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1. INTRODUCTION

In the last two decades, the physics of two-
dimensional (2D) materials, particularly transition 
metal dichalcogenides (TMD), has attracted 
attention of many researchers. TMDs are layered 
materials described by the chemical formula MX2, 
where M is a transition metal atom (usually M = Mo, 
W) and X – a chalcogen atom (X = S, Se, Te). Similar 
to the exfoliation of graphite into graphene layers [1], 
TMDs can be exfoliated into thin films. The thinnest 
film consists of two layers of X atoms with a layer 
of M atoms inserted between them. Such films are 
commonly called TMD monolayers.

The peculiarities of the band structure make TMD 
monolayers attractive for their use in valleytronics [2]. 
They enable valley-selective excitation of electron-hole 
pairs depending on the type of circular polarization of 
light: absorption of right-polarized light leads to optical 
transitions in one valley, while left-polarized light leads 
to transitions in another valley [3].

The hypothesis about the existence of dielectric 
electron-hole liquid (EHL) was proposed in [4]. 
Such a state can be realized through coherent pairing 
of electrons and holes.

In the first theoretical works devoted to calculating 
the ground state energy of EHL (see, for example, 
review [5]), a free electron-hole gas was used as the 

zero approximation, whose energy turns to zero in 
the limit of zero density, rather than approaching the 
exciton energy. This indicated incorrect accounting 
of electron-hole correlations in the region of low 
charge carrier densities.

It has long been known that the metallic state 
becomes unstable due to electron-hole correlations, 
leading to the opening of an energy gap at the Fermi 
surface, whose magnitude at zero density coincides 
with the exciton binding energy [6]. An estimation 
of the electron-hole correlations contribution 
to the EHL energy with the introduction of 
metallic screening was made in [7]. However, this 
approximation also appears unsatisfactory.

In [8], it was first shown that coherent pairing 
of electrons and holes in three-dimensional (3D) 
semiconductors with isotropic bands leads to the 
formation of dielectric EHL. To construct the zero 
approximation of the system of electrons and holes 
interacting according to Coulomb's law, a canonical 
transformation was used [9].

In this work, we investigated dielectric EHL in 
TMDC monolayers and heterostructures based on 
them, taking into account the specifics of their band 
structure. We adapted the canonical transformation 
to this problem and showed that dielectric EHL can 
be more energetically favorable than metallic due to 
the reduction in the carrier degeneracy multiplicity.
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2. MODEL PROVISIONS

The Hamiltonian of the system of electrons and 
holes interacting according to Coulomb's law, taking 
into account the peculiarities of the band structure 
of TMD monolayers, has the form similar to the 
Hamiltonian in [9]
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Here a sKp t

†  ( )a sKp t
 and  b sKp t

†  ( )b sKp t
 are the 

creation (annihilation) operators of electrons and 
holes with quasimomentum p and spin projection  
s s( )= /1

2±  in the valley point of the Brillouin zone 
K t , t = ±  – valley index (for holes it coincides with 
the sign of spin projection sgn( )s , which is explicitly 
reflected in (1)); me(h) chemical potential of electrons 
(holes), determined by the conditio
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where n – ​2D is the density of electrons and holes 1), 
〈〉  denotes averaging over the ground state.

The Coulomb interaction is chosen in the form of 
the Keldysh potential 2) [10, 11]

1) In the case of unequal population of valleys, one should enter 
2D-particle densities n+ in the valley of the point K+ and n– in 
the valley of the point K– (n+ + n– = n):�  
	

p
p p

p p ps
sK sK

K K
a a b b n∑ ∑〈 〉 〈 〉

± ± ± ±
± ±

±
† †= = .1

2

1
2

 

Unequal valley population is achieved through excitation with 
light of non-zero circular polarization degree. If it approaches 1, 
the TMDC monolayer behaves like a single-valley semiconductor.
polarization degree. If it approaches 1, the TMD monolayer 
behaves like a single-valley semiconductor.
2) Previously, for metallic EHL, we adopted the regular 2D 
Coulomb potential, which provided very good agreement with 
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with a screening parameter r0, which is determined 
by the best match between the calculated exciton 
binding energy in the zero-density limit and the 
experimentally measured one.

Charge carrier dispersion laws
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We use a system of units with  e m2 = = 2 = 1/ effe  ,
e m2 = = 2 = 1/ effe  ,  where e e eeff /= ( ) 21 2+  – is the effective 

static dielectric constant determined by the dielectric 
constants of media surrounding the TMD monolayer 
(e.g., vacuum and substrate); m m m m me h e h= ( )/ +  
is the reduced mass of electron (with effective mass 
me) and hole (with effective mass mh). As before [13], 
we assume in Hamiltonian (1) that me and mh are 
independent of s and t.

The binding energy of 2D exciton with normal 
Coulomb interaction 2 2π εe / | |eff k  is taken as our unit 
of energy measurement E and temperature T
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while its Bohr radius

	 a
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2
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2
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2D particle density n is measured in units of ax
-2 . 

