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1. INTRODUCTION

The discovery of superconductivity in FeSe 
in FeSe 2008, the simplest layered iron-based 
superconductor, generated enormous interest that 
persists to the present day [1, 2]. Theoretical and 
experimental studies of the properties of this unusual 
superconductor are presented in numerous reviews, 
for example [2–5]. Let us note several important 
well-established properties of FeSe: 1) multi-band 
nature (two or even three bands) [6, 7]; 2) strong 
anisotropy of energy gaps [8–10]; 3) possibility of 
approximating measurement results using a two-
band model with s-symmetry gaps [10–15]. The 
amplitudes of FeSe energy gaps and their momentum 
dependencies were measured using: 1) angle-
resolved photoemission spectroscopy (ARPES); 2) 
scanning tunneling microscopy (STM); 3) thermal 
conductivity measurements; 4) magnetic field 
penetration depth; 5) Andreev reflection spectroscopy 
[8–15]. Significantly fewer works are dedicated to 
measurements and, especially, analysis of energy 
gaps temperature dependencies Di(T) (i = 1,2) within 
the multi-band model with determination of pairing 
interaction constants

lij ij jV N i j= , , = 1,2,

where Vij is the interaction strength, Nj is the density 
of states at the Fermi level [11, 15]. The multi-
band nature significantly complicates energy gap 
measurements. In single-band superconductors, 
D(T) can be measured directly from the position of 
conductance peaks in superconductor-insulator-
superconductor (SIS) and superconductor-insulator-
normal metal (SIN) tunnel junctions or normal 
metal-superconductor (NS) microcontacts in the 
Andreev reflection regime [16, 17]. In multi-band 
superconductors, conductances from different 
bands sum up, and to separate energy gaps Di one 
has to use theoretical models that account for their 
number and symmetries [18–20]. This also applies 
to indirect methods of measuring energy gaps, where 
Di(T) estimation is performed using gap-dependent 
characteristics, such as temperature dependencies of 
specific heat [10], magnetic field penetration depth 
lab T-2( )  [11], critical magnetic field Hc2(T) [15].

Studies by the authors of work [11] on the depth 
of magnetic field penetration into FeSe crystals 
using msR-spectroscopy revealed two energy gaps, 
D1(0) = 1.3 meV and D2(0) = 0.5 meV, with different 
critical temperatures Tc1,2 and dependencies D1,2(T) 
of BCS (Bardeen-Cooper-Schrieffer) type in 
practically non-interacting bands. Measurements 
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of dependencies D1,2(T) FeSe in work [12] using 
multiple Andreev reflections in break-junction 
contacts showed the presence of two energy gaps 
(without nodes): D1(0) = 2.8 meV (Tc1 = 9.7 K) and 
D2(0) = 0.8 meV (Tc2 = 6–7 K), and dependencies 
D1,2(T) similar to those measured in work [11]. 
Measurements of Andreev ref lection spectra of 

“soft” point contacts (PC) [18–20] Ag/FeSe (with 
conductive Ag paste as the non-superconducting 
electrode) conducted by the authors of works 
[13, 14] gave D1(0) = 1.8 meV and D2(0) = 1.0 meV 
with Tc1  =  Tc2 and dependencies D1.2(T) close to 
BCS. Measurements in works [11–14] indicate 
practically complete absence or very weak interband 
interaction in FeSe. At the same time, study of 
temperature dependencies H Tc 2( )  [15] in magnetic 
fields of different orientations with induction up 
to 38 T at temperatures up to T Tc/ » 0.3  showed 
that the obtained results can be approximated by 
theoretical dependencies within the framework of a 
two-band isotropic model in the “clean” limit with 
predominant interband scattering.

In our work, Andreev reflection spectra sNS (V, T) 
of stable soft PCs Ag/FeSe were studied in the 
temperature range. The aim of the work was to verify 
the applicability of the two-band model in the “clean” 
limit [21–24] with s-symmetries of energy gaps for 
analyzing temperature dependencies Di(T) (i = 1,2) 
in FeSe, determining the constants of intraband and 
interband interactions, order parameter symmetry 
estimation.

