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1. INTRODUCTION

Artificial spin ice is a group of metamaterials 
consisting of ferromagnetic nanoislands arranged on 
a non-magnetic substrate in the form of a repeating 
lattice in such a way that the resulting structure 
exhibits collective magnetic properties that an 
individual particle does not possess.

The lattice geometry can impose constraints on 
configurations, due to which not all pair magnetic 
interactions between islands can be simultaneously 
satisfied. This phenomenon is called frustration, 
and such systems are called frustrated. The first 
experimentally created structure was square spin 
ice [1–3], which aimed to simulate the magnetic 
behavior of the atomic lattice of pyrochlores 
Dy Ti O2 2 7  and  Ho Ti O2 2 7  [4] on a plane. It is 
experimentally easier to observe the magnetization of 
nanoscale islands on a plane than the spin values in 
the bulk atomic lattice of a material. Additionally, the 
possibility emerged to fine-tune the lattice geometry 
of artificial spin ice and the shape of the island. This 

allows selecting convenient experimental values of 
physical parameters, such as magnetic susceptibility, 
anisotropy, energy barriers between similar energy 
configurations, etc. Later, new geometries of two-
dimensional spin ices were proposed, which have no 
analogs among existing naturally occurring materials.

The islands are volumetric objects with fixed 
height and flat surface. In the plane, XY the island 
has an oval shape, which leads to shape magnetic 
anisotropy along the long axis, making the magnetic 
moment behavior similar to Ising-like. The island is 
single-domain, and at the same time, the magnetic 
field induced by neighboring islands is sufficient to 
change the orientation of the magnetic moment. In 
experimental works, the geometry and properties 
of nanoislands are selected to simulate the behavior 
of the Ising spin. Within the dipolar model, the 
magnetic state of a nanoisland can be represented 
as a single-domain nanoscale ferromagnet capable 
of interacting with other magnetic islands through 
dipole-dipole exchange. Previously, it was shown that 
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the point dipole model well describes the behavior 
of thermally active artificial nanosystems made of 
permalloy islands, for example, kagome [5], square 
[6], and Cairo [7] spin ices. Further in the work, the 
terms “spin,” “dipole,” and “magnetic moment” (or 
simply “moment”) will be used as synonyms.

Usually in spin ice models, nano-islands lie on the 
lattice edges. A vertex is defined as a lattice node located 
at the intersection of edges. It is convenient to consider 
the magnetic configuration of the system in the context 
of vertices, specifically the nano-islands adjacent to 
them. For square spin ice lattice in minimum energy 
configurations, all vertices follow the ice rule: two 
macrospins are magnetized towards the vertex, two 
away from the vertex. A separate class consists of vertex-
frustrated lattices [8, 9], in which due to topological 
constraints it is impossible to make all vertices satisfy 
the ice rule. As a result, such vertex-unstable structures 
always contain excitations. These include derivative spin 
ice structures such as Brickwork [10, 11], Shakti [3, 12, 
13], Tetris [14], Santa Fe [15], Saint George and others 
[16], for example Kagome [3, 17–21] and Cairo [7, 22–
25] (Fig. 1).

Some theoretical works on spin ice consider 
interactions only between nearest neighbors [13, 17– 
19, 26], while for simplification of calculations, long-
range energy is assumed to be zero, which is not 
always justified. Another approach is when authors 
present vertex interactions in the form of “dumbbell” 
or “charge” models, which are also short-range. 
Dipole-dipole interaction depends on the distance 
r between dipoles and in some cases can lead to 
long-range ordering [3, 27]. This was shown for 
three-dimensional tetrahedral pyrochlore lattice 
[28, 29], where the number of neighbors around a 
single dipole changes proportionally to r3, and the 
dipolar energy of one pair is proportional to r–3. 
Thus, the total energy induced by distant neighbors 
has the same order and can compete with the energy 
of nearest neighbors. The number of neighbors 
in a two-dimensional lattice grows much slower, 
proportionally to r 2.

