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Abstract. The possibility of dielectric electron-hole liquid (EHL) formation in monolayers of transition metal
dichalcogenides and their heterostructures is considered. It is shown that coherent pairing of electrons and
holes leads to the formation of dielectric EHL when the degree of circular polarization of exciting light exceeds
a certain threshold value. Below this value, metallic EHL is realized. Some possible physical manifestations of
the transition between these two types of EHL are noted.
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1. INTRODUCTION

In the last two decades, the physics of two-
dimensional (2D) materials, particularly transition
metal dichalcogenides (TMD), has attracted
attention of many researchers. TMDs are layered
materials described by the chemical formula MX,,
where M is a transition metal atom (usually M = Mo,
W) and X — a chalcogen atom (X =S, Se, Te). Similar
to the exfoliation of graphite into graphene layers [1],
TMDs can be exfoliated into thin films. The thinnest
film consists of two layers of X atoms with a layer
of M atoms inserted between them. Such films are
commonly called TM D monolayers.

The peculiarities of the band structure make TMD
monolayers attractive for their use in valleytronics [2].
They enable valley-selective excitation of electron-hole
pairs depending on the type of circular polarization of
light: absorption of right-polarized light leads to optical
transitions in one valley, while left-polarized light leads
to transitions in another valley [3].

The hypothesis about the existence of dielectric
electron-hole liquid (EHL) was proposed in [4].
Such a state can be realized through coherent pairing
of electrons and holes.

In the first theoretical works devoted to calculating
the ground state energy of EHL (see, for example,
review [5]), a free electron-hole gas was used as the

zero approximation, whose energy turns to zero in
the limit of zero density, rather than approaching the
exciton energy. This indicated incorrect accounting
of electron-hole correlations in the region of low
charge carrier densities.

It has long been known that the metallic state
becomes unstable due to electron-hole correlations,
leading to the opening of an energy gap at the Fermi
surface, whose magnitude at zero density coincides
with the exciton binding energy [6]. An estimation
of the electron-hole correlations contribution
to the EHL energy with the introduction of
metallic screening was made in [7]. However, this
approximation also appears unsatisfactory.

In [8], it was first shown that coherent pairing
of electrons and holes in three-dimensional (3D)
semiconductors with isotropic bands leads to the
formation of dielectric EHL. To construct the zero
approximation of the system of electrons and holes
interacting according to Coulomb's law, a canonical
transformation was used [9].

In this work, we investigated dielectric EHL in
TMDC monolayers and heterostructures based on
them, taking into account the specifics of their band
structure. We adapted the canonical transformation
to this problem and showed that dielectric EHL can
be more energetically favorable than metallic due to
the reduction in the carrier degeneracy multiplicity.

691



692

2. MODEL PROVISIONS

The Hamiltonian of the system of electrons and
holes interacting according to Coulomb's law, taking
into account the peculiarities of the band structure
of TMD monolayers, has the form similar to the
Hamiltonian in [9]
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creation (annihilation) operators of electrons and
holes with quasimomentum p and spin projection
s(s = +1 /») in the valley point of the Brillouin zone
K., © =+ —valley index (for holes it coincides with
the sign of spin projection sgn(s) , which is explicitly
reflected in (1)); p, ;) chemical potential of electrons
(holes), determined by the conditio
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(apsKT) and bITmK (bpsKT) are the

where n — 2D is the density of electrons and holes!),
() denotes averaging over the ground state.

The Coulomb interaction is chosen in the form of
the Keldysh potential? [10, 11]

D In the case of unequal population of valleys, one should enter
2D-particle densities n, in the valley of the point K, and n_ in

the valley of the point K_ (n, + n_ = n):
(@ apx )=S00 | b y=n..
%s: PsKi PsK ; p:t%Ki pini +

Unequal valley population is achieved through excitation with
light of non-zero circular polarization degree. If it approaches 1,
the TMDC monolayer behaves like a single-valley semiconductor.
polarization degree. If it approaches 1, the TMD monolayer
behaves like a single-valley semiconductor.

2 Previously, for metallic EHL, we adopted the regular 2D
Coulomb potential, which provided very good agreement with
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with a screening parameter r, which is determined
by the best match between the calculated exciton
binding energy in the zero-density limit and the
experimentally measured one.

Charge carrier dispersion laws
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We use a system of units with /e, = h =
=2m =1, where g, = (g + &,)/2 — is the effective
static dielectric constant determined by the dielectric
constants of media surrounding the TMD monolayer
(e.g., vacuum and substrate); m = m,m,, /(m, +m)
is the reduced mass of electron (with effective mass
m,) and hole (with effective mass m,,). As before [13],
we assume in Hamiltonian (1) that m, and m,, are
independent of s and .

The binding energy of 2D exciton with normal
Coulomb interaction 2me? /¢ |K| is taken as our unit
of energy measurement £ and temperature T

2m e
e (5)
while its Bohr radius
hle
_ef; (6)
2me

2D particle density # is measured in units of a;z
The system area is set to unity.

