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Abstract. The thermodynamics of finite-number Ising spin systems on the Cairo spin ice lattice is investigated
using Monte Carlo numerical calculations in the model of long-range dipole-dipole interaction with limited
radius. The Cairo lattice consists of vertices combining three or four nearest neighboring spins. A parameter is
added to the model, the variation of which allows changing the balance of interaction energies between vertices
with three and four nearest spins without changing the geometry of the Cairo lattice. It is shown that the
variational parameter affects the nature of the phase transition process from short-range order to disorder. At low
values of this parameter, the transition is a crossover, while at its high values, it is a second-order phase transition.
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1. INTRODUCTION

Artificial spin ice is a group of metamaterials
consisting of ferromagnetic nanoislands arranged on
a non-magnetic substrate in the form of a repeating
lattice in such a way that the resulting structure
exhibits collective magnetic properties that an
individual particle does not possess.

The lattice geometry can impose constraints on
configurations, due to which not all pair magnetic
interactions between islands can be simultaneously
satisfied. This phenomenon is called frustration,
and such systems are called frustrated. The first
experimentally created structure was square spin
ice [1-3], which aimed to simulate the magnetic
behavior of the atomic lattice of pyrochlores
Dy,Ti,O; and Ho,Ti,O; [4] on a plane. It is
experimentally easier to observe the magnetization of
nanoscale islands on a plane than the spin values in
the bulk atomic lattice of a material. Additionally, the
possibility emerged to fine-tune the lattice geometry
of artificial spin ice and the shape of the island. This

allows selecting convenient experimental values of
physical parameters, such as magnetic susceptibility,
anisotropy, energy barriers between similar energy
configurations, etc. Later, new geometries of two-
dimensional spin ices were proposed, which have no
analogs among existing naturally occurring materials.

The islands are volumetric objects with fixed
height and flat surface. In the plane, XY the island
has an oval shape, which leads to shape magnetic
anisotropy along the long axis, making the magnetic
moment behavior similar to Ising-like. The island is
single-domain, and at the same time, the magnetic
field induced by neighboring islands is sufficient to
change the orientation of the magnetic moment. In
experimental works, the geometry and properties
of nanoislands are selected to simulate the behavior
of the Ising spin. Within the dipolar model, the
magnetic state of a nanoisland can be represented
as a single-domain nanoscale ferromagnet capable
of interacting with other magnetic islands through
dipole-dipole exchange. Previously, it was shown that
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the point dipole model well describes the behavior
of thermally active artificial nanosystems made of
permalloy islands, for example, kagome [5], square
[6], and Cairo [7] spin ices. Further in the work, the
terms “spin,” “dipole,” and “magnetic moment” (or
simply “moment”) will be used as synonyms.

Usually in spin ice models, nano-islands lie on the
lattice edges. A vertex is defined as a lattice node located
at the intersection of edges. It is convenient to consider
the magnetic configuration of the system in the context
of vertices, specifically the nano-islands adjacent to
them. For square spin ice lattice in minimum energy
configurations, all vertices follow the ice rule: two
macrospins are magnetized towards the vertex, two
away from the vertex. A separate class consists of vertex-
frustrated lattices [8, 9], in which due to topological
constraints it is impossible to make all vertices satisfy
the ice rule. As a result, such vertex-unstable structures
always contain excitations. These include derivative spin
ice structures such as Brickwork [10, 11], Shakti [3, 12,
13], Tetris [ 14], Santa Fe [15], Saint George and others
[16], for example Kagome |3, 17—21] and Cairo [7, 22—
25] (Fig. 1).

Some theoretical works on spin ice consider
interactions only between nearest neighbors [13, 17—
19, 26], while for simplification of calculations, long-
range energy is assumed to be zero, which is not
always justified. Another approach is when authors
present vertex interactions in the form of “dumbbell”
or “charge” models, which are also short-range.
Dipole-dipole interaction depends on the distance
r between dipoles and in some cases can lead to
long-range ordering [3, 27]. This was shown for
three-dimensional tetrahedral pyrochlore lattice
[28, 29], where the number of neighbors around a
single dipole changes proportionally to 7, and the
dipolar energy of one pair is proportional to r.
Thus, the total energy induced by distant neighbors
has the same order and can compete with the energy
of nearest neighbors. The number of neighbors
in a two-dimensional lattice grows much slower,
proportionally to r2.

2. PHYSICAL MODEL

We consider a system of magnetic moments (point
dipoles) on the Cairo lattice [7, 22—25]. The scheme
is shown in Fig. 1. The lattice consists of irregular
pentagons with four sides of length a and and one
side of length b. Two angles of the pentagon are
right angles. The lattice has a periodicity parameter
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Fig. 1. Schematic representation of the Cairo lattice. Blue dots
indicate the location of point dipoles in the studied model, gray
ovals show examples of nanoisland placement in corresponding
works [7, 30, 31]. Nanoislands are located on all lattice edges;
the figure shows only some of them. Red (bold) a, b, ¢ are
parameters of the Cairo lattice

k =8a*> —b? +b, which is the same along
both axes of the plane XY. The system consists of
N =20L? identical spins, where L is the linear size,
or the number of unit cells along one of the axes. One
unit cell consists of 20 spins.