2. PHYSICAL MODEL

We consider a system of magnetic moments (point 
dipoles) on the Cairo lattice [7, 22–25]. The scheme 
is shown in Fig. 1. The lattice consists of irregular 
pentagons with four sides of length a and and one 
side of length b. Two angles of the pentagon are 
right angles. The lattice has a periodicity parameter 

k a b b= 8 2 2− + ,  which is the same along 
both axes of the plane XY. The system consists of 
N L= 20 2  identical spins, where L is the linear size, 
or the number of unit cells along one of the axes. One 
unit cell consists of 20 spins.

Ferromagnetic nanoislands are located on all 
lattice edges, one island per edge. The islands have 
an oval shape and a volume 300 100 2.6 3´ ´  nm .  The 
long side of the oval is directed along the lattice edge. 
The nanoislands are made of permalloy and have 
no crystallographic axis of anisotropy. In Fig. 1, the 
nanoislands are shown as gray ovals on several edges 
as an example.

As shown in [1], the islands are always single-domain 
due to their small size and large distance between islands. 
Shape anisotropy ensures magnetization along the long 
axis. In our model, each nanoisland is considered as a 
point magnetic dipole, similar to Ising-type, located 
at the geometric center of the nanoisland. “Similar to 
Ising-type” means the dipole can only be magnetized 
along the easy axis of anisotropy of the nanoisland.

Non-equilibrium thermodynamic effects, such as 
the coercive force of the island and Stoner-Wohlfarth 
effects [32], are not considered in this work. It is 
assumed that all relaxation nonequilibrium processes 
are completed during numerical experiments. 
Estimates of superparamagnetic transition time are 
provided in the appendix.

The interaction energy between dipoles i and j is 
defined as

Fig. 1. Schematic representation of the Cairo lattice. Blue dots 
indicate the location of point dipoles in the studied model, gray 
ovals show examples of nanoisland placement in corresponding 
works [7, 30, 31]. Nanoislands are located on all lattice edges; 
the figure shows only some of them. Red (bold) a, b, c are 
parameters of the Cairo lattice
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where all vector variables are reduced to unit 
length, and dimensional coefficients are factored 
into parameter D of equation (2); mi is a unit 
length moment, whose direction for each dipole is 
determined by the lattice geometry. The moment 
has only two possible opposite directions, which are 
determined by discrete Ising variables si = 1± ;  rij  is 
a radius vector, normalized to the lattice parameter 
a so that for two points i and j, located at a distance 
a, from each other, the condition | |rij = 1  is satisfied.

Similar to [30, 31, 7], this work uses fixed lattice 
parameters a = 472  nm, b = 344  nm. The Cairo 
lattice has two types of vertices located at the 
intersection of three or four edges, forming spin 
structures of “cross” and “triangle,” similar to square 
and hexagonal spin ice lattices, respectively [27]. This 
expands the variety of observable phenomena in the 
considered model. All pair interactions between spins 
at the lattice site cannot be simultaneously satisfied, 
leading to frustration effects [3]. The position of 
islands along edges of length a is determined by 
parameter c. Increasing c leads to an increase in 
pair interaction energies in triangular lattice nodes 
and a decrease in crosses, and vice versa. When 
c a/ = 1,  spins are located in the middle of the 
edge of length a. The position of spins on edge b is 
always fixed in the middle. In works [30, 31, 7] only 
parameter c = 376  nm, is considered, although it 
can vary within 300 nm < c < 644 nm. In extreme 
cases, the islands will be located close to each other, 
which can lead to a violation of the symmetry of 
magnetic configurations, as described in [33]. Here 
we will consider the influence of parameter c on the 
thermodynamic characteristics of Cairo dipolar spin 
ice in the range of values from 376 0.797 nm » a  to 
553 1.129 nm » a.

In [30], it was shown that the low-temperature 
phase transition from long-range order to sublattice 
order occurs due to dipole-dipole interaction only 
between pairs of spins directed along vertical or 
horizontal edges (in the lattice plane) (hereinafter - 
horizontal and vertical spins). Such edges form the 
base of pentagons and have length b in Fig. 1. These 
spins are separated from each other by a distance 
d k a= 2 2 2.448/ » .  The nearest horizontally and 
vertically directed spins do not interact directly 
with each other, Eij,dip = 0 . In this work, we do not 

consider the energies of pair interactions for which 
| |>rij d a/ .