When converting to dimensional quantities, we use
our previously applied method [12], where calculated
dimensionless density values are divided by the
square of the numerically found Bohr radius, and the
energy (temperature) is multiplied by the numerically
found exciton binding energy. The Bohr radius and
exciton binding energy depend on the dielectric
environment of the TMD monolayers. For the same
monolayer material, the dimensionless quantities
are the same, but their dimensional values depend
on .. In particular, the dimensional responses for
a TMD monolayer on a substrate SiO, and the same
monolayer encapsulated by thin layers of hexagonal

experiment. Meanwhile, the Keldysh potential was used for exciton
calculations. Additional arguments were required to justify this
choice (see our works [12, 13]). Here, the initial state (at n — 0) is
a dilute exciton gas, and potential (3) should be used for it.
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boron nitride are different (in the second variant, the
equilibrium density, EHL binding energy, and critical
temperature of the gas-liquid transition are lower).

Let us note some assumptions made in choosing
Hamiltonian (1).

First, we assumed that spin-flip scattering
processes of electrons and holes are suppressed due
to the absence of magnetic moments in the crystal
atoms and magnetic impurities. However, it should
be noted that spin-flip processes may be allowed in
TMD bilayers composed of two monolayers during
charge carrier transitions between monolayers in a
transverse electric field [14].

The Hamiltonian (1) takes into account the
specifics of the band structure of TMD monolayers.
Recall that there is a large spin-orbital splitting of the
valence band Av = 100 meV [15]. The conduction
band splitting is A, = 1-30 meV [16, 17]. The
latter can be neglected at temperatures comparable
to room temperature, considering electrons as
spindegenerate. At excitation photon energies h
within £, <ho <E, + A, (E, — band gap) holes
are generated only in the upper spin branches of
the valence band: with spin up in the valley point
K, and and with spin down in the valley point K_
(see Fig. 1). Thus, the summation over hole spin
projections in (1) is equivalent to summation over
valleys.

Note that the order of spin branches in the
conduction band shown in Fig. 1 is, for definiteness,
taken as it exists in systems with molybdenum; in
systems with tungsten, the order is reversed [3].
However, this does not affect the final results because
the temperature is considered to be significantly
higher than the spin splitting of the conduction band.

Secondly, we did not explicitly take into account
the processes of intervalley carrier transfer. The
wave functions of carriers from different valleys are
orthogonal, and the matrix elements corresponding
to intervalley transfer processes are small compared
to the matrix elements we kept in Hamiltonian (1)
[18]. However, regarding TMD monolayers, it is
known that valley polarization of excitons is lost
very quickly due to exchange interaction between
electrons and holes [3].

Thirdly, we did not explicitly account for electron-
hole recombination. Although it was indirectly
considered in the choice of the ground state of the
interacting electron-hole system as a dilute exciton
gas. In this case, biexcitons and trions are lower in
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Fig. 1. (In color online) Band structure of TMD monolayers.
The lower conduction band and upper valence band are shown
at two points K, and K_. Arrows indicate the spin orientations of
the valence band branches. The spin splitting of the valence band
equals A,. Due to small spin splitting in the conduction band A,
the spin branches are distinguished by shade: lighter corresponds
to spin up, darker to spin down. The band gap equals E,. Dashed
lines mark the branches populated during photoexcitation

energy than excitons?. However, due to the finite
lifetime of all particle types (both free carriers and
composite particles), the number of biexcitons
and trions is small compared to the number of
excitons, since they do not have time to form from
the latter in large quantities during short lifetimes.
These considerations are confirmed by the fact that
quenching of exciton lines in the photoluminescence
spectrum of TM D monolayers occurs at sufficiently
high photoexcitation intensity and electron (hole)
doping (the excess of one carrier type over another
was up to ~1013 cm=2) [21-23].

On the other hand, the question of ground
state stability in the 2D case is qualitatively
similar to that in the 3D case. In the density range
ng <n<n, (ng~10"°) — density at which
the state constructed from biexcitons becomes

3) For example, in boron nitride-encapsulated WSe, monolayers, the
biexciton energy (i.e., the energy gain when a biexciton is formed relative
to the energy of two excitons) is 17 meV [19], which is equal ~ 10% to
the binding energy of an exciton E,ﬁwxc) = 167 £ 3 meV [20], while the
binding energy of trion intravalley growth (i.e., the energy gain when an
exciton captures an electron) is 35 meV [19], which ~ 20% is from ng’“).
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unstable; n,, — metal-dielectric transition density)
the ground state of the system of electrons and
holes interacting via Coulomb law is constructed
from excitons [4, 24].

Further, it is assumed that the density » falls
within the above-mentioned density interval (the
density n,, for TMD monolayers was calculated
by us in our previous work [13]). The ground state
constructed from trions is realized under conditions
of electron (hole) doping (see also works [21—23,
25]). In our case, there is no such doping.

The equilibrium state has time to establish
if the carrier lifetime significantly exceeds the
thermalization time [26].

The average time between two consecutive
collisions ~ 1/ (nl/ 2vT) (vp — thermal velocity of
carriers or excitons). According to our calculations
presented below, n ~10'° ¢cm~2. For effective
carrier masses m:,h ~0.5m, (m, is the free
electron mass) and temperature comparable to
room temperature, vy ~ 107 cm/s, from which the
average time between collisions is ~1 ps. Hence,
the formation time of the dielectric EHL can be
estimated as = 10 ps.