The system area is set to unity.
When converting to dimensional quantities, we use 

our previously applied method [12], where calculated 
dimensionless density values are divided by the 
square of the numerically found Bohr radius, and the 
energy (temperature) is multiplied by the numerically 
found exciton binding energy. The Bohr radius and 
exciton binding energy depend on the dielectric 
environment of the TMD monolayers. For the same 
monolayer material, the dimensionless quantities 
are the same, but their dimensional values depend 
on eeff. In particular, the dimensional responses for 
a TMD monolayer on a substrate SiO2 and the same 
monolayer encapsulated by thin layers of hexagonal 

experiment. Meanwhile, the Keldysh potential was used for exciton 
calculations. Additional arguments were required to justify this 
choice (see our works [12, 13]). Here, the initial state (at n → 0) is 
a dilute exciton gas, and potential (3) should be used for it.

2p
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boron nitride are different (in the second variant, the 
equilibrium density, EHL binding energy, and critical 
temperature of the gas-liquid transition are lower).

Let us note some assumptions made in choosing 
Hamiltonian (1).

First, we assumed that spin-f lip scattering 
processes of electrons and holes are suppressed due 
to the absence of magnetic moments in the crystal 
atoms and magnetic impurities. However, it should 
be noted that spin-flip processes may be allowed in 
TMD bilayers composed of two monolayers during 
charge carrier transitions between monolayers in a 
transverse electric field [14].

The Hamiltonian (1) takes into account the 
specifics of the band structure of TMD monolayers. 
Recall that there is a large spin-orbital splitting of the 
valence band Dv  100 meV [15]. The conduction 
band splitting is Dc  =  1–30  meV [16,  17]. The 
latter can be neglected at temperatures comparable 
to room temperature, considering electrons as 
spindegenerate. At excitation photon energies w  
within E Eg g v< <ω + ∆  ( Eg  – band gap) holes 
are generated only in the upper spin branches of 
the valence band: with spin up in the valley point 
K+ and and with spin down in the valley point K– 
(see Fig. 1). Thus, the summation over hole spin 
projections in (1) is equivalent to summation over 
valleys.

Note that the order of spin branches in the 
conduction band shown in Fig. 1 is, for definiteness, 
taken as it exists in systems with molybdenum; in 
systems with tungsten, the order is reversed [3]. 
However, this does not affect the final results because 
the temperature is considered to be significantly 
higher than the spin splitting of the conduction band.

Secondly, we did not explicitly take into account 
the processes of intervalley carrier transfer. The 
wave functions of carriers from different valleys are 
orthogonal, and the matrix elements corresponding 
to intervalley transfer processes are small compared  
to the matrix elements we kept in Hamiltonian (1) 
[18]. However, regarding TMD monolayers, it is 
known that valley polarization of excitons is lost 
very quickly due to exchange interaction between 
electrons and holes [3].

Thirdly, we did not explicitly account for electron-
hole recombination. Although it was indirectly 
considered in the choice of the ground state of the 
interacting electron-hole system as a dilute exciton 
gas. In this case, biexcitons and trions are lower in 

energy than excitons 3).  However, due to the finite 
lifetime of all particle types (both free carriers and 
composite particles), the number of biexcitons 
and trions is small compared to the number of 
excitons, since they do not have time to form from 
the latter in large quantities during short lifetimes. 
These considerations are confirmed by the fact that 
quenching of exciton lines in the photoluminescence 
spectrum of TMD monolayers occurs at sufficiently 
high photoexcitation intensity and electron (hole) 
doping (the excess of one carrier type over another 
was up to ~1013 cm–2) [21–23].

On the other hand, the question of ground 
state stability in the 2D case is qualitatively 
similar to that in the 3D case. In the density range 
n n nB dm   ( )nB  10 3-   – density at which 
the state constructed from biexcitons becomes 

3) For example, in boron nitride-encapsulated WSe2 monolayers, the 
biexciton energy (i.e., the energy gain when a biexciton is formed relative 
to the energy of two excitons) is 17 meV [19], which is equal  10% to 
the binding energy of an exciton Eb

(wxc) = 167 ± 3 meV [20], while the 
binding energy of trion intravalley growth (i.e., the energy gain when an 
exciton captures an electron) is 35 meV [19], which  20% is from Eb

(exc).

Fig. 1. (In color online) Band structure of TMD monolayers. 
The lower conduction band and upper valence band are shown 
at two points K+ and K–. Arrows indicate the spin orientations of 
the valence band branches. The spin splitting of the valence band 
equals Dv. Due to small spin splitting in the conduction band Dc 
the spin branches are distinguished by shade: lighter corresponds 
to spin up, darker to spin down. The band gap equals Eg. Dashed 
lines mark the branches populated during photoexcitation
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unstable; ndm – metal-dielectric transition density) 
the ground state of the system of electrons and 
holes interacting via Coulomb law is constructed 
from excitons [4, 24].