2. EXPERIMENTAL METHODOLOGY

Several single-crystal FeSe plates with dimensions 
up to 1.2 0.7 2´ mm  and thicknesses of 0.08–0.03 mm 
were used in the work, obtained by exfoliation of one 
relatively thick crystal. High-quality single crystals 
FeSe1–x (x » 0.04)  were grown from a melt solution 
of Fe powder and pieces of Se ( : = 1 : 0.94)Fe Se  
in a mixture of AlCl KCl3 : = 2 : 1  in an evacuated 
to 10–4 bar and sealed quartz ampoule at a constant 
temperature gradient [25, 26]. Measurements 
of temperature dependencies of resistance with 
current along the plane ab of the crystal, R Tab ( ),  
and magnetic susceptibility c(T) were conducted in 
home-made cryogenic inserts for a transport helium 
dewar at minimal currents and magnetic fields.

The description of methods for creating point 
contacts (PC), measuring their conductivity, and 
electronic components of the experimental setup 

are provided in works [18–20, 27–29]. The classical 
method of creating PC is pressing a sharpened 
metal wire to another metal. In our work, Andreev 
reflection spectra – ​conductivity dependencies of 
ballistic ( ,d l  where d is the contact diameter, l 
is the mean free path) microshorts (microcontacts) 
between superconducting FeSe and non-
superconducting Ag on voltage, sNS (V, T), were 
measured on soft PCs. PCs were created on the 
thin edge of the single crystal, which was cleaved 
immediately before applying a drop of conductive 
paste. The contact diameter did not exceed 0.1 mm. 
A ballistic microshort of Ag/FeSe PC should have a 
diameter of d < 120  nm and, accordingly, resistance 
of more than 5 Ohm [30]. Soft PCs consisted of 
multiple ballistic microshorts between Ag grains 
with sizes of 2–10 μm and the crystal [19, 31]. This 
allowed conducting spectroscopic measurements on 
contacts with resistance of 1–2 Ohm, as in works [13, 
14]. The high stability of soft PCs made it possible 
to accurately measure conductivities sNS (V, T) at 
different temperatures and the critical temperature 
of the contact Tc

A   – temperature at which the 
characteristic structure associated with Andreev 
reflection disappears on the sNS (V, T) dependence. 
The large difference in specific resistances along the 
plane ab and axis c FeSe (r rc ab/  500  [36]) led to 
the fact that, despite the rough surface of the single 
crystal cleavage, the PC transport current always 
flowed along the ab plane of the sample.

Current-voltage characteristics (CVC) of contacts 
were recorded using a Keithley 2182A current source 
and 6221 multimeter. Conductances were obtained by 
numerical differentiation of CVC. The temperature 
was measured by a RuO-thermometer mounted on a 
copper base near the contact and stabilized by a heater 
with accuracy better than 0.01 K. Heater control was 
performed by a LabView program embedded in the 
temperature measurement subroutine. Conductances 
sNS(V,T ), measured at different temperatures, were 
normalized to the conductance in the normal state, 
sN(V ), measured at temperature, by several tenths of 
Kelvin higher than Tc

A .  Normalized conductances 

s s s( , ) = ( , ) ( )V T V T VNS N/

were approximated by theoretical dependencies 
calculated using the two-band BTK (Blonder- 
Tinkham-Klapwijk) model with broadening 
parameters Γ (BTK-Γ) [18–20]. Fitting of calculated 
conductances to measured ones was performed 
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using the curvefit.m program from MatLab package 
based on the minimum sum of squares criterion for 
deviations between measured and calculated points. 
This made it possible to determine the values and 
temperature dependencies of FeSe energy gaps Di(T) 
(i = 1, 2), contact characteristics Zi(T) (tunneling 
barrier strength parameter), Gi(T) (broadening 
parameter) an wd (contribution of the first zone to 
the total contact conductance).

For approximation of temperature dependencies 
of energy gaps Di(T) we used a simple model of two-
band superconductor in the clean limit [21–24], 
which allowed qualitative determination of constants 
lij of interband and intraband interactions of 

condensates, energy gap amplitudes at T = 0 K and 
critical temperature Tc

D of the crystal at Di(Tc
D) = 0.

3. MEASUREMENT RESULTS 
AND DISCUSSION

Figure 1 shows the dependencies of specific 
resistance rab T( )  and magnetic susceptibility c( )T  
(curve 1) of one of the FeSe plates. They demonstrate 
typical features visible during crystal cooling [10, 32–
35]. The critical temperature, width of transition to 
superconducting state, specific resistance, resistance 
ratio at 300 and 11 K are equal to Tc = 9.3  К, 
DTc = 0.3 K (according to magnetic susceptibility), 
r(11 ) 28K »   μΩ  ⋅  cm, R R(300 ) (11 ) = 23K / K  

Fig. 1. Dependencies of specific resistance rab(T) of one of the FeSe plates in the temperature range T = 4 – 300 K. At T ≈ 90 K a 
feature related to the structural transition is visible. The insets show dependencies of rab(T) and magnetic susceptibility c(T) (curve 
1) of the same sample near the superconducting transition temperature. The dashed line in the lower inset shows, in the same scale 
as dependence 1, the dependence c(T) of FeSe crystal intercalated with organic solvents of conductive Ag-paste (curve 2). The shift 
of the beginning of the transition to the superconducting state towards higher temperature is clearly visible.