In the low-temperature region, the intrinsic
radiative decay time is ~1 ps, while in the
hightemperature region, the effective radiative
lifetime is introduced, which is already three
orders of magnitude larger than the first one,
~1 ns [27, 28]. We see that the criterion of small
thermalization time (formation of dielectric EHL)
compared to the recombination time is met with
a large margin in the high-temperature region.
Moreover, excitons are formed first, and then the
dielectric EHL is formed from them, since the
relaxation time of excitons is always less than the
first two times mentioned — it is of sub-picosecond
scale [29].

Recombination is also qualitatively taken into
account when dynamic equilibrium is implied
between the number of generated electron-hole
pairs in continuous photoexcitation mode and
recombining particles. This allows considering # as
a given value.

The band gap of semiconductor TMD
monolayers E, ~2 eV [3] is large compared to
characteristic energy values (for example, the
exciton binding energy does not exceed 0.4 eV
[20, 30—32]), therefore we use the single-band
approximation.

RATNIKOV

3. COHERENT PAIRING
OF ELECTRONS AND HOLES

As indicated above, the ground state of a system
of electrons and holes interacting according to
Coulomb's law is constructed from excitons. To
account for this, we make a canonical transformation
[9] of the Hamiltonian (1)

= T

A, =SL,S", ™)

where for convenience of notation, the following
operator columns are introduced:

Ay
L, = ,
P A,

1
—p—ik,

Column A, is composed of “new” Fermionic
operators, which to distinguish them from the “old”
operators are denoted by corresponding Greek letters
with the same indices and in the same order as in
column Lp.

In the case of equal valley population® the unitary
operator is defined as

l' ~
S=expl—=S LI FpL .t (8)
[\/E%; ptt P pr}
where
A
LDT = BPT ’
P
~ 0 o,
Fp = ~t .
op O
~ S, v
q)p = —l[ P P 5
Tp Op

vp and ¢, are quasimomentum functions,
determined from the condition of minimum energy
and stability of the system's ground state.

4 The case of unequal valley population is considered separately below.
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By direct calculations, we find

A, = Ryl ) A s
P p p’ KPS = Kps+ , Kpsi = apsk—
where matrix 6 x 6 P gl
_piSKisgn(s)
1 1
E(Ml’ +1) §<Ml’ - ]> Ny The “+” sign in Lps and Aps corresponds to
~ 1 1 triplet pairing, the “—” sign to singlet pairing. Then
Ry = E(M p —1 ) E(M p H1 ) Ny transformation (10) can be rewritten as
-N, =N, M, _ R, O
Aps =R Lps, Rp = ,
0 R,
is defined by matrices 2 x 2 (I — identity matrix) where matrix

[ cosy, cosd, —siny,sing, ]
p ==

l(cos +1) l(cos —1) Lsin
—siny, sind, cosy, cosd, 2 Pp 2 Pp 2 Pp

1 1 1 .
v 1 [cosypsind, siny, cosd, Ry = E(cos ®p — 1) E(cos ®p + 1) Esm Pp
P /2|sin Yp€OSS, cosy,sind, | |
—=sing, ——=sing, cos @,
Two types of pairing are possible: singlet y, = ¢, V2 V2

and 3, =0 (total spin of electron and hole S = 0)
ortriplet vy, =0 and 5, = ¢, (S =1). The operators
take the form

is a rotation matrix in three-dimensional space by
angle ¢, around an ax1s lying in plane xy at angle

~T/4 to axis x. Matrix Rp odiffers from matrix Rp
only by even permutation of rows and columns.

O‘psl(

T From the group theory /perspective, the
=l<coscp +1)a X +l(coscp —l)a x + representation by matrices Rp of the rotation
) P psK_ T 5 P psK_ L . .
: subgroup in six-dimensional space, induced by the
+ ——sing, |56 +5.,b" ]’ considered canonical transformation, is a direct
2 PUTSOTP =K _ggn(sy) ST PSKgn(s) 10 sum of two representations of the rotation subgroup
Bpsk = cosPybysk - (0) " in three-dimensional space, which includes only
lsgn(s) sen(s) rotations around one specific axis.
——=sing, |33, [an & T aipis x|t Hamiltonian (1) after transformation (7) takes the
V2 + - form3 [9, 24]

+5s1[ “psk +“Tps1<_]- H=SHS' =U{g,} + Ho+Hi —pn, (11)

where p = p, + ., U {(pp} is a numerical functional

arising from bringing the Hamiltonian to normal
form:

Matrix R p is, as it should be, a rotation matrix.
In particular, direct calculation yields detR p =1.To
show which rotation it performs for a specific type of _
pairing, let's introduce columns v {(Pp} - ZZP:gp sinp, —

=2V, (sinztpp sinQ, + (12)
p/

a
~ psK 4
Foooo|Ler| o . :
ps |~ , Lips+ — apsKi , —|—COS([)p Sll’l(pp COS(Pp/ Sll‘l(pp/>,
ps— -
i iSKngn(s) %) Looking ahead, we note that equality (16) was used to isolate the last

term in (11).
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where g, = sf, + ag . The factor of two appears due
to summation over s.

Operators ﬂo and 7/-\(,- are given in Appendix A.