Further, it is assumed that the density n falls 
within the above-mentioned density interval (the 
density ndm for TMD monolayers was calculated 
by us in our previous work [13]). The ground state 
constructed from trions is realized under conditions 
of electron (hole) doping (see also works [21–23, 
25]). In our case, there is no such doping.

The equilibrium state has time to establish 
if the carrier lifetime significantly exceeds the 
thermalization time [26].

The average time between two consecutive 
collisions  1 / ( )1/2n vT  (vT – thermal velocity of 
carriers or excitons). According to our calculations 
presented below, n  1010  cm–2. For effective 
carrier masses m me h,

*
00.5  (m0 is the free 

electron mass) and temperature comparable to 
room temperature, vT  107  cm/s, from which the 
average time between collisions is ~1  ps. Hence, 
the formation time of the dielectric EHL can be 
estimated as  10 ps.

In the low-temperature region, the intrinsic 
radiative decay time is ~1  ps, while in the 
hightemperature region, the effective radiative 
lifetime is introduced, which is already three 
orders of magnitude larger than the first one, 
~1 ns [27, 28]. We see that the criterion of small 
thermalization time (formation of dielectric EHL) 
compared to the recombination time is met with 
a large margin in the high-temperature region. 
Moreover, excitons are formed first, and then the 
dielectric EHL is formed from them, since the 
relaxation time of excitons is always less than the 
first two times mentioned – it is of sub-picosecond 
scale [29].

Recombination is also qualitatively taken into 
account when dynamic equilibrium is implied 
between the number of generated electron-hole 
pairs in continuous photoexcitation mode and 
recombining particles. This allows considering n as 
a given value.

The band gap of semiconductor TMD 
monolayers Eg  2  eV [3] is large compared to 
characteristic energy values (for example, the 
exciton binding energy does not exceed 0.4 eV 
[20, 30–32]), therefore we use the single-band 
approximation.

3. COHERENT PAIRING  
OF ELECTRONS AND HOLES

As indicated above, the ground state of a system 
of electrons and holes interacting according to 
Coulomb's law is constructed from excitons. To 
account for this, we make a canonical transformation 
[9] of the Hamiltonian (1)

	 Lp p= ,SL S† � (7)

where for convenience of notation, the following 
operator columns are introduced:
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Column Lp is composed of “new” Fermionic 
operators, which to distinguish them from the “old” 
operators are denoted by corresponding Greek letters 
with the same indices and in the same order as in 
column Lp.

In the case of equal valley population4) the unitary 
operator is defined as
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γp  and  δp   are quasimomentum functions, 
determined from the condition of minimum energy 
and stability of the system's ground state.

4) The case of unequal valley population is considered separately below.
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By direct calculations, we find

	 Lp p p= ,R L � (9)
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Two types of pairing are possible: singlet γ ϕp p=  
and  δp º 0  (total spin of electron and hole S = 0)  
or triplet γp º 0  and δ ϕp p=  ( ).S = 1  The operators 
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Matrix R p  is, as it should be, a rotation matrix. 
In particular, direct calculation yields detR p º 1 . To 
show which rotation it performs for a specific type of 
pairing, let's introduce columns
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triplet pairing, the “–” sign to singlet pairing. Then 
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1
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is a rotation matrix in three-dimensional space by 
angle ϕp  around an axis lying in plane xy at angle 

–p/4 to axis x. Matrix R ¢p  оdiffers from matrix R p  
only by even permutation of rows and columns.

From the group theory perspective, the 
representation by matrices R ¢p  of the rotation 
subgroup in six-dimensional space, induced by the 
considered canonical transformation, is a direct 
sum of two representations of the rotation subgroup 
in three-dimensional space, which includes only 
rotations around one specific axis.

Hamiltonian (1) after transformation (7) takes the 
form 5) [9, 24]

	   � � � � �= = ,0SHS U ni
† ϕ µp{ }+ + − � (11)

where m = me + mh, U ϕp{ }  is a numerical functional 
arising from bringing the Hamiltonian to normal 
form:

	

U

V

 ϕ ε ϕ

ϕ ϕ

ϕ ϕ

p
p

p p

pp
p p p p

p p

{ } −

− +(

+

∑

∑
′
− ′ ′

= 2

2

2

2 2

sin

sin sin

cos sin coss sinϕ ϕ′ ′ )p p ,

� (12)

5) Looking ahead, we note that equality (16) was used to isolate the last 
term in (11).



696	 Ratnikov

JETP,  Vol. 166,  No. 5(11),  2024

where e e ep p p= e h+ . The factor of two appears due 
to summation over s.