A weak vertical magnetic field H = {0, }H y , was 
added to the model, where H y = 1.5 10 7⋅ − , without 
which it is impossible to calculate magnetic 
susceptibility. The system energy is defined as

	 E D E
k

s
i j

ij,dip
B i

i i= ( ),
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∝ ∝

m H � (2)

where the sum [ , ]i j  is taken over all pairs of dipoles 
separated by a distance not exceeding d. The constant 
H y  is presented in dimensionless quantities similar 
to  m y i, ;

D = m0m2a–3kB
–1

– dimensional coefficient, m0 is the magnetic constant, 
m – saturation magnetization of the nanoisland, a is 
the lattice parameter described above, kB  is the 
Boltzmann constant. All results in this work will be 
presented in energy units D and length units a. The
values presented in units a are rounded to three 
decimal places. To transition to a dimensional 
system of calculation, it is necessary to determine the 
parameters m and a considering the geometry of the 
magnetic system.

In our model, periodic boundary conditions 
along the [01] and [10] axes were used to eliminate 
boundary effects.

To calculate thermodynamic average values, the 
canonical single-spin Metropolis algorithm is used 
[34–36]. Despite its simplicity, it remains a popular 
method of statistical research in completely different 
areas of science. For each temperature considered in 
the work, 105 stabilization Monte Carlo steps and 106 
steps were used to calculate thermodynamic averages. 
Preliminary temperature stabilization of the studied 
system allows achieving thermodynamic equilibrium 
at the start of statistics collection. A Monte Carlo 
step means N Monte Carlo attempts to change the 
sign of a random si. All calculations start from one 
of the basic states of the lattice. The ground state is 
understood as such a set of values si, at which it is 
possible to obtain the minimum possible E. At the 
same time, several configurations of E. The ground 
state is the most probable at si. may correspond to the 
minimum value of T ® 0.  System thermalization 
with increasing T is less demanding on computational 
resources than with decreasing T.

m0m
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Ground state configurations for the system under 
consideration are given in works [30, 31]. All ground 
states for the long-range model are divided into 
two groups: with vertically or horizontally directed 
magnetization vector. The configurations of these 
groups are separated from each other by an energy 
barrier that cannot be overcome by the single-spin 
Metropolis algorithm. In this article, we consider 
only the group of states with vertical direction of the 
magnetization vector in the ground state, implying 
that the behavior of the other group is identical since 
the lattice is symmetric when rotated by 90°. For the 
same reason, only a magnetic field directed along the 
Y axis is added to the model.

3. HEAT CAPACITY  
OF THE CAIRO LATTICE

Figure 2 shows the heat capacity of the Cairo 
lattice with  N = 9860  dipoles, obtained by the 
Metropolis method. The heat capacity is obtained as

	 C T
E E

k T NB

( ) = .
2 2

2

〈 〉−〈 〉 � (3)

Brackets 〈 〉  denote the Gibbs thermodynamic 
averaging for a given T. The data are shown at 
c a a a= 0.797 , 0.966 , 1.172  with different lines. In this 
and subsequent figures, points represent values on 
the abscissa axis for which Monte Carlo calculations 
were performed. The points are sequentially 
connected by lines for better visual perception. For 
heat capacity c a= 0.797  in the temperature interval 
1 < < 3D T D  the Metropolis algorithm experiences 
a known critical slowdown problem [37]. This 
problem is solved by running the algorithm from 
various random high-energy configurations and 
averaging heat capacity values between runs in a 
given temperature range.

The heat capacity has two distinct peaks at 
temperatures denoted further as T1 and  T2. The 
low-temperature peak C(T1) does not depend on 
c. As shown in [30], it is caused exclusively by pair 
interactions between vertical or horizontal spins 
separated by distance d, which depends only on 
lattice parameters a and b, and does not depend on c.