1

2
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respectively. These values are close to those measured 
in works [10, 32–36] and prove the high quality of 
samples.

PC was created between a drop of conductive 
paste (suspension of Ag microcrystals in a mixture of 
organic solvents [37]) and FeSe crystal. It is known 
that crystalline FeSe was easily intercalated by alkali 
metals and organic solvents. The critical temperature 
increased in this process [38]. Organic solvents 
of the conductive paste could change the sample 
surface properties in the drop area. To check the 
influence of conductive Ag-paste on FeSe, a small  
(approximately 0,1 × 0,2 mm2) crystal was placed in 
a drop of solvent for about 15 minutes (average time 

from applying adhesive drop to the crystal during 
PC fabrication until its cooling). The magnetic 
susceptibility dependence of FeSe intercalated with 
adhesive solvent is shown in the lower inset to Fig. 1 
by dashed line 2 alongside the dependence c(T) of the 
main sample (curve 1). For ease of comparison, both 
dependencies are given in the same scale. It is evident 
that the Ag-paste solvent caused an increase in the 
width of the superconducting transition due to the 
rise in transition onset temperature by approximately 
2 K.  This proved that under the solvent action, a 
layer with higher critical temperature compared to 
the initial crystal forms on the FeSe surface. The 
transition onset temperature to the superconducting 

Fig.  2. Conductance recordings sNS(V,T)  =  dI/dV of three soft PCs Ag/FeSe with resistances RN  =  1(a), 1.5 (b),2(c)W 
(RN = 0.5[RN(–10 mB)+ RN(+10 mB)])) at T = 4.22 K and at the critical temperature of the Andreev contact Tc

A. Also shown are (b) 
recordings of several conductances at different temperatures. Contact stability is proven by the coincidence of conductances recorded 
at 4.2 K before temperature increase and after completion of temperature dependence recording. In Fig. d the red line shows the 
normalized conductance of PC (b) s(V, 4.22 K) = sNS(V, 4.22 K)/sN(V, 11.3 K) and symbols show the symmetrized conductance 
of this contact. Small asymmetry, oscillations, and gap peaks persisted during normalization

a

c

b

d



	 ANDREEV REFLECTION SPECTROSCOPY FeSe� 663

JETP,  Vol. 166,  No. 5(11),  2024

state of the intercalated layer reached 14.5 K for 
different samples.

In Figs. 2a, b, c the conductance records sNS V T( , )  
of several PCs with resistances RN » 1 1 5 2, . ,   Ohm 
at T = 4.22  К and Tc

A » 11.3 –14.3  K are shown. 
Conductances recorded at Tc

A  are the PC conductances 
in the normal state, sN(V ). Fig. 2b shows records of 
several PC conductances with resistance RN ≈ 1.5 Ohm 
at different temperatures. Contact stability is proven 
by the coincidence of conductances recorded at 4.22 K 
before temperature increase to Tc

A  and after cooling 
the PC to the initial temperature. All features visible in 
the dependencies sNS (V, T)PC were well reproduced. 
Conductances are asymmetric relative to point V = 0 mV. 
This feature sNS (V, T) of soft PCs on FeSe was also 
noted in works [13, 14] and is apparently related to the 
semiconductor conductivity of the intercalated surface 

layer FeSe [30, 39]. Similar asymmetry sNS V T( , )  was 
also observed during studies of doped ( )0.8 2Li Fe OH  
crystals FeSe (Tc = 40 К) [40] using scanning tunneling 
microscope (STM). Dependencies sNS V T( , )  had a 
typical two-peak structure characteristic of Andreev 
reflection. Note that, as in other studies of Andreev 
reflection on FeSe, the measured conductances clearly 
show only peaks associated with the large gap D1 at 
voltage | V | = D1/e ≈ 1.8 mV [12–14]. With temperature 
increase, the peaks converged and merged at T ≈ 8 K. 
It can be seen that with increasing temperature, the 
contact conductances decreased by approximately 2% 
at Tc

A,  significantly exceeding the critical temperature 
of FeSe (see Fig. 1). The increase of Tc