Operators 0  and  i  are given in Appendix A.
The density of “new” quasiparticles should be 

determined in the same way as the density of original 
quasiparticles (2):

   
p

p p
p

p p
s

sK sK
s

sK s
sK s

n
τ τ τ
α α β β∑ ∑〈 〉 〈 〉† †= = .

( ) ( )sgn sgn
�(13)

After substituting expressions of “new” operators 
(10) into (13) and taking half-sum of both sums in 
(13), we find

p
p p p

p p p

s
sK sK

sK sK

a a
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τ τ τ
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†

† ss sinϕ ϕ

δ
τ τ

p p

p p p p

×

× 〈 + 〉+


− − −
− − −S sK sK s

sK s sKa b b a
0 ( ) ( )

† †

sgn sgn


+ 〈 + 〉


 +

+

− −δ
τ τS sK sK s

sK s sKa b b a
1 ( ) ( )

1
4

p p p p
† †

sgn sgn

coss sin2
1
2

= .
( ) ( )

2ϕ ϕp p p p〈 〉+






b b nsK s
sK ssgn sgn

†

� (14)

Average values 〈 〉a asK sKp p
t t

†  and 〈 〉b bsK s
sK sp p

sgn sgn( ) ( )

†  

are equal zero: all levels of single-particle fermi-
excitations | psK tñ  (electrons) and  | sgnpsK s( )ñ  (holes) 
lie above me and mh and for “new” quasiparticles the 
states are not occupied [9]. The second and third terms 
in (14) can also be set to zero, since we can use the 
arbitrariness in choosing the function ϕp  and introduce 
a condition for it similar to work [9]

 

〈 〉 〈 〉

〈
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a a a b
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=
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sK sK s

sK s sK
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t

t

† †

sgn

sgn

�(15)

Thus, we arrive at the equality

	 2 = .2

p
påsin ϕ n � (16)

When (15) is satisfied, the averages 〈 〉0  and 〈 〉 i  
are equal zero. This means that in the selfconsistent 
approximation, the system energy is determined by 
minimizing the numerical functional (12).

To account for condition (16) automatically, we 
transition from summation over p to integration over 
q p p= /  by analogy with the 3D case [24]

	 p
p

n

e

 =
1 2

,
0

π
ν

� (17)

where

p
qdq

z
z

e q
q q0

0
2

=
2

1
,  = .

ν
ϕ

∞

∫ +

Energy E0, per electron-hole pair, is found by 
minimizing the functional
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+
×

× −
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+



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




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




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


ξ ξd ,

�(18)

where the average distance between electrons is 
introduced

r
ns
e= ,
ν
π

K(k) – complete elliptic integral of the first kind, the 
function is introduced

K k
dx

k x

( ; ) =
1 1

,
0

/2

2 2
ρ

ρ

ρ

π

∫
− +sin

which in the limit ρ→ ∞  transitions to K(k), and the 
notation is introduced r r p� �

0 0= .
As trial functions, functions of the form were 

chosen

	 z A q Bq = (1 )2+ +a � (19)

with variational parameters A and B, a » 2  (usually 
a = 1.94–1.97).

The calculation of correlation corrections 
related to multiple creation and annihilation of 
electron-hole pairs was carried out using the 
Nozières-Pines method [8, 33]. Previously, we used 
this method to calculate the correlation energy for 
metallic EHL in heterostructures based on TMD 
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monolayers [12,  13]. A significant difference in 
current calculations is the use of potential (3) 
also in computing the correlation contribution. 
Due to the cumbersome formulas and absence of 
fundamentally new results, we do not provide the 
corresponding expressions here. Moreover, this 

contribution in the region of small n turns out to 
be small compared to the exchange contribution 
(in absolute value). A typical dependence of E0 
(after minimizing functional (12)) on n is shown in 
Fig. 2a. It can be seen that in the case of with equal 
valley population, the metallic EHL proves to be 
energetically favorable. Fig.  2b shows the phase 
diagram of metallic EHL, which was calculated in 
work [13].

Fig. 2. (In color online) a – Dependence of the dielectric 
EHL energy (red curve) and metallic EHL energy (light 
blue curve) on charge carrier density n in monolayer MoS2 
on substrate SiO2 in the case of equal valley population. The 
yellow dot marks the minimum energy of metallic EHL (its 
binding energy with negative sign). The inset shows an enlarged 
section of the curve for dielectric EHL. b – Phase diagram 
of metallic EHLC in the same heterostructure. The red curve 
is the gas-liquid coexistence curve with a critical point at its 
vertex (marked in green). The yellow curve corresponds to 
the temperature dependence of the metal-insulator transition 
density, calculation data taken from work [13]. Legends: exc. 
gas – exciton gas; EHL – electron-hole liquid; e-h plasma – 
electron-hole plasma