High-temperature maximums of heat capacity 
occur in the temperature interval 1 < < 12D T D .  
Depending on parameter c, their shape changes 
from smooth ( )c a= 0.797  to sharp ( ).c a= 1.172  At 
medium values ( )c a= 0.966  the high-temperature 

peak C(T2) has two distinct inflections of smooth and 
sharp form simultaneously. Further, we will examine 
the reasons for such behavior, show the dependence 
of height and temperature of the hightemperature 
peak on parameter c, conduct correlation analysis 
of configurations in these temperature zones and 
show the dimensional dependence of height and 
temperature of both peaks at different c.

4. SIZE EFFECT

According to the classification of phase transitions, 
including Ehrenfest [38], the discontinuous behavior 
of statistical sum derivatives indicates the presence 
of a phase transition at N → ∞ . The order of the 
derivative determines the order of the phase transition. 
The jump point is the (critical) temperature of phase 
change. However, there are cases when the phase 
transition occurs not at a specific temperature point, 
but in a temperature zone. Known thermodynamic 
functions do not experience jumps, but this does not 
mean that such functions do not exist. To denote this 
effect, we use the generally accepted term crossover 
(see [39] and § 3.11 in work [40]).

For unambiguous classification and explanation 
of the heat capacity peaks observed in Fig. 2, it 
is necessary to consider a model with  N → ∞  
interacting spins. The solution of such a problem 
is impossible when using Metropolis algorithms, as 
they work with finite-size systems. We will examine 
the change in heat capacity peaks and critical 

Fig. 2. Heat capacity N = 9860 of spins in Cairo spin ice for 
lattice parameters c = 0.797a, 0.966a, 1.172a. Gray color marks 
temperature zones T1 and T2, where heat capacity experiences 
low-temperature and high-temperature maximums, respectively. 
The data are calculated using the Metropolis method
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temperatures at different values of N and extrapolate 
the behavior to N → ∞ .

Fig. 3 shows the values of C(T1) (upper figure) 
and temperature T1 (lower figure) at which the low-
temperature specific heat peak has its maximum value, 
depending on N in the terval of 320 < < 98000N  
spins. Due to the discrete nature of temperature 
calculations, the specif ic heat functions were 
approximated by a 15th-order curve using the least 
squares method to obtain the specific heat maximum 
point with high accuracy. The figure shows data for 
the model with limited interaction radius | |rij d£  
(red line with circular points). For comparison, data 
from work [30] with increased interaction radius 
| |rij a£ 4.237  (blue line with crosses) are added 
to the figure. In work [30], data are published for 
N < 9680,  for points, an envelope logarithmic 
function is presented, diverging N → ∞ . In this 
work, due to available computational power, the 
system size is increased by 10 times and calculation 
results are presented up to N < 98000.

In this interval, both functions C T N( )1 /  reach a 
plateau, the specific heat at N = 98000  has values of 
C T N( ) = 0.13791 /  and 0.1455 for red and blue lines 
respectively. These values are marked by dashed and 
dash-dotted lines in Fig. 3. The behavior of C T N( )1 /  
for both interaction radii qualitatively coincides. 
But for | |rij d£  the function C T N( )1 /  reaches the 

plateau at smaller N, has a lower value and lower 
temperature T1.

Temperature T1 also reaches a plateau at the same 
values of N, as C T( )1 . As noted in the previous section 
and in paper [30], the low-temperature peak of heat 
capacity is caused exclusively by pair interactions 
between vertical or horizontal spins, whose interaction 
is similar to the Ising model on a simple square lattice. 
The variant with  | |rij d£  is similar to the ferromagnetic 
Ising model with four nearest neighbors. Variant 
| |rij a£ 4.237  takes into account more distant pairs, 
not all of which are ferromagnetic. Figure 3 shows that 
accounting for longer-range interactions increases the 
length of interspin correlations, affects the absolute 
value of heat capacity at the critical point and the critical 
temperature, but generally does not change the nature 
of the phase transition.