Ferromagnetic nanoislands are located on all
lattice edges, one island per edge. The islands have
an oval shape and a volume 300 x 100 x 2.6 nm°. The
long side of the oval is directed along the lattice edge.
The nanoislands are made of permalloy and have
no crystallographic axis of anisotropy. In Fig. 1, the
nanoislands are shown as gray ovals on several edges
as an example.

Asshown in [1], the islands are always single-domain
due to their small size and large distance between islands.
Shape anisotropy ensures magnetization along the long
axis. In our model, each nanoisland is considered as a
point magnetic dipole, similar to Ising-type, located
at the geometric center of the nanoisland. “Similar to
Ising-type” means the dipole can only be magnetized
along the easy axis of anisotropy of the nanoisland.

Non-equilibrium thermodynamic effects, such as
the coercive force of the island and Stoner-Wohlfarth
effects [32], are not considered in this work. It is
assumed that all relaxation nonequilibrium processes
are completed during numerical experiments.
Estimates of superparamagnetic transition time are
provided in the appendix.

The interaction energy between dipoles i and j is
defined as
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where all vector variables are reduced to unit
length, and dimensional coefficients are factored
into parameter D of equation (2); m; is a unit
length moment, whose direction for each dipole is
determined by the lattice geometry. The moment
has only two possible opposite directions, which are
determined by discrete Ising variables s; = +1; r; is
a radius vector, normalized to the lattice parameter
a so that for two points / and j, located at a distance
a, from each other, the condition |ry| = 1 is satisfied.

Similar to [30, 31, 7], this work uses fixed lattice
parameters a =472 nm, b = 344 nm. The Cairo
lattice has two types of vertices located at the
intersection of three or four edges, forming spin
structures of “cross” and “triangle,” similar to square
and hexagonal spin ice lattices, respectively [27]. This
expands the variety of observable phenomena in the
considered model. All pair interactions between spins
at the lattice site cannot be simultaneously satisfied,
leading to frustration effects [3]. The position of
islands along edges of length a is determined by
parameter c. Increasing ¢ leads to an increase in
pair interaction energies in triangular lattice nodes
and a decrease in crosses, and vice versa. When
c¢/a =1, spins are located in the middle of the
edge of length a. The position of spins on edge b is
always fixed in the middle. In works [30, 31, 7] only
parameter ¢ = 376 nm, is considered, although it
can vary within 300 nm < ¢ < 644 nm. In extreme
cases, the islands will be located close to each other,
which can lead to a violation of the symmetry of
magnetic configurations, as described in [33]. Here
we will consider the influence of parameter ¢ on the
thermodynamic characteristics of Cairo dipolar spin
ice in the range of values from 376 nm =~ 0.797a to
553 nm ~ 1.129a.

In [30], it was shown that the low-temperature
phase transition from long-range order to sublattice
order occurs due to dipole-dipole interaction only
between pairs of spins directed along vertical or
horizontal edges (in the lattice plane) (hereinafter -
horizontal and vertical spins). Such edges form the
base of pentagons and have length b in Fig. 1. These
spins are separated from each other by a distance
d= \/fk/ 2 ~2 2.448a. The nearest horizontally and
vertically directed spins do not interact directly
with each other, Ej; ;, = 0. In this work, we do not
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consider the energies of pair interactions for which
|y [>d/a.

A weak vertical magnetic field H ={0,H,} , was
added to the model, where H, =1.5- 1077, without
which it is impossible to calculate magnetic
susceptibility. The system energy is defined as

E= DZE,.].,[,,.,, - ()

% ZS ;(m; - H),
[i.j] B
where the sum [7, /] is taken over all pairs of dipoles
separated by a distance not exceeding d. The constant
H, is presented in dimensionless quantities similar
tom,;;

D= pyta k!

— dimensional coefficient, 1, is the magnetic constant,
u — saturation magnetization of the nanoisland, a is
the lattice parameter described above, k, is the
Boltzmann constant. All results in this work will be
presented in energy units D and length units a. The

values presented in units @ are rounded to three
decimal places. To transition to a dimensional
system of calculation, it is necessary to determine the
parameters u and a considering the geometry of the
magnetic system.

In our model, periodic boundary conditions
along the [01] and [10] axes were used to eliminate
boundary effects.