Fig. 3. (In color online) a – Dependence of the dielectric 
EHL energy (red curve) and metallic EHL energy (light blue 
curve) on charge carrier density n in monolayer MoS2 on 
substrate SiO2 in the case of single valley population. The 
yellow dot marks the minimum energy of metallic EHL (its 
binding energy with negative sign). The inset shows an enlarged 
section of the curve for dielectric EHL. b – Phase diagram of 
the dielectric EHL in the same heterostructure. The metal-
insulator transition density curve is located significantly to the 
right (~1011 – 1012 cm–2) and is only valid for the region above 
the blue line when T > Tc

(a)
(a)

(b)
(b)
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4. UNEQUAL VALLEY POPULATION

In the unitary operator (8), we must explicitly 
account for the difference between valleys at point 
K+ (populated with electron-hole pairs with density 
n+) and at point K– (pair density n–). This means 
that in the expression in the exponent (8), we 
should distinguish different functions for coherent 
pairing of electrons and holes when they are both in 
the valley at point K+ or in the valley at point K–, 
or when one particle is in one valley and the other 
particle is in another valley. For example, the term 
γp

p p
a b

K K− + − + +
1
2

1
2

† † ,  which describes the process of 

electron-hole pair creation in the valley at point K+ 
with singlet pairing, should be matched with term 
γp

p p

( )
1
2

1
2

+

− + − + +

a b
K K

† † , and term γp
p p

a b
K K− − − + −

1
2

1
2

† †  

(pair creation in the valley at point K–) term 
γp

p p

( )
1
2

1
2

-

- - - -

a b
K K

† † ; in case of intervalley pairing – 

term γp
p p

a b
K K+ + − − −

1
2

1
2

† †  or γp
p p

a b
K K− − − + +

1
2

1
2

† † . 

Similarly for triplet pairing:

δ δ

δ

p
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p
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+
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.

For pair annihilation processes, the substitutions 
are made in the same way.

According to these substitutions, the matrix F p  in 
(8) becomes dependent on the valley index:

F
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�
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Let's consider singlet pairing. The “new” 
operators are expressed through the “old” ones as 
follows:
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, � (20)

where the rotation matrix M ssgn( )  depends on two 
angles (it is given in Appendix B). Angle φp

( ( ))sgn s  
determines the position of the rotation axis in the 
plane xy (it lies at an angle -φp

( ( ))sgn s  to the axis x, 
where 0 < /( ( ))

2φ π
p
sgn s < ),  and angle ϕp

( ( ))sgn s  is the 
rotation angle around it. These values are expressed 
through our introduced functions as follows:
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For triplet pairing, when instead of β- - -p sK ssgn( )

†  

and  b sK s- - -p sgn( )

†  in (20) there are respectively 

β-psK ssgn( )

†  and  b sK s-p sgn( )

† , functions φp
( ( ))sgn s  and 

ϕp
( ( ))sgn s  are chosen so that matrix M ssgn( )  remains 

the same:
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Relations (21) and (22) reveal the mutual 
dependence of angles ϕp

( ( ))sgn s  and  φp
( ( ))sgn s  

respectively for singlet and triplet type pairing.
Expressions (10) are generalized for the case of 

unequal valley population as follows:
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If we set φ π
p
( ( ))

4/sgn s º ,  then we return to 
formulas (10).

Let us note the peculiarity of the “new” 
quasiparticles following from formulas (20)–(23). 
For different spin s projections, electron-hole pairing 
(both singlet and triplet) occurs differently – they are 
described by different rotations. This reflects the fact 
that the ensemble of “old” quasiparticles was initially 
partially spin-polarized (the number of spin-up holes 
is not equal to the number of spin-down holes with 
unequal valley occupation).

The transformed Hamiltonian  = SHS†  has the 
form

	   � � � �= , .( ) ( )
0U niϕ φ µp p

± ±{ }+ + − � (24)

The first term in (24) is a generalization of the 
numerical functional (12)
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Operators 0  and  i  are given in Appendix B.
When equalities (15) are satisfied, condition (16) in 

the case of unequal valley occupation takes the form
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p
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To account for the relationship between charge 
carrier densities n+ and n–, belonging to valleys at 
points K+ and  K–, respectively, it is necessary to 
rewrite (26) in more detail [according to note 1)]
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After substituting (23) into (27), we obtain the 
equalities
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Let us transition from summation over p to 
integration over q p p= /.  The value p  is determined 
by relation (17) with p0, now equal to
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The electron-hole pair energy is determined by 
minimizing the functional
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Trial functions z q±  are chosen similarly to (19) 
with corresponding variational parameters A±  and 
B± . Functions φq

( )±  are chosen according to relations 
(21) or (22) [both relations lead to the same result up 
to renaming]

  φ
α

αq

A q B

A q B

( )
( ) 2 ( )

2
=

(1 )

2 (1 )

±
± ±

± ±

+ +





+ +



arccos

arcctg 













. � (30)

Here, the assumption about the similarity of 
functions γp  and  γp

( )±  (δp  and  δp
( )± )  is used.
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The values of parameters A ( )±  and  B( )±  are 
limited in relation to the values of parameters A±  
and  B±  by the condition that the fraction in (30) 
does not exceed unity. They are also limited by 
conditions (28).