The density of “new” quasiparticles should be
determined in the same way as the density of original
quasiparticles (2):

Z<O“LSKT OLI)SKT > - Z<BI)SK

pst ps

Bpsk )y =n. (13)

sgn(s) sgn(s)

After substituting expressions of “new” operators
(10) into (13) and taking half-sum of both sums in
(13), we find
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Average values (a

T
psl(rapsl( )and (bp [( (s)bpSngn(s)>

are equal zero: all levels of single- particle fermi-
excitations | psK ;) (electrons) and |psK ) (holes)
lie above p, and p, and for “new” quasiparticles the
states are not occupied [9]. The second and third terms
in (14) can also be set to zero, since we can use the
arbitrariness in choosing the function ¢, and introduce
a condition for it similar to work [9]

i =(al b
<apsl(l_al’SK_T > <aPSKTb*l’*SK—sgn(s)

bl )= (15)

< —p—sK > < pSK‘E sen(s)

a.
—sgn(s) psKT

= <b—psl( )apsl(T> =0.

sgn(s

Thus, we arrive at the equality
2> “sin’p, =n

P
When (15) is satisfied, the averages <7A{o> and <7/%1->
are equal zero. This means that in the selfconsistent
approximation, the system energy is determined by
minimizing the numerical functional (12).

(16)
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To account for condition (16) automatically, we
transition from summation over p to integration over
g = p/p by analogy with the 3D case [24]

A7)

where

Energy E|, per electron-hole pair, is found by
minimizing the functional

4 % gd
Ey{z, }— ngflq 42 N
0

+24
82 T q’dg f1+z ot
v, rph 0 l—l—zq 1+zq¢

(18)

x|k (&) - ﬁK

248

d
+E &ds,

rog(1+ &)

where the average distance between electrons is
introduced

Ve

r. =
s nn’

K(k) — complete elliptic integral of the first kind, the

function is introduced

n/2

Kipy= |

px/l—k s1nx+1

which in the limit p — oo transitions to K(k), and the
notation is introduced ro = ryp .

As trial functions, functions of the form were
chosen

2, =A(l+q)" + B (19)
with variational parameters A and B, a ~ 2 (usually
o= 1.94-1.97).

The calculation of correlation corrections
related to multiple creation and annihilation of
electron-hole pairs was carried out using the
Nozieres-Pines method [8, 33]. Previously, we used
this method to calculate the correlation energy for
metallic EHL in heterostructures based on TMD

JETP, Vol. 166, No. 5(11), 2024
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Fig. 2. (In color online) a — Dependence of the dielectric
EHL energy (red curve) and metallic EHL energy (light
blue curve) on charge carrier density #» in monolayer MoS,
on substrate SiO, in the case of equal valley population. The
yellow dot marks the minimum energy of metallic EHL (its
binding energy with negative sign). The inset shows an enlarged
section of the curve for dielectric EHL. b — Phase diagram
of metallic EHLC in the same heterostructure. The red curve
is the gas-liquid coexistence curve with a critical point at its
vertex (marked in green). The yellow curve corresponds to
the temperature dependence of the metal-insulator transition
density, calculation data taken from work [13]. Legends: exc.
gas — exciton gas; EHL — electron-hole liquid; e-4 plasma —
electron-hole plasma

monolayers [12, 13]. A significant difference in
current calculations is the use of potential (3)
also in computing the correlation contribution.
Due to the cumbersome formulas and absence of
fundamentally new results, we do not provide the
corresponding expressions here. Moreover, this
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Fig. 3. (In color online) a — Dependence of the dielectric
EHL energy (red curve) and metallic EHL energy (light blue
curve) on charge carrier density » in monolayer MoS, on
substrate SiO, in the case of single valley population. The
yellow dot marks the minimum energy of metallic EHL (its
binding energy with negative sign). The inset shows an enlarged
section of the curve for dielectric EHL. b — Phase diagram of
the dielectric EHL in the same heterostructure. The metal-
insulator transition density curve is located significantly to the
right (~10"' — 10'2 ¢cm~2) and is only valid for the region above
the blue line when 7'> T,

contribution in the region of small » turns out to
be small compared to the exchange contribution
(in absolute value). A typical dependence of E|
(after minimizing functional (12)) on # is shown in
Fig. 2a. It can be seen that in the case of with equal
valley population, the metallic EHL proves to be
energetically favorable. Fig. 2b shows the phase
diagram of metallic EHL, which was calculated in
work [13].
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4. UNEQUAL VALLEY POPULATION

In the unitary operator (8), we must explicitly
account for the difference between valleys at point
K, (populated with electron-hole pairs with density
n,) and at point K_ (pair density »_). This means
that in the expression in the exponent (8), we
should distinguish different functions for coherent
pairing of electrons and holes when they are both in
the valley at point K, or in the valley at point K_,
or when one particle is in one valley and the other
particle is in another valley. For example, the term
ypaT : b , » Wwhich describes the process of

prK n 7p+§K T
electron-hole pair creation in the valley at point K
with singlet pairing, should be matched with term
yf:“)aT q b , > and term ypaT ) b ]

p_§K+ —p+§K+ p—EK_ —p+§K_
(pair creation in the valley at point K_) term

yi,’)aT1 Al , ;> in case of intervalley pairing —
P5K_ —p—K_
2 2 )
term ypaT 1 b 1 or «/paT ! Al !
Pt5K, —P—5K_ p—5K_ —p+3K,

Similarly for triplet pairing:

§,al b —8(Ha b

LS P T 7 ol
L R
T ] (=) 41 T

dpa 1, b_ 1 —38, a ap b_ PR
P—K_ —p—3K_ P—K_ —p—K_

SPcff { b : —>E~SpaT : b ] .
pi§K$ ﬂ):ﬁ:iKi piEK:F 7p:|:§Kpm

For pair annihilation processes, the substitutions
are made in the same way.