Figure 4 shows the dependence of critical 
temperatures and values of the low-temperature peak 
of magnetic susceptibility on N. The susceptibility is 
defined as

	 c( ) = ,
2 2

T
k TNB

〈 〉−〈 〉| | | |m m � (4)

where the magnetization vector is defined as the sum 
total vector of all magnetic moments of the system:

	 | | | |m m= .
j

N

j jså � (5)

Example c(T ) for c a= 0.797  was published 
in paper [30] (Fig. 7). For other values of c 
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Fig. 4. The magnitude (upper figure) of the low-temperature 
peak of magnetic susceptibility c and its temperature position 
(lower figure) depending on the number of particles N

Fig. 3. Values of specific heat (upper figure) and temperature 
(lower figure) at which the lowtemperature specific heat peak 
is observed, depending on the number of particles N. The data 
are presented for the model with maximum interaction radius 
d (red line with circular points) and the model with radius 
4.237a [30] (blue line with crosses). For both models, dashed 
and dash-dotted lines show the values of specific heat peaks 
C(T1)/N = 0.1379 and 0.1455 at maximum N respectively
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considered in this work, the susceptibility c( )T  has 
no qualitative differences. The high value of Tc1  at 
small N we attribute to the finite size effect, as the 
low-temperature transition involves 1/5 of all spins 
in the system [30].

Function c c( )1T N/  versus N also reaches a 
plateau at N > 9680.  However, the peak occurs at 
higher temperatures than the heat capacity peak. The 
temperature increase Tc1  at low values of N is due to 
the size effect.

Analysis of magnetic configurations in the low-
temperature peak region revealed [30] that the peak 
is caused by the destruction of order between spins 
located on vertical and horizontal edges of length 
b. Parameter c does not affect the position of these 
spins on the lattice edges and does not affect the 
lattice parameter k. Other spins in the ground state 
are ordered in such a way that for any horizontal or 
vertical spin i the condition

j
ij,dipEå = 0,

is satisfied, where  j only considers spins lying on 
edges a. The value of any vertical or horizontal spin 
only affects the energies of pair interactions of similar 
spins, and this ordering is destroyed at T1.

The graph shows C T( )2  (upper f igure) and 
temperature T2 (lower figure) as a function of N, 
varying in the interval 320 < < 98000N  spins. Data 
are presented for lattice parameters c a= 0.797  (red 
line with circular points) and  c a= 1.172  (blue line 

with crosses). In the first case, the heat capacity value 
at the peak does not depend on N and has a value

C T N( ) = 0.366 0.001.2 / ±

In the second case, C T N( )2 /  has a logarithmic 
dependence on N, and in the limit as N → ∞  may 
diverge.

5. LATTICE PARAMETER EFFECT

As described above, parameter c affects the 
distance between two nearest collinear spins. 
Increasing c leads to increased pair interaction 
energies in triangular lattice nodes and decreased 
energies in crosses. The destruction of magnetic 
order within crosses and triangles itself requires 
energy expenditure and should lead to two heat 
capacity peaks at temperatures proportional to pair 
interaction energies within crosses and triangles 
respectively.

As shown in Fig. 2, at low values of c the heat 
capacity has one smooth high-temperature peak. 
As c increases, upon reaching a critical value of 
approximately 0.966a (456  nm), a second sharp 
high-temperature peak appears in the heat capacity, 
which is visible on the green shown by the blue 
line with crosses in Fig. 2. With further increase in 
c, the height of the sharp peak increases, and the 
smooth peak decreases until it becomes impossible 
to definitively identify. 

Fig.  6 shows the heat capacity values and 
temperatures of the two described high-temperature 
peaks. The lines are marked with different colors, 
and in the region of c a= 0.966  two peaks are present 
simultaneously.

Let's introduce a correlation parameter that only 
accounts for the sign of the pair interaction energy, 
whose absolute value does not depend on parameter c:

	 G
E

E
n

i j

i j

i j
= .

[ , ]

,

,
å | |

/ � (6)

The sum [ , ]i j  only considers unique pair 
interactions that require correlation analysis, n is the 
number of such pairs. Let's define that parameter Gt 
only accounts for pair interactions in all triangles. 
There is no triangle configuration where all pair 
interactions will be Eij < 0 . In the minimum energy 
configuration, two pairs will have Eij < 0  and one 
pair will have Eij > 0.  In the maximum energy 
configuration, all three pairs will have  Eij > 0.  The 
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values of parameter Gt for a single triangle will vary 
from –1/3 in the minimum energy configuration to 1 
in the maximum energy configuration.