Correlation corrections are calculated in the same 
way as for equal valley occupation. Due to their 
small magnitude, we consider this approximation 
acceptable.

5. TRANSITION BETWEEN METALLIC 
AND DIELECTRIC EDGE

As numerical calculations show (see Fig. 2), 
with equal valley population, the metallic edge in 
monolayer heterostructures based on TPD is always 
more energetically favorable than the dielectric 
edge, which is consistent with our previous results 
[12, 13]. However, from work [13] it can also be 
seen that there is a significant dependence of the 
binding energy of the metallic edge on the number 
of valleys: for a single-valley semiconductor (under 
the condition of spin degeneracy and electrons and 
holes) it exceeds the exciton binding energy only 
by 9%. This suggests that further reduction in the 
degeneracy multiplicity due to the removal of spin 
degeneracy for holes will lead to an even lower 
binding energy value of the metallic EHP.

Let's introduce the degree of circular polarization 
of light

	 P
I I

I Ie =
| |

,+ −

+ −

−
+

� (31)

where I+ and I– are the intensities of right-polarized 
and left-polarized light components, respectively. 
The value Pe = 0  corresponds to the case of linear 
polarization or unpolarized light, and  Pe = 1  – to 
fully circularly polarized light. In definition (31), 
the modulus is used since our problem is invariant 
with respect to the double substitution I I+ −  (the 
proportion of valley populations is important).

In numerical calculations, it is convenient to operate 
with an effective number of valleys for electrons

	 νe
n
n

n

n
* = 1 , .+











−

+

+

−
min � (32)

When optical transitions predominate in the 
point valley K+ they are supplemented by a relatively 
smaller fraction of transitions in the point valley K–: 
the former give 1 in  νe

* , and the latter – the ratio 
of populations n n− +/  ( ).n n+ −>  Conversely, if 
transitions predominate in the point valley K–, they 
give 1, and transitions in the point valley K+ – ​the 
population ratio n n+ −/  ( ).n n− +>

Using the dependence n I± ±∝ , we rewrite 
definition (31) through populations

	 P
n n

n ne =
| |

.+ −

+ −

−
+

� (33)

Fig. 4. (In color online) Rotating disk with a perforated diamond membrane several microns thick, behind which there is a stage with 
an irradiated sample (highlighted in sea-green color). The holes in the membrane have a rotation axis C2. One half of the disk is a 
polarizer for right-polarized light, and the second half is a polarizer for left-polarized light. The hole array of one polarizer transforms 
into that of the other polarizer by mirror reflection relative to the plane passing through the dividing diameter (shown by dashes). 
Theoretical study of the optical response of a stationary free-hanging diamond membrane with a two-dimensional periodic array of 
holes with rotation axis for infrared C2 applications was conducted in work [36]
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Then the effective number of valleys for electrons 
equals

	 νe
eP

* =
2

1
.

+
� (34)

The effective number of valleys for holes is always 
half that for electrons due to the lifted spin degeneracy:

	 νh
eP

* =
1

1
.

+
� (35)

Numerical calculations have shown that for a 
number of TMD monolayers and heterostructures 
based on them, when the degree of circular polarization 
of the exciting light Pe, approaches 1, the metallic EHL 
ceases to exist (its binding energy becomes less than the 
exciton binding energy). At the same time, the binding 
energy of the dielectric EHL decreases by about one-
third, but it remains energetically favorable compared 
to the exciton (see Fig. 3).

It follows that at some difference in valley filling, 
when Pe lies between 0 and 1, the binding energies of 
both types of EHL become equal. This means that 
there is a threshold value of the degree of circular 
polarization of the exciting radiation Pe0, below 
which there exists a metallic EHL, and above which – 
a dielectric EHL. For example, our calculations 
showed that for MoS2 Pe0 = 0.45.

For experimental observation of the phase transition 
between two types of EHL, several schemes can be used. 
The first scheme involves two sources: one for right-
polarized radiation, the other for left-polarized. The 
intensity of both sources is changed synchronously so 
that the total intensity remains constant. The second 
option is to use a single source of linearly polarized light. 
The beam from it is split into two beams, one of which 
is amplified with timemodulated intensity, and then 
combined with the second (unamplified) beam. This 
way, radiation with time-modulated Pe. can be obtained. 
An electro-optical converter – a Pockels cell – can also 
be used. Then the modulation Pe is set by a variable 
electric field.

For relatively low modulation frequencies (tens 
and hundreds of Hertz), in addition to the Pockels cell, 
a rotating polarizer in the form of a disk can also be 
used, where one half converts laser radiation into right-
polarized light, and the second half – into left-polarized. 
The incident radiation spot is offset from the disk axis 
(see Fig. 4). When the beam falls completely on one 
of the two halves, the transmitted light has Pe, close to 

1. The change in the degree of circular polarization of 
transmitted light occurs during the time interval when 
the boundary between the two polarizers moves across 
the spot of incident radiation on the disk (when the spot 
is divided in half, it can be assumed that the transmitted 
light is not circularly polarized).