A  to 13 K was 
observed when studying soft PC conductance in 
works [13, 14]. Obviously, the value of Tc

A  of soft PCs 
reflected the critical temperature of the intercalated 

Fig. 3. Symbols – ​measured symmetrized conductance of the contact s(V, 4.22 K (see Fig. 2d). Lines are approximations of 
the measured conductance. Dashed line is the approximation using single-band BTK-G model [17, 19] s(V, T, D, G, Z). Red line 
represents conductance calculated within the standard two-band model s(V, T) = s1(V, T, D1, G1, Z1)w + s2(V, T, D2, G2, Z2) × (1 – w) 
[18–20]. Blue dots show conductance calculated using simplified two-band model [13, 14]
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FeSe surface layer, since at T > 10.5  К only this layer 
on the FeSe surface remained partially superconducting. 
The decrease in PC conductance with temperature 
increase could be related both to PC heating [19] 
and to the transition of part of the “sandwich” from 
intercalated FeSe layer and “pure” FeSe to normal state 
at T > 10.5  К. Discussion of this effect is provided at 
the end of this section. Similar dependencies sNS (V, T ) 
were obtained for all studied PC Ag/FeSe with 
resistances RN

opt = −0 7 2 5. .  Ohm.

At PC resistances greater or less than, peaks 
at | V |  = D1/e on sNS (V, T ) were not resolved at 
T ³ 4 22.  K.  In Fig. 2d solid line shows normalized 
PC conductance s(V, T ) = sNS (V, 4,22 K)/sN (V, 
11.32  K). To eliminate asymmetry that interfered 
with approximation s( , )V T ,  conductances were 
symmetrized as usual [8, 13, 14]. Symmetrized 
normalized PC conductance is shown in Fig.  2d 
by symbols. All features visible in dependency 
sNS (V, T ) were preserved during normalization and 
symmetrization.

Figure 3 shows the application of several theoretical 
models to approximate the measured conductance. 
Symbols represent measured at T  =  4.22  K, 
normalized and symmetrized conductance s(V, 
4.22 K) (see Fig. 2d). The lines show conductances 
approximating the measured one. The dashed line 
represents conductance s(V, T, D, G, Z) calculated 
within the single-band BTK-G theory [17,  19] 
(3 free parameters), D  =  1.54 meV  – ​energy gap, 
G = 0.57 meV – ​broadening parameter, Z = 0.64 – 
tunnel barrier parameter. Parameter Γ = /τ,  where 
t quasiparticle lifetime was introduced to account 
for the finite electron lifetime in metals of tunnel 
contact. Later this parameter was introduced into 
formulas describing Andreev reflection [19]. From a 
formal point of view, Γ includes all sources leading to 
broadening of dependence s(V,T): electron lifetime; 
electron scattering at the metal interface; energy 
gap anisotropy; thermal and electromagnetic noise. 
The value Z U v F= 0 /  in BTK theory determined 
tunnel barrier transparency (U0 – barrier height, vF –
electron velocity at Fermi surface). The conductance 
of PC with a multiband superconductor electrode 
equals the sum of conductances into different 
bands. When using two-band model for calculating 
PC conductance, parameter w was introduced into 
dependence s(V,T), determining the contribution to 
conductance of the first band. In Fig. 3, the red line 

shows conductance calculated using standard two-
band model [18–20] (7 free parameters):

σ σ

σ

( , ) = ( , , , , )

( , , , , )(1 ),
1 1 1 1

2 2 2 2

V T V T Z w

V T Z w

∆ Γ

∆ Γ

+

+ −

where s1 and s2 – ​Andreev contact conductances 
into first and second bands, D1  =  2.04  meV, 
G1 = 0.21 meV, Z1 = 0.52, D2 = 0.21 meV, G2 = 0, 
Z2  =  1.7, w  =  041. Blue points  – ​conductance 
calculated using simplified two-band model [13, 14] 
(5 free parameters), D1 = 1.89 meV, D2 = 0.53 meV, 
G1 = 0,18 meV, w = 0.42, Z1 = Z2 = 0.72, G2 = 0.

It can be seen that in voltage range V £ 3 mV  
all three models described well the measured 
conductance s(V,4.22  K). However, in a wider 
voltage range, two-band models described 
conductance significantly better. Conductances 
calculated using standard and simplified two-band 
models at T = 4.22 K are indistinguishable across 
the entire voltage range. Peaks corresponding to 
second energy gap D2 ≈ ±0.5 mV [10] are broadened 
and were not resolved in measured dependencies, 
as in works by other authors [13, 14]. In absence 
of peaks associated with D2, seven free parameters 
in approximating dependencies s( , )V T  led to 
unphysical growth of values D1,2 at T > 6 K. For this 
reason, we approximated measured conductances 
using simplified two-band model, as in works [13, 14].