According to these substitutions, the matrix F p in
(8) becomes dependent on the valley index:

N 0 Dp
Fp‘c = AT .
Dp: O
~ 87 7
A
Yp 81’
R 5 O
Dy =—i|_ :’_) .
Tp Sp

3 »

Let's consider singlet pairing. The “new
operators are expressed through the “old” ones as
follows:

RATNIKOV

(XPSK+ apSKJr
Opsk = Msgn(s) psk , (20)
T bt
Bip 7SK*SEH(S) P 7SK*Sgn(S)

where the rotation matrix Mg, depends on two
angles (it is given in Appendix B). Angle d)f,sg"(s))
determines the position of the rotation axis in the
plane xy (it lies at an angle —¢E,Sg“(s)) to the axis x,
where 0 < ¢§,Sg“(s)) <™/,), and angle (pi,sg“(s)) is the
rotation angle around it. These values are expressed
through our introduced functions as follows:

2
()2
@ [T 7
P D) ’
Y(_)
coscl):“) = N 2 . (21)
N 1y
Cosq)f,_) - .
[2 0
Yp T
For triplet pairing, when instead of B! DK g
—sgn(s)
and bi sk in (20) there are respectively
P58 _sgn(s)
f and b! functions ¢(#") and
BfPSngn(s) 7PSngn(s) ’ (I)p
(pi,sgn(s)) are chosen so that matrix M g, remains
the same:
<2
(£)2
) _ Sp + 8,
®p —
cosd)gf) = = il = (22)
5p + 84"
5
cosq)i;) = P
-)2
&p + 8

Relations (21) and (22) reveal the mutual
dependence of angles cpi,sg“(s)) and ¢§,Sg“(s))
respectively for singlet and triplet type pairing.

Expressions (10) are generalized for the case of
unequal valley population as follows:

1
Opsk, = 5(1 + rcos2¢§,sgn(s)) +

(sgn(s)) (sgn(s))
+ (1 —1Ccos2¢, )coscpp )aps](T +

JETP, Vol. 166, No. 5(11), 2024



DIELECTRIC ELECTRON-HOLE LIQUID IN MONOLAYER HETEROSTRUCTURES

1.
+ Esm 2¢§,sg“(5)) (cosgoifg“(s)) - l)apsK,T +

\/ 1 — tcos 2¢{E"¢ )

(sgn(s))

3 sing,,
Scnb! + 8,07 ,
[ S0 —p—sK —sgn(s) S1 —psngn(s)] (23)
= (sgn(s)) _
Bps ngn(s) COS(p bp ngn(s)

TCOS 2<|)(5g“(s )

1—
_sin (pgsgnu»z \/ o

Senal

%1930

—p—sk_ +8s1 —psK )

If we set ¢§,Sg“(s)) ="/4,
formulas (10).

then we return to

13 »

Let us note the peculiarity of the “new
quasiparticles following from formulas (20)—(23).
For different spin s projections, electron-hole pairing
(both singlet and triplet) occurs differently — they are
described by different rotations. This reflects the fact
that the ensemble of “old” quasiparticles was initially
partially spin-polarized (the number of spin-up holes
is not equal to the number of spin-down holes with
unequal valley occupation).

The transformed Hamiltonian 77 — SHS' has the
form

H=0U{of", 457} + Ho + Hi — (24)

The first term in (24) is a generalization of the
numerical functional (12)

{ (&) ¢(i)} Zs sinZp(En) —

2 v
Zplen(s)

X sin“@,,

(1 ¥ cos (¢<sgn<s>> ¢;s,gn<s>)))x

(8D 4

+ cos(q)gfg“(s)) _ ¢§)s§n(s>>) "

X COSQy, Sin @, COS P, sin (pp/]. (25)

Operators 7A{0 and 7/%1- are given in Appendix B.

When equalities (15) are satisfied, condition (16) in
the case of unequal valley occupation takes the form

251n2(P(Sgn(S)) = . (26)
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To account for the relationship between charge
carrier densities n, and #n_, belonging to valleys at
points K, and K_, respectively, it is necessary to
rewrite (26) in more detail [according to note V]

Z<OLLSKi 0Lpsl(j:> = Z<BT B y=ny. (27)

ps p PEyKy PEKL

After substituting (23) into (27), we obtain the
equalities

Zsinzd);sgn(s» Sinz(p;sgn(s»

Zcoszd)gsgn(s)) sin chgsgn(S))

=n+’

(28)

=n_.

Let us transition from summation over p to
integration over ¢ = p/p. The value p is determined
by relation (17) with p,, now equal to

py = T qdg qdq
Ve 1—%12+ 01+z§,
with functions z,, = (p;i).