Exceeding Pe the threshold value Pe0 will lead 
to the decay of metallic EHL drops with the 
formation of a more “loose” phase – dielectric EHL. 
Conversely, when Pe, decreases, when Pe becomes 
less than Pe0, metallic EHL drops will form again.

During the transition between two types of EHL, 
the luminescence spectrum changes qualitatively. 
The EHL line width is of the order of the Fermi 
energy EF – at low temperatures it equals EF with 
good accuracy, while at room temperature it can 
exceed it approximately twofold [35]. Metallic EHL 
corresponds to a broad line, while dielectric EHL 
corresponds to a rather narrow one (due to the small 
equilibrium density). Thus, the transition through the 
threshold value of the degree of circular polarization 
of the exciting light Pe0 should be accompanied by a 
sharp change in the width of the line, which is red-
shifted from the exciton line: at P Pe e< 0  the line is 
broad, and at P Pe e> 0  the line is narrow.

When analyzing the photoluminescence line shape 
of EHL, a standard expression for intensity is usually 
used [37–40]

   
I A D E D E f E f E

E E E dE dE

e e h h e e h h

e h g e h

( ) = ( ) ( ) ( ) ( )

,

ω

δ ω

∫ ∫ ×

× + + − −( )L Ω
� (36)

where De and Dh are the densities of states in the 
conduction and valence bands, respectively, fe and fh 
are the Fermi functions for electrons and holes, 
Ee and  Eh are the energies of electrons and holes 
measured from the edges of the corresponding bands 
in the liquid, EgL is the value of the renormalized 
band gap in the sample region occupied by the 
liquid, E E E Eg g FL = (0)

0+ −  ( Eg
(0)  is the value of 

the unrenormalized band gap, E0 is the EHL energy 
per electron-hole pair, EF is the Fermi energy of 
electrons and holes), W is the frequency of the 
phonon emitted during the electronic transition. 
The constant A has dimensions corresponding to the 
intensity measured in the experiment. In the case of 
directgap semiconductors, which TMD monolayers 
are, the most probable transitions are those without 
phonon participation, therefore we can set W = 0.
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In the idealized picture of parabolic bands near 
extrema for the 2D case, calculations using formula 
(36) are significantly simplified. The intensity I(w) is 
found analytically [35]

� (37)

The results of calculations of the line profiles in the 
photoluminescence spectrum using formula (37) for 
the monolayer MoS2 are shown in Fig. 5. The exciton 
line was not calculated (its position is shown by yellow 
dashed lines according to the exciton binding energy).

At excitation light intensities characteristic of 
metallic EHL formation, the dielectric EHL is likely 
to fill the entire sample rather than form as separate 
droplets with exciton gas between them. In this 
case, free excitons are absent, as is the exciton line 
in the photoluminescence spectrum. However, there 
is a dielectric EHL recombination line, which can 
be very similar in its intensity profile to the exciton 
line, but it is red-shifted by the binding energy of the 
dielectric EHL relative to the free exciton.

At photoexcitation intensities when the density of 
generated electron-hole pairs n significantly exceeds 
the equilibrium density of dielectric EHL n d

0
( ),  the 

“excess” electron-hole pairs condense into metallic 
EHL droplets, reducing the density of dielectric EHL 
to n d

0
( ).  A dynamic equilibrium emerges between 

metallic EHL droplets and dielectric EHL occupying 
the remaining sample area – the rate of electron-
hole pairs condensation into metallic EHL droplets 
equals their evaporation rate.

Such coexistence of two EHL types leads to the 
presence of both lines in the photoluminescence 
spectrum (see Fig. 5c). Calculations showed that 
the lines remain well spectrally distinguishable up 
to temperatures comparable to room temperature. 
The metallic EHL recombination line is red-shifted 
relative to the dielectric EHL recombination line, 
and there is always an intensity dip between them 
because the threshold frequency value from the red 
side EgL  for both EHL types is accurately equal to 
the Fermi energy of metallic EHL (the Fermi energy 
of dielectric EHL is small in comparison, while the 
liquid energies E0 are close).

Observation of an isolated dielectric EHL line may 
prove highly problematic due to the small value of n d

0
( )  – 

electron-hole pairs do not have time to condense into 
this phase. Therefore, there exists a natural intensity 
threshold above which the corresponding line appears 
in the photoluminescence spectrum. Meanwhile, the 
density n can greatly exceed n d

0
( ),  which leads to the 

aforementioned coexistence of two EHL types and its 
characteristic line profile.