The amplitudes of energy gaps D1 and D2 in FeSe as 
a function of temperature (T = 4.22–12 K), obtained 
by fitting conductances with a simplified two-band 
model, are shown in Fig. 4 by symbols. The temperature 
at which D1(T) = 0 (T ≈ 12 K), was determined by the 
critical temperature of the intercalated surface layer 
of the FeSe crystal. In the range T = 4.2–9.5 K, the 
value D1(T) changed smoothly, without sharp jumps. 
This indicated the absence of point contact heating 
with increasing temperature [41]. At T > 9.5 K, the 
sign of the curvature of the dependence D1(T) changed 
to the opposite. The temperature dependence D1(T) 
had a shape characteristic of a thin superconducting 
film on a superconductor with a critical temperature 
lower than that of the film [42]. This served as another 
confirmation of the presence of a thin intercalated layer 
on the crystal surface. The temperature at which the gap 
D2 disappeared in the dependence s( , )V T  was difficult 
to determine precisely due to its small magnitude and 
large broadening. 

The inset to Fig. 4 shows the temperature 
dependencies of the fitting parameters G1 (green 
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symbols), Z1 (purple symbols), w (blue symbols). 
The arithmetic mean values of the parameters in the 
range T = 4.2–9 K and their deviations from the mean 
are equal to G1 = 0.25 ± 0.04 meV, Z1 = 0.72 ± 0.01, 
w = 0.51 ± 0.08. The dimensionless parameter Z1(T) 
practically did not change with increasing temperature 
up to 9 K, as in work [13]. The broadening parameter 
G1(T), except for the temperature range 4–5 K, also 
did not strongly depend on temperature. Fluctuations 
of G1(T) and w in the range T = 4–5 K could be caused 
by random noise. The parameter w, characterizing the 
contribution to the conductance of the first band point 
contact, had a relatively large temperature drift. The 
main reason for noticeable deviations of parameters G1 

and w from mean values was insufficient conditioning 
of the inverse problem in conductance calculations. At 
T > 9 K, the crystal began transitioning to the normal 
state (see Fig. 1), therefore the parameters G1, Z1, w 
began to change sharply with temperature.

Approximation of the measured dependencies 
D1,2(T) in the temperature range 4.2–9.5  K was 
carried out using a simple two-zone Moskalenko-Zul 
model [21–24], taking into account the interaction 
of superconducting condensates of zones (l00-model 
with a minimal number of free parameters [23]):

	 ∆ ∆ ∆i
j

ij j jF i= ( ), = 1,2,
=1,2
å λ � (1)

Fig. 4. Symbols – ​energy gaps D1 and D2 (D1 > D2) at different temperatures, obtained from approximating PC conductances (Fig. 3) 
with simplified two-band model. The inset shows temperature dependencies of approximation parameters G1, Z1, w(G2 = 0, Z2 = Z1). 
Lines – ​result of approximating dependencies D1(T) and D2(T) in temperature range 4.2–9.5 K with Moskalenko-Suhl two-band 
model (2) [21–24]
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where

lij ij jV N= (0),

F(Di)F
dE

E

E

k Ti

w D

i

i

B
( ) ,∅

∅

∅
=

+

+
∫
0

2 2

2 2

2
 th 

where E is energy, kB is the Boltzmann constant, wD 
is the characteristic energy of the phonon spectrum, 
for which the Debye energy is taken, wD = 13.67 meV 
(in FeSe, the Debye temperature TD = 159 K was 
measured in work [43]), or the energy at the end 
of the phonon spectrum 40 meV, measured in [44]. 
From equations (1) follow equations for calculating 
the temperature dependencies of energy gaps and the 
critical temperature of the sample Tc

D at the point 
where D(Tc

D) = 0:

	
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

1 11 1 2 12 2

2 22 2 1 21 1

(1 ( )) ( ) = 0,

(1 ( )) ( ) = 0.