Defined similarly to Gt parameter Gk considers 
only nearest-neighbor pair interactions in all crosses 
separated by distanc 2c . For a cross, it is possible to 
create a configuration where all four pair interactions 
will be with  Eij < 0 , therefore the parameter values 
Gk for an individual cross will vary from –1 in the 
minimum energy configuration to 1 in the maximum 
energy configuration.

Figure 7 shows the Gibbs thermodynamically 
averaged parameters Gt (upper half) and Gk (lower 
half) as a function of temperature for lattice 
parameters c a a a= 0.797 , 0.966 , 1.172  and  N = 5120  
spins. Data is presented for temperatures at which the 
heat capacity experiences a high-temperature peak. 
The change in value G(T ) indicates the influence 
of the corresponding temperature on the magnetic 
ordering of crosses or triangles.

For parameter c a= 0.797  the correlation level 
in triangles and crosses decreases at temperatures 
close to each other. Since all spins lying on edges of 
length a, are simultaneously present in both triangles 
and crosses, random temperature f luctuations of 
individual lattice spins lead to the disappearance 
of magnetic ordering simultaneously in crosses and 
triangles adjacent to these spins, as the energies of 
nearest-neighbor interactions in crosses and triangles 

are approximately equal in magnitude. Such behavior 
corresponds to the definition of a crossover, where 
the phase change from frozen order to disorder 
occurs over a temperature zone rather than at a 
specific temperature point.

As parameter c decreases, the distance between 
the spins of triangles decreases, which results in 
an increase in the magnitude of pair interaction 
energies within triangles, leading to an increase in 
the temperature required to destroy the order. On 
the other hand, increasing parameter c leads to an 
increase in the distance between cross spins. As a 
result, when c increases, the inflection temperature 
Gt rises, while Gk decreases. At parameter c a= 1.172  
the temperature difference becomes significant. 
Parameter Gk for c a= 1.172  experiences an 
inflection in the region of the high-temperature heat 
capacity peak from Fig. 2. In this temperature range, 
parameter Gt takes the minimum possible value. This 
means that magnetic ordering disappears in crosses 
but persists in all triangles. This can only be achieved 
if temperature fluctuations lead to remagnetization 
of the entire triangle instead of a single dipole. 
Triangle remagnetization has a higher energy barrier 
compared to remagnetization of a single dipole. This 
results in the sharp nature of the high-temperature 
peak in Fig. 2.

Let's note how parameter c affects the pair energy 
interactions between triangle spins. The decrease of 
c moves two of the three spins along the lattice edge 
of length a. The third spin of the triangle remains in 
place, so the pair interaction energies in the triangle 
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Fig. 7. Temperature dependence of correlations within triangles 
Gt and crosses Gk for lattice parameters c = 0.797a, 0.966a, 1.172a 
and N = 5120 spins
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change in different proportions. The triangle angles 
are not equal to each other. Pair interactions within 
the triangle break down at different temperatures, 
therefore the drop in G Tt ( )  in Fig. 7 does not lead 
to a sharp heat capacity peak at the corresponding 
temperature. Unlike the triangle, the cross edges 
are positioned at right angles to each other, the 
parameter c equally affects all cross spins, all four 
pair interaction energies within the cross are equal in 
magnitude. This further explains the sharp nature of 
the corresponding heat capacity peak.

6. CONCLUSIONS

We investigated the temperature behavior of the 
heat capacity in a model of Ising-like dipoles on 
the Cairo lattice. According to Ehrenfest's universal 
classification, a second-order phase transition is 
accompanied by divergence of second derivatives of 
internal system parameters as the number of particles 
in the system approaches infinity. For the considered 
f inite-size lattice, two heat capacity peaks are 
observed when conducting numerical experiments 
using the Metropolis algorithm. In work [30], it was 
shown that the low-temperature heat capacity peak 
has no tendency to diverge and is solely caused by the 
order-disorder transition between spins connected 
only by long-range dipole-dipole interaction. In 
other words, the low-temperature peak is caused by 
the disappearance/emergence of long-range ordering.