Experimental studies of EHL in monolayer 
heterostructures based on TMD [42–45] were 
apparently conducted with low circular polarization 
degree or with linear polarization of exciting light, 
when metallic EHL becomes energetically favorable. 
The experiments convincingl y demonstrated the 
metallic nature of the observed phase. We predict 
that using light with sufficiently high circular 
polarization degree for sample excitation will 
result in a qualitatively new line profile as described 
above.

Finally, we note that the phase diagrams of both 
types of EHL become dependent on the degree of 
circular polarization value Pe, i.e., they represent 
surfaces in space ( , , )n P Te .  As our calculations for 
MoS2, have shown, the equilibrium density of the 
dielectric EHL changes by almost 1.5 times when Pe 
changes from Pe0 to 1. However, such changes are 
practically unnoticeable in experiments. The binding 
energy changes from 367 meV to 353 meV, and the 
critical temperature changes from 525 K to 504 K (the 
second value is shown in Fig. 3b). The latter is well 
measured experimentally, but the relative change is still 
quite small. This pattern is typical for TPM monolayers. 
In our opinion, in light of this, constructing phase 
diagrams as surfaces seems somewhat excessive. This 
becomes especially clear when considering that the 
accuracy of calculations does not allow distinguishing 
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such small relative changes as those obtained for binding 
energy and critical temperature.

6. CONCLUSIONS

In this work, we have shown that dielectric EHL 
is possible in TMD monolayers and heterostructures 
based on them due to coherent electron-hole pairing. 
To construct the correct zero approximation, an 
appropriately adapted canonical transformation was 
used. Numerical calculations have shown that in the 
case of equal valley population, metallic EHL is more 
energetically favorable than dielectric EHL. However, 
in the case of unequal valley population, when the 
difference between valley populations is suciently large, 

dielectric EHL becomes more energetically favorable. 
This occurs when exceeding the threshold value of the 
circular polarization degree of the exciting light. We 
have also briefly described possible ways of experimental 
observation of the metallic EHL-dielectric EHL 
transition.
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Fig. 5. (In color online) Calculation of EHL recombination lines in the photoluminescence spectrum of monolayer MoS2 for 
four temperature values. Yellow and purple dashed lines mark the positions of the exciton line and the continuous spectrum edge, 
respectively. The exciton binding energy is calculated variationally and equals 321 meV. The effective carrier masses ( ,m me

*
0= 0.55  

m mh
*

0= 0.56 ,  m0 is the free electron mass) and the bandgap value (Eg
(0) = 2.48 eV)  are taken from work [41]. a – Recombination 

line profile of metallic EHL for Pe = 0. b – Recombination line profile of dielectric EHL for Pe = 1. c – Resulting profile in the case 
of coexistence of both EHL types for Pe = 0.5. The fraction of electron-hole pairs in the metallic phase is taken as 0.2 of the total 
number of pairs (it depends on the photoexcitation intensity – how much stronger the pumping is compared to the optimal one, when 
there is an exact match between the density of photoexcited charge carriers and the equilibrium density of dielectric EHL)

(a) (b)

(c)
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APPENDIX A

The operator 0  contains terms that are bilinear in fermionic operators (unlike in work [9], here it is taken 
into account that m me h¹ , and the specifics of the band structure of TMD monolayers are considered):

H V V� �
0 =

1
2

2
1
2

2
p

p p p p p p
s

sKa
τ τ

ϕ ξ ϕ∑ −



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

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where the following notations are introduced ξ ε µp p= - , ξ ε µp p
e h e h

e h
, ,

,= -  ( ),ξ ξ ξp p p≡ +e h  δξ ξ ξp p p= e h- ,

 p
p

p p p p
p

p p p p=   = .2

′
− ′ ′

′
− ′ ′ ′∑ ∑V Vsin cos sinϕ ϕ ϕ and 

The operator  i  contains quaternary combinations of fermi operators:

Here, as in work [9], the functions are introduced

γ ϕ ϕ γ ϕ ϕp p p p p p p p, ,=     = .′ ′ ′ ′−( ) −( )cos sinand 
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Considering that sinϕp  n  and  cosϕp  1 ( )- n  (according to condition (16)), we f ind 
γp p, 1 ( )′ −  n  and  γ�p p, ¢ ∼ n  [9]. From this, we obtain that the terms responsible for the “transfer” of an 
electron from one valley to another are suppressed as γp p k, 1- -  n , and the terms with double intervalley 

“transfer” of an electron are suppressed as γ γp p k p p k, ,
21 1− ′ ′+−( ) −( )  n .

APPENDIX B

The rotation matrix in (20) equals

M Mssgn( )
( ) ( )

2 ( ) 2 ( ) ( ) (

, =

=

≡ ( )
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± ±
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ϕ φ

φ φ ϕ φ

p p
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.

Here, as in the main text of the article ± coincides with sgn(s).

APPENDIX C

The operator 0  in expression (24) is

where the functions are introduced
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The operator  i  in expression (24) is

where the functions are introduced
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