The electron-hole pair energy is determined by
minimizing the functional

(—)} -
q
o0

_ 2 q’dg
_Ve 2 4Zf 2

5P s o L Zgsencs)

(+)
EO{ Lg+%q %

X

22 7‘ qqu 1 1
(29)

3 2 2
WPy s o L+ Zgsencs) o 1T Zgesencs)

x(l + cos2( Elsgn(s)) - ¢;S§n(s))) +

+2 COS( ;sgn(s)) - ¢;s§gn(s)))qugn(s)zflisgn(s)) X

N3 1

I+e

K(&)——K

I+E <45

rog(1+¢€)

I

Trial functions z,, are chosen similarly to (19)
with corresponding variational parameters 4, and
B, . Functions (l)fli) are chosen according to relations
(21) or (22) [both relations lead to the same result up
to renaming]

4D+ ¢7)" + BD)]

¢(i) = arccos
V2 arcctg [Ai(l +gH)* + Bi}

q

. (30)

Here, the assumption about the similarity of
functions yp and y(i) (6p and Sf,i)) is used.
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The values of parameters A® and B® are
limited in relation to the values of parameters A4
and B, by the condition that the fraction in (30)
does not exceed unity. They are also limited by
conditions (28).

Correlation corrections are calculated in the same
way as for equal valley occupation. Due to their
small magnitude, we consider this approximation
acceptable.

5. TRANSITION BETWEEN METALLIC
AND DIELECTRIC EDGE

As numerical calculations show (see Fig. 2),
with equal valley population, the metallic edge in
monolayer heterostructures based on TPD is always
more energetically favorable than the dielectric
edge, which is consistent with our previous results
[12, 13]. However, from work [13] it can also be
seen that there is a significant dependence of the
binding energy of the metallic edge on the number
of valleys: for a single-valley semiconductor (under
the condition of spin degeneracy and electrons and
holes) it exceeds the exciton binding energy only
by 9%. This suggests that further reduction in the
degeneracy multiplicity due to the removal of spin
degeneracy for holes will lead to an even lower
binding energy value of the metallic EHP.

RATNIKOV

Let's introduce the degree of circular polarization
of light

_|I+ —1_ |
S A b

where I, and [_ are the intensities of right-polarized
and left-polarized light components, respectively.
The value P, =0 corresponds to the case of linear
polarization or unpolarized light, and P, =1 — to
fully circularly polarized light. In definition (31),
the modulus is used since our problem is invariant
with respect to the double substitution /7, = /_ (the
proportion of valley populations is important).

In numerical calculations, it is convenient to operate
with an effective number of valleys for electrons
V=14 min{n—‘,ni}. (32)

n,n_

When optical transitions predominate in the
point valley K, they are supplemented by a relatively
smaller fraction of transitions in the point valley K_:
the former give 1 in v, , and the latter — the ratio
of populations n_/n,_ (n, >n_). Conversely, if
transitions predominate in the point valley K_, they
give 1, and transitions in the point valley K, — the
population ratio n_/n_ (n_ > n_).

Using the dependence n, o« I, , we rewrite
definition (31) through populations

=|n+_n7|
n, +n_

P

e

(33)

Fig. 4. (In color online) Rotating disk with a perforated diamond membrane several microns thick, behind which there is a stage with
an irradiated sample (highlighted in sea-green color). The holes in the membrane have a rotation axis C,. One half of the disk is a
polarizer for right-polarized light, and the second half'is a polarizer for left-polarized light. The hole array of one polarizer transforms
into that of the other polarizer by mirror reflection relative to the plane passing through the dividing diameter (shown by dashes).
Theoretical study of the optical response of a stationary free-hanging diamond membrane with a two-dimensional periodic array of
holes with rotation axis for infrared C, applications was conducted in work [36]
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Then the effective number of valleys for electrons
equals
v, = 2
¢ 1+P,°

(34)

The effective number of valleys for holes is always
half that for electrons due to the lifted spin degeneracy:

P
Vh_l—’—Pe'

(35)

Numerical calculations have shown that for a
number of TMD monolayers and heterostructures
based on them, when the degree of circular polarization
of the exciting light P,, approaches 1, the metallic EHL
ceases to exist (its binding energy becomes less than the
exciton binding energy). At the same time, the binding
energy of the dielectric EHL decreases by about one-
third, but it remains energetically favorable compared
to the exciton (see Fig. 3).

It follows that at some difference in valley filling,
when P, lies between 0 and 1, the binding energies of
both types of EHL become equal. This means that
there is a threshold value of the degree of circular
polarization of the exciting radiation P,), below
which there exists a metallic EHL, and above which —
a dielectric EHL. For example, our calculations
showed that for MoS, P,, = 0.45.

For experimental observation of the phase transition
between two types of EHL, several schemes can be used.
The first scheme involves two sources: one for right-
polarized radiation, the other for left-polarized. The
intensity of both sources is changed synchronously so
that the total intensity remains constant. The second
option is to use a single source of linearly polarized light.
The beam from it is split into two beams, one of which
is amplified with timemodulated intensity, and then
combined with the second (unamplified) beam. This
way, radiation with time-modulated P,. can be obtained.
An electro-optical converter — a Pockels cell — can also
be used. Then the modulation P, is set by a variable
electric field.

For relatively low modulation frequencies (tens
and hundreds of Hertz), in addition to the Pockels cell
a rotating polarizer in the form of a disk can also be
used, where one half converts laser radiation into right
polarized light, and the second half — into left-polarized.
The incident radiation spot is offset from the disk axis
(see Fig. 4). When the beam falls completely on one
of the two halves, the transmitted light has P,, close to

b
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1. The change in the degree of circular polarization of
transmitted light occurs during the time interval when
the boundary between the two polarizers moves across
the spot of incident radiation on the disk (when the spot
isdivided in half, it can be assumed that the transmitted
light is not circularly polarized).