According to the classification of phase transitions 
(see §3 in work [41]), systems of the same universality 
class possess a similar set of phases, and the phase 
change process can be described by universal critical 
exponents. The universality class of our system is 
determined by two parameters: the space dimension 
and the number of degrees of freedom of a single 
spin. We showed that the lattice parameter с, which 
does not determine the universality class, can change 
the nature of the phase transition in this classification 
while other system parameters remain unchanged.

At a low value of the parameter c the system 
undergoes a “phase” transition, where shortrange 
magnetic ordering within crosses and triangles 
disappears in a temperature zone rather than at 
a specific critical temperature. This leads to the 
absence of heat capacity singularity across the entire 
temperature interval at N → ∞ , and such transition 
is called a crossover [39, 40]. A similar effect occurs, 
for example, in ultracold Fermi gases, where the 
system transitions from a Bose-Einstein condensate 

state to a Bardeen-Cooper-Schrieffer state as the 
interaction strength changes [42]. Another example 
is magnetic alloys with magnetic impurities, where 
the Kondo effect is studied [43], where a normal 
Fermi liquid phase (weakly coupled to impurities) 
transitions to a “local” Fermi liquid phase, in which 
conduction electrons form strongly bound spin-
singlets with impurity electrons, without an explicit 
phase transition.

At a high value of the parameter c the system 
undergoes a phase transition “short-range order-
disorder” in the high-temperature zone. It is 
characterized by heat capacity divergence at a specific 
temperature point at N → ∞  and is caused by the 
disappearance of order in the crosses.

Thus, we have demonstrated the existence of 
a magnetic system where changing a single lattice 
parameter leads to a qualitative change in its 
thermodynamic behavior
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APPENDIX

To prove the possibility of experimental 
reproduction of the effects shown in this work, we 
will demonstrate that the average relaxation time 
of a nanoparticle with the considered geometry is 
within typical experimental observation limits. The 
magnetic relaxation time t of a superparamagnet 
follows the Neel-Arrhenius law

	 τ- -1
0= ( ),f U k TBexp ∆ / � (7)

where kB is the Boltzmann constant, T is temperature, 
DU, f0  is the pre-exponential factor or frequency 
factor, which for permalloy nanoparticles is 1012 s–1 
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[44, 5, 45]. Ising-like behavior of the nanoparticle is 
achieved through shape anisotropy in the absence of 
other magnetic anisotropy sources (permalloy).

Let's consider the relaxation time of an individual 
nanoparticle without external field influence. Then 
DU = KV, where V  is the particle volume, K is the 
magnetic anisotropy energy density. Shape anisotropy 
along the d x y zÎ { , , }  axis is defined as [46]

K N Md d=
1
2 0

2∝ ,

where m0 is the magnetic constant, M is the residual 
magnetization of the material, N is the demagnetizing 
factor.

At room temperature T = 290   K for bulk 
permalloy M = 800  kA/m [7], but for a film with 
thickness of 2.6 nm M = 100  kA/m [5].

The method for determining Nd is presented in 
work [47] for ellipsoids and refined in [48] for prisms. 
N d = 0.14036  along the direction of the long side of 
the prism.

The magnitude of the energy barrier caused by 
shape anisotropy without the inf luence of other 
forces will be DU = 6.87 ⋅ 10–20 J, or 0.43 eV, which 
corresponds to t = 2.89 10 5⋅ −  s.

Let's consider the average energy of dipole-dipole 
interaction from Monte Carlo simulation results:

DU∅U KV E N= ,+〈 〉/

where E is defined by formula (2), and the value 
of 〈 〉E  is taken in absolute terms. We obtain 
〈 〉 ⋅ −E N/ = 8.09 10 21 J, or 0.05 eV, which corresponds 
to t = 2.18 10 4⋅ −  s.

With decreasing T the M permalloy increases and, 
consequently, DU, increases, which will lead to a 
rapid increase in t. Estimating the dependence of M 
on T for a nanoparticle is the subject of additional 
research and is beyond the scope of this article. For 
example, at T = 250  K and  M = 120   kA/m we 
obtain t = 38  s.

The presented estimates are in the order of seconds 
and correspond to the experiment [49](Fig. 4b).
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