Solid 
line and circles – ​the case of ASDEX-Upgrade [18]. Dashed line 
and diamonds – ​Wendelstein 7-X [19]. wy,z = 2 cm
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of about 10 dyn/cm²). The magnetic field created 
by an external electromagnet can vary from 0 to 
450  G. The volume-averaged plasma density is 
about 1010 3см-  and varies by 15–20% with full 
variation of the magnetic field. The glass tube 
passes through a hole made in the wide wall of the 
waveguide ( )42 34 2´ mm  parallel to the narrow wall. 
Microwave pulses (with power up to 210 W) in the 
form of ordinary waves are supplied to the plasma 
along the waveguide. Fig. 4 shows the frequencies 
of ECR, second harmonic of ECR, UHR, as well 
as frequencies of the pump wave and daughter wave. 
Since the frequency of launched waves f0 = 2.35 GHz 
is higher than the frequency of the second ECR 
harmonic, 2fce, there are no effective linear 

absorption mechanisms for the pump in the plasma 
volume, and only the collision mechanism is present, 
which is weak under experimental conditions. Fig. 5 
shows the radial component of the wave number 
of the daughter EB wave (poloidal mode m  =  22, 
longitudinal refractive index nz = 0.9 and Te = 1 eV). 

Fig. 6 shows the dependence (12) of the increment 
of the excited two-plasmon decay instability on 
power at the electron-atom collision frequency 
νea = 5 106 1⋅ −s .  The estimate for the instability 
threshold in this case is Pth

0 = 39  W. The predicted 
instability threshold (about 40 W) is significantly 
lower than the technically available power of 
microwave pulses, which allows detailed investigation 
of this nonlinear phenomenon. In particular, the 
provided estimates show the possibility to conduct a 
detailed study of the linear stage of instability and its 
transition to saturation regime. The latter will allow 
studying the efficiency of anomalous absorption of 
the ordinary wave.

4. CONCLUSIONS

For the first time, a scenario of low-threshold decay 
of an ordinary wave with a frequency corresponding 
to the second ECR harmonic in the plasma volume 
has been investigated, leading to the excitation of 
two EB waves, two-dimensionally localized in a 
blob (filament) at the plasma edge. Expressions 
for the growth-rate and threshold of this instability 
have been obtained. Using equation (12) for the 
conditions of ASDEX Upgrade and Wendelstein 7-X 
facilities, threshold values were found. Their values 

Fig. 4. Frequencies of ECR, second harmonic of ECR, UHR, 
pump wave and daughter wave in the model experiment

Fig. 5. Radial component of the EB-wave number in the model 
experiment, m = 22, nz = 0.9, Te = 1 eV

Fig. 6. Dependence of the growth-rate on the pump power in the 
model experiment. Line – ​expression (12), P0

th = 39 W
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are significantly lower than the power of megawatt 
microwave beams used for heating in these facilities. 
Using the linear facility “Granit” as an example, it 
is shown that this effect can be studied in model 
experiments operating with microwave powers up 
to 200 W. This opens up the possibility for detailed 
study of this nonlinear phenomenon, including the 
assessment of the efficiency of anomalous absorption 
of the ordinary wave.
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