Exceeding P, the threshold value P, will lead
to the decay of metallic EHL drops with the
formation of a more “loose” phase — dielectric EHL.
Conversely, when P,, decreases, when P, becomes
less than P,j, metallic EHL drops will form again.

During the transition between two types of EHL,
the luminescence spectrum changes qualitatively.
The EHL line width is of the order of the Fermi
energy Er — at low temperatures it equals £ with
good accuracy, while at room temperature it can
exceed it approximately twofold [35]. Metallic EHL
corresponds to a broad line, while dielectric EHL
corresponds to a rather narrow one (due to the small
equilibrium density). Thus, the transition through the
threshold value of the degree of circular polarization
of the exciting light P,, should be accompanied by a
sharp change in the width of the line, which is red-
shifted from the exciton line: at P, < P, the line is
broad, and at P, > P, the line is narrow.

When analyzing the photoluminescence line shape
of EHL, a standard expression for intensity is usually
used [37—40]

I(0) = AffDe(Ee)Dh(Eh)fe(Ee)fh(Eh)><

36
x8 (E, + Ey + Ey — Q- o)dE,dE,, (0
where D, and D, are the densities of states in the
conduction and valence bands, respectively, f, and f,
are the Fermi functions for electrons and holes,
E, and E, are the energies of electrons and holes
measured from the edges of the corresponding bands
in the liquid, E,; is the value of the renormalized
band gap in the sample region occupied by the
liquid, E, = EY + Ey — Ep (EQ is the value of
the unrenormalized band gap, E is the EHL energy
per electron-hole pair, Er is the Fermi energy of
electrons and holes), Q is the frequency of the
phonon emitted during the electronic transition.
The constant 4 has dimensions corresponding to the
intensity measured in the experiment. In the case of
directgap semiconductors, which TMD monolayers
are, the most probable transitions are those without
phonon participation, therefore we can set Q = 0.
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In the idealized picture of parabolic bands near
extrema for the 2D case, calculations using formula
(36) are significantly simplified. The intensity /(o) is
found analytically [35]

A
I(®) = —v,v,m,m) x
n

27mL 2non
1+o)v, T 1+o)v, T
Tl |l —lﬁ(m—EgL)
X X
2rmL 2ncsnL

e((D—EgL)/T B e(1+cs)veT 1 e(l+6)th 1

(37)

e(w—EgL)/T n e(1+c)veT _

x17T In 1| %

2non

@B/ T | o, T _

1

v, +ov, 2nng

1+(5 —(1)+EgL}.

VeVh
The results of calculations of the line profiles in the
photoluminescence spectrum using formula (37) for
the monolayer MoS, are shown in Fig. 5. The exciton
line was not calculated (its position is shown by yellow
dashed lines according to the exciton binding energy).

At excitation light intensities characteristic of
metallic EHL formation, the dielectric EHL is likely
to fill the entire sample rather than form as separate
droplets with exciton gas between them. In this
case, free excitons are absent, as is the exciton line
in the photoluminescence spectrum. However, there
is a dielectric EHL recombination line, which can
be very similar in its intensity profile to the exciton
line, but it is red-shifted by the binding energy of the
dielectric EHL relative to the free exciton.

At photoexcitation intensities when the density of

generated electron-hole pairs # significantly exceeds
the equilibrium density of dielectric EHL n(()d), the
“excess” electron-hole pairs condense into metallic
EHL droplets, reducing the density of dielectric EHL
to n(()d). A dynamic equilibrium emerges between
metallic EHL droplets and dielectric EHL occupying
the remaining sample area — the rate of electron-
hole pairs condensation into metallic EHL droplets
equals their evaporation rate.

RATNIKOV

Such coexistence of two EHL types leads to the
presence of both lines in the photoluminescence
spectrum (see Fig. 5c¢). Calculations showed that
the lines remain well spectrally distinguishable up
to temperatures comparable to room temperature.
The metallic EHL recombination line is red-shifted
relative to the dielectric EHL recombination line,
and there is always an intensity dip between them
because the threshold frequency value from the red
side E, for both EHL types is accurately equal to
the Fermi energy of metallic EHL (the Fermi energy
of dielectric EHL is small in comparison, while the
liquid energies E|, are close).

Observation of an isolated dielectric EHL line may
prove highly problematic due to the small value of ngd) —
electron-hole pairs do not have time to condense into
this phase. Therefore, there exists a natural intensity
threshold above which the corresponding line appears
in the photoluminescence spectrum. Meanwhile, the
density »n can greatly exceed n(()d), which leads to the
aforementioned coexistence of two EHL types and its
characteristic line profile.

Experimental studies of EHL in monolayer
heterostructures based on TMD [42—45] were
apparently conducted with low circular polarization
degree or with linear polarization of exciting light,
when metallic EHL becomes energetically favorable.
The experiments convincingl y demonstrated the
metallic nature of the observed phase. We predict
that using light with sufficiently high circular
polarization degree for sample excitation will
result in a qualitatively new line profile as described
above.