- -
- -
λ λ
λ λ

F F

F F
� (2)

We approximated the measured dependencies 
Di(T) both with wD  =  13.67  meV and with wD  = 

=  40  meV. Equations (2) were solved numerically. 
When selecting constants lij for approximating 
the measured values D1(T) and D2(T) we aimed 
to minimize the sum of squares of deviations of 
measured points from calculated dependencies. The 
results of this work are shown in Fig. 4 by lines. The 
critical temperatures of zones 1 and 2 are equal. 
The critical temperature found at point Di(T) = 0 is 
Tc

D = 10.2 K. This temperature coincided with the 
temperature of the crystal’s transition onset to the 
superconducting state according to the dependence 
rab(T) (see Fig. 1). The energy gaps of zones at 
T = 0 K are equal to

D1(0) = 2.09 meV,         D2(0) = 0.63 meV,

D1(0)/kBTc
D = 4.7,       D2(0)/kBTc

D = 1.4.

The constants of intrazone and interzone 
interactions obtained during approximation: 
l11 = 0.63,  l22 = 0.13,  l12 = 0.7,  l21 = 0.09.  The 
energy gaps of zones at T = 0 K, Di(0), taking into 
account the large anisotropy of FeSe energy gaps, are 
consistent with measurements made in other works.

The relatively large value of Tc
A (see Figs. 2a,b,c) 

was determined by the intercalated surface layer of 
the crystal, not by heating of the contact by transport 
current. This conclusion follows from measurement 
results which showed that 1) for all contacts, the 

value of Tc
A is several degrees higher than the critical 

temperature of the FeSe crystal (see Figs. 2a,b,c) – ​
when heated, it would be the opposite; 2) the 
energy gap D1 (symbols) decreased smoothly with 
temperature rise, without sharp jumps (see Fig. 4) 
[41]. Measurement of magnetic susceptibility of 
intercalated FeSe showed that the surface layer of 
the sample began transitioning to the normal state at 
T > 8 K (see Fig. 1). In our PC, this led to an increase 
in resistance of the sandwich made of intercalated 
FeSe layer and pure FeSe with temperature in the 
range T ≈ 8–12 K (see Fig. 2) and, consequently, to 
a decrease in contact conductance.

Let’s evaluate the influence of the intercalated 
surface layer of FeSe on the dependencies we 
measured Di(T). For this, let’s consider the results 
obtained in work [42] when calculating temperature 
dependencies of energy gaps in films Sn  KSn( )Tc = 3.4  
and Al  KAl( )Tc = 1.2  in proximity contact using the 
McMillan model [45]. With weak coupling between 
the films in the density of states of the sandwich Sn–Al 
peaks from both Sn and Al energy gaps were present. 
The Al energy gap in the sandwich, DSn–Al(T), in 
the temperature range T/Tc

Al = 0 – 0.9 increased by 
3–4% compared to the energy gap of pure Al, DAl(T), 
and changed with temperature according to the BCS 
law. Only at T Tc/ Al = 0.9 1 2- .  the dependence DAl(T) 
noticeably deviated from the dependence for pure Al 
(see Fig. 2 in work [42]). We could not calculate the 
dependence D1(T) for the intercalated FeSe layer, as we 
do not know its characteristics and cannot prove that the 
properties of the proximity structure “intercalated layer 
on the surface of FeSe–FeSe” satisfied the McMillan 
model [45]. Nevertheless, qualitatively, our measured 
normalized temperature dependence D1(T) in the range 
T/Tc

D = 0.9–1.2 coincided with that calculated in work 
[42] for weakly coupled Al and Sn films (Fig. 5). At 
T/Tc

D = 0–0.9 the differences of our dependence D1(T) 
from that calculated in work [42] are related to the 
deviation from BCS in two-band FeSe. Comparison 
of D1(T) with the calculated dependence DAl(T) in 
work [42] for the sandwich Sn–Al showed that due to 
small thickness and weak coupling with internal FeSe 
layers, the thin intercalated surface layer had minimal 
influence, no more than (3–4)%, on the amplitude 
D1 and, consequently, on the form of dependence 
D1(T) FeSe at T < 9.5 K. The peak associated with the 
energy gap of the intercalated layer with relatively high 
temperature on the FeSe surface was not resolved in 
the measured conductances sNS (V, T ) due to large 
broadening related to the size and structure of soft PC 

D2
i

D2
i
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and inhomogeneity of this layer. Note that the energy 
gap dependence D1(T), coinciding with DAl(T) in the 
sandwich Sn–Al [42], can be easily obtained within 
the two-band model (2), assuming that FeSe and 
the intercalated layer on its surface are two different 
interacting superconductors.