Finally, we note that the phase diagrams of both
types of EHL become dependent on the degree of
circular polarization value P,, i.e., they represent
surfaces in space (n, P,,T). As our calculations for
MoS,, have shown, the equilibrium density of the
dielectric EHL changes by almost 1.5 times when P,
changes from P, to 1. However, such changes are
practically unnoticeable in experiments. The binding
energy changes from 367 meV to 353 meV, and the
critical temperature changes from 525 K to 504 K (the
second value is shown in Fig. 3b). The latter is well
measured experimentally, but the relative change is still
quite small. This pattern is typical for TPM monolayers.
In our opinion, in light of this, constructing phase
diagrams as surfaces seems somewhat excessive. This
becomes especially clear when considering that the
accuracy of calculations does not allow distinguishing
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such small relative changes as those obtained for binding
energy and critical temperature.

6. CONCLUSIONS

In this work, we have shown that dielectric EHL
is possible in TM D monolayers and heterostructures
based on them due to coherent electron-hole pairing.
To construct the correct zero approximation, an
appropriately adapted canonical transformation was
used. Numerical calculations have shown that in the
case of equal valley population, metallic EHL is more
energetically favorable than dielectric EHL. However,
in the case of unequal valley population, when the
difference between valley populations is suciently large,
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dielectric EHL becomes more energetically favorable.
This occurs when exceeding the threshold value of the
circular polarization degree of the exciting light. We
have also briefly described possible ways of experimental
observation of the metallic EHL-dielectric EHL
transition.
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Fig. 5. (In color online) Calculation of EHL recombination lines in the photoluminescence spectrum of monolayer MoS, for
four temperature values. Yellow and purple dashed lines mark the positions of the exciton line and the continuous spectrum edge,
res*pectively. The exciton binding energy is calculated variationally and eoquals 321 meV. The effective carrier masses (m, = 0.55m,,

my, =0.56m, m is the free electron mass) and the bandgap value (E‘(g ) =2.48 ¢V) are taken from work [41]. a — Recombination
line profile of metallic EHL for P, = 0. b — Recombination line profile of dielectric EHL for P, = 1. ¢ — Resulting profile in the case
of coexistence of both EHL types for P, = 0.5. The fraction of electron-hole pairs in the metallic phase is taken as 0.2 of the total
number of pairs (it depends on the photoexcitation intensity — how much stronger the pumping is compared to the optimal one, when
there is an exact match between the density of photoexcited charge carriers and the equilibrium density of dielectric EHL)
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APPENDIX A

The operator Ho contains terms that are bilinear in fermionic operators (unlike in work [9], here it is taken
into account that m, = m, , and the specifics of the band structure of TMD monolayers are considered):

Ho =%Z{ -

pst

1 . ~
cos2¢, [5 &p — Vp] + sin2¢, Vp

T T
a a +b b
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where the following notations are introduced &, =g, —u, & =" — 1, (&, =&, +&), 8, =&, — &,
W= ZVp_p/siHQ(Pp/ and Vp = ZVp_p/coscpp/singop/.

p P
The operator H; contains quaternary combinations of fermi operators:
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Here, as in work [9], the functions are introduced

Yo' = cos((pp — (pp/> and {(p,p/ = sin((pp/ — (pp).
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Considering that sing, ~+n and cose, ~1—0(n) (according to condition (16)), we find
Ypp ~ 1—0O(n) and :/p’p, ~ n [9]. From this, we obtain that the terms responsible for the “transfer” of an
electron from one valley to another are suppressed as Ypp—k — 1 ~ n, and the terms with double intervalley

“transfer” of an electron are suppressed as (yp,pfk - 1)(yp/ Pk 1) ~n.

APPENDIX B

The rotation matrix in (20) equals

) () —

Msgn(s) = Mi((P( 4 ¢§) )) -
c052¢§,i) + sin2¢§,i) coscp(i) cos ¢§)i) sin d)ﬁ,ﬂ (cos (pi,i) 1) sinq)},i) sin (pgi)

= |cos ¢§,i) sin ¢§,i) (coscpﬁ,i) 1) sin2¢§,i> + sin2¢§,i) coscpg,i) cos ¢§,i) sin (p( ).

(+)

() cos @y,

—sin ¢§,i) sin (pi, ) —cos ¢§,i) sin @,
Here, as in the main text of the article + coincides with sgn(s).

APPENDIX C

The operator 7A{o in expression (24) is
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The operator
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ﬁ(ri)( \/1 1c052¢(sg"(s)) \/1 T rcode)(sg“(s))yI’) s T

:I:\/ 1+ tcos 2¢§fgn(s » \/1 + tcos 2¢S,gn(s)) cos(d)g,sgn(s ) _ 4);5?“(” )) +

+1 Sin(¢§,sg”‘s” - ¢§,s/gn(s)))[\/l — 1COS 2¢§,Sg"(s)) \/1 + tcos 2(1);3?"(”) cos (pg,sg“(s)) ¥

$\/ 1+ tcos 2¢§,Sg“(s)) \/1 T tcos 2¢E)S§1}<(S)) cos (p;s/gn(s)) ’
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- cos(q)gfg““)) _ ¢;S,gn(s)))sin GG sin {2 - cos e cos lE),

= \/ 11— tcos 29Ny — ‘c\/ 1+ Tcos 24" sin((l)g,sgn(s N d)f?n(s)))sin (pi)slgn(s)),

pl

Vp,p's

Ty gt = SIMGEE sin g L cos (421 46N ) cos e cos gl E),

Yp,p', s,

T = <0857 — g ) cos g1 sin 8 _ sin 1) cos 810,
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