The constants of intraband and interband 
interactions found during approximation of 
dependencies Di(T) for energy wD = 13.67 meV,

l l l l11 22 12 21= 0.63, = 0.13, = 0.7, = 0.09,

indicate relatively weak pairing in the first (strong) 
band and interband interaction comparable to the 
intraband one. The obtained values lij are compatible 
with s- and s++-symmetries of the order parameter. 
Despite the qualitative nature of the theory used for 
approximating dependencies D1,2(T), the calculated 

temperature dependencies of energy gap amplitudes 
and critical temperature of FeSe agree with the 
measured ones. When approximating the measured 
dependencies D1,2(T) with calculated dependencies 
at wD = 40 meV, only the values of lij were changed. 
The conclusion about the role of intraband and 
interband interactions did not depend on the value of 
wD. Approximation of measured dependencies in the 
absence of electron-phonon interaction in the weak 
band (l22 = 0), with complete absence of interband 
interaction (l12 = l21 = 0) and with purely interband 
interaction (l11  =  l22  =  0) of superconducting 
condensates proved impossible. Similar results were 
obtained for other soft PC.

The conducted studies do not agree with 
statements about the strength of interband scattering 
in works [11–14] and completely coincide with the 
conclusions of the authors of work [15]. Note that 

Fig. 5. Symbols and dashed line – ​measured and calculated from equations (2) temperature dependencies D1(T) (Fig. 4) in normalized 
units D1(T/Tc

D)/D1(0). Blue dots – ​normalized BCS dependence DA1(T)/DA1(0). Solid red line calculated in work [42] normalized 
temperature dependence DA1(T)/DA1(0) of the energy gap of Al for Sn and Al films in proximity contact
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the conclusions of works [13, 14] about the BCS-like 
dependence of band energy gaps D1,2(T) when critical 
temperatures coincide Tc1 = Tc2 contradict each other. 
At Tc1 = Tc2 and D1 ≠ D2 interband scattering l12 must 
be finite and not very small. But at finite value l12 
dependencies D1,2(T) should deviate from the BCS 
curve.

4. CONCLUSIONS

Using Andreev reflection spectroscopy, energy 
gaps of strong D1 and weak D2 bands of high- quality 
FeSe single crystals were measured in the temperature 
range 4.2–14  K. Analysis of dependencies D1,2(T) 
within the framework of two-band l00-Moskalenko-
Suhl model allowed determining the constants of 
intraband and interband interactions

l l l l11 22 12 21= 0.63, = 0.13, = 0.7, = 0.09,

energy gaps of bands at T = 0 K:

D1(0) = 2.09 meV,    D2(0) = 0.63 meV

and also calculate the critical temperature at which 
D1,2(T) = 0:

Tc
D = 10.2 K

The obtained results indicate weak pairing 
interaction in the first (strong) band, comparable 
interband interaction, and s- or s++-symmetry of the 
order parameter.

FUNDING

The work of one of the authors (D. A. Ch.) was 
supported by UFU and IEM within the Strategic 
Academic Leadership Programs (PRIORITY‑2030) 
and the state assignment of RAS FMUF‑2022-0002.

ACKNOWLEDGMENTS

Authors  V. A. S. and M. V. G. express sincere 
gratitude to the staff of Solid State Physics 
Department FIAN for their assistance in conducting 
this work.

REFERENCES

1.	 R. Liu, M.B. Stone, S. Gao et al., arXiv: 2401. 05092.
2.	 T. Shibauchi, T. Hanaguri, and Y. Matsuda, J. Phys. 

Soc. Jpn. 89, 102002 (2020).

3.	 S. Kasahara, Y. Sato, S. Licciardello et al., Phys. Rev. 
Lett. 124, 107001 (2020).

4.	 G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
5.	 X.  Liu, L.  Zhao, S.  He et al., J.  Phys. Condens. 

Matter. 27, 183201 (2015).
6.	 T. Terashima, N. Kikugawa, A. Kiswandhi et al., Phys. 

Rev. B 90, 144517 (2014).
7.	 Y. Sun, S. Kittaka, S. Nakamura et al., Phys. Rev. B 96, 

220505 (2017).
8.	 D. Liu, C. Li, J. Huang et al., Phys. Rev. X 8, 031033 

(2018).
9.	 P.O. Sprau, A. Kostin, A. Kreisel et al., Science 357, 75 

(2017).
10.	 L.  Jiao, C.-L.  Huang, S.  Robler et al., Sci. Rep. 7, 

44024 (2017).
11.	 R. Khasanov, M. Bendele, A. Amato et al., Phys. Rev. 

Lett. 104, 087004 (2010).
12.	Ya.G. Ponomarev, S.A. Kuzmichev, T.E. Kuzmicheva et al., 

J. Supercond. Nov. Magn. 26, 2867 (2013).
13.	Yu.G. Naidyuk, O.E. Kvitnitskaya, N.V. Gamayunova 

et al., Phys. Rev. B 96, 094517 (2017).
14.	 D.L. Bashlakov, N.V. Gamayunova, L.V. Tyutrina et al., 

Low Temp. Phys. 45, 1222 (2019).
15.	 M. Bristow, A. Gower, J. C.A. Prentice et al., Phys. Rev. 

B 108, 184507 (2023).
16.	 I. Giaever, Phys. Rev. Lett. 5, 464 (1960).
17.	 G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. 

Rev. B 25, 4515 (1982).
18.	 R.S.  Gonnelli, D.  Daghero, G.A.  Ummarino, 

V.A. Stepanov et al., Phys. Rev. Lett. 89, 247004 (2002).
19.	 D.  Daghero and R.S.  Gonnelli, Supercond. Sci. 

Technol. 23, 043001 (2010).
20.	D.  Daghero, M.  Tortello, G.A.  Ummarino, and 

R.S. Gonnelli, Rep. Prog. Phys. 74, 124509 (2011)
21.	V. A.  Moskalenko, Fiz. Metal Metalloved. 8, 503 

(1959).
22.	H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. 

Lett. 3, 552 (1959).
23.	E.J. Nicol and J.P. Carbotte, Phys. Rev. B 71, 054501 

(2005).
24.	A. Bussmann-Holder, arXiv: 0909.3603.
25.	D. Chareev, E. Osadchii, T. Kuzmicheva et al., Cryst. 

Eng. Comm. 15, 1989 (2013).
26.	D.A.  Chareev, O.S.  Volkova, N.V.  Geringer et al., 

Crystallogr. Rep. 61, 682 (2016).
27.	Yu.I. Gorina, M.V. Golubkov, T.I. Osina et al., Phys. 

Solid State 59, 1918 (2017).
28.	S.I.  Vedeneev, M.V.  Golubkov, Yu.I.  Gorina et al., 

JETP 154, 844 (2018).
29.	V.A. Stepanov, M.V. Golubkov, JETP 157, 245 (2020).
30.	Yu.G. Naidyuk, N.V. Gamayunova, O.E. Kvitnitskaya et 

al., Low Temp. Phys. 42, 42 (2016).



	 ANDREEV REFLECTION SPECTROSCOPY FeSe� 669

JETP,  Vol. 166,  No. 5(11),  2024

31.	D. Daghero, M. Tortello, R.S. Gonnelli et al., Phys. Rev. 
B 80, 060502 (2009).

32.	S. Kasahara, T. Watashige, T. Hanaguri et al., Proc. 
Nat. Acad. Sci. USA 111, 16309 (2014).

33.	J.K. Dong, T.Y. Guan, S.Y. Zhou et al., Phys. Rev. B 80, 
024518 (2009).

34.	S. Knoner, D. Zielke, S. Kohler et al., Phys. Rev. B 91, 
174510 (2015).

35.	A.E. Bohmer, V. Taufour, W.E. Straszheim et al., Phys. 
Rev. B 94, 024526 (2016).

36.	A.A. Sinchenko, P.D. Grigoriev, A.P. Orlov et al., Phys. 
Rev. B 95, 165120 (2017).

37.	 RS PRO Silver Conductive Paint (in Google).

38.	A. Krzton-Maziopa, V. Svitlyk, and E. Pomjakushina, 
J. Phys.: Condens. Matter 28, 293002 (2016).

39.	E.  Venzmer, A.  Kronenberg, and M.  Jourdan, 
J. Supercond. Nov. Magn. 29, 897 (2016).

40.	Y.J. Yan, W.H. Zhang, M.Q. Ren et al., Phys. Rev. B 94, 
134502 (2016).

41.	D. Daghero, E. Piatti, N.D. Zhigadlo, and R.S. Gonnelli, 
Low Temp. Phys. 49, 886 (2023).

42.	J. Vrba and S.B. Woods, Phys. Rev. B 4, 87 (1971).
43.	 G.A.  Zvyagina, T.N.  Gaydamak, K.R.  Zhekov et al., 

arXiv: 1303.4948 (2013).
44.	D. Phelan, J.N. Millican, E.L. Thomas et al., Phys. Rev. 

B 79, 014519 (2009).
45.	 W.L. McMillan, Phys. Rev. 175, 537 (1968).