To calculate thermodynamic average values, the
canonical single-spin Metropolis algorithm is used
[34—36]. Despite its simplicity, it remains a popular
method of statistical research in completely different
areas of science. For each temperature considered in
the work, 10 stabilization Monte Carlo steps and 10°
steps were used to calculate thermodynamic averages.
Preliminary temperature stabilization of the studied
system allows achieving thermodynamic equilibrium
at the start of statistics collection. A Monte Carlo
step means N Monte Carlo attempts to change the
sign of a random s,. All calculations start from one
of the basic states of the lattice. The ground state is
understood as such a set of values s;, at which it is
possible to obtain the minimum possible E. At the
same time, several configurations of £. The ground
state is the most probable at s, may correspond to the
minimum value of 7 — 0. System thermalization
with increasing 7'is less demanding on computational
resources than with decreasing 7.
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Ground state configurations for the system under
consideration are given in works [30, 31]. All ground
states for the long-range model are divided into
two groups: with vertically or horizontally directed
magnetization vector. The configurations of these
groups are separated from each other by an energy
barrier that cannot be overcome by the single-spin
Metropolis algorithm. In this article, we consider
only the group of states with vertical direction of the
magnetization vector in the ground state, implying
that the behavior of the other group is identical since
the lattice is symmetric when rotated by 90°. For the
same reason, only a magnetic field directed along the
Y axis is added to the model.

3. HEAT CAPACITY
OF THE CAIRO LATTICE

Figure 2 shows the heat capacity of the Cairo
lattice with N = 9860 dipoles, obtained by the
Metropolis method. The heat capacity is obtained as

(E?) — (B

C(T) = -
kTN

)

Brackets (...) denote the Gibbs thermodynamic
averaging for a given 7. The data are shown at
¢ =0.797a, 0.966a, 1.172a with different lines. In this
and subsequent figures, points represent values on
the abscissa axis for which Monte Carlo calculations
were performed. The points are sequentially
connected by lines for better visual perception. For
heat capacity ¢ = 0.797a in the temperature interval
1D < T < 3D the Metropolis algorithm experiences
a known critical slowdown problem [37]. This
problem is solved by running the algorithm from
various random high-energy configurations and
averaging heat capacity values between runs in a
given temperature range.

The heat capacity has two distinct peaks at
temperatures denoted further as 7, and 7,. The
low-temperature peak C(7)) does not depend on
c. As shown in [30], it is caused exclusively by pair
interactions between vertical or horizontal spins
separated by distance d, which depends only on

lattice parameters a and b, and does not depend on c.

High-temperature maximums of heat capacity
occur in the temperature interval 1D < T <12D.
Depending on parameter c, their shape changes
from smooth (¢ = 0.797a) to sharp (¢ =1.172a). At
medium values (¢ = 0.966a) the high-temperature
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Fig. 2. Heat capacity N = 9860 of spins in Cairo spin ice for
lattice parameters ¢ = 0.797a, 0.966a, 1.172a. Gray color marks
temperature zones 7 and 7,, where heat capacity experiences
low-temperature and high-temperature maximums, respectively.
The data are calculated using the Metropolis method

peak C(T)) has two distinct inflections of smooth and
sharp form simultaneously. Further, we will examine
the reasons for such behavior, show the dependence
of height and temperature of the hightemperature
peak on parameter ¢, conduct correlation analysis
of configurations in these temperature zones and
show the dimensional dependence of height and
temperature of both peaks at different c.

4. SIZE EFFECT

According to the classification of phase transitions,
including Ehrenfest [38], the discontinuous behavior
of statistical sum derivatives indicates the presence
of a phase transition at N — oo . The order of the
derivative determines the order of the phase transition.
The jump point is the (critical) temperature of phase
change. However, there are cases when the phase
transition occurs not at a specific temperature point,
but in a temperature zone. Known thermodynamic
functions do not experience jumps, but this does not
mean that such functions do not exist. To denote this
effect, we use the generally accepted term crossover
(see [39] and § 3.11 in work [40]).

For unambiguous classification and explanation
of the heat capacity peaks observed in Fig. 2, it
is necessary to consider a model with N — oo
interacting spins. The solution of such a problem
is impossible when using Metropolis algorithms, as
they work with finite-size systems. We will examine
the change in heat capacity peaks and critical
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Fig. 3. Values of specific heat (upper figure) and temperature
(lower figure) at which the lowtemperature specific heat peak
is observed, depending on the number of particles N. The data
are presented for the model with maximum interaction radius
d (red line with circular points) and the model with radius
4.237a [30] (blue line with crosses). For both models, dashed
and dash-dotted lines show the values of specific heat peaks
C(T))/N = 0.1379 and 0.1455 at maximum N respectively

temperatures at different values of N and extrapolate
the behaviorto N — oo

Fig. 3 shows the values of C(7)) (upper figure)
and temperature 7, (lower figure) at which the low-
temperature specific heat peak has its maximum value,
depending on N in the terval of 320 < N < 98000
spins. Due to the discrete nature of temperature
calculations, the specific heat functions were
approximated by a 15th-order curve using the least
squares method to obtain the specific heat maximum
point with high accuracy. The figure shows data for
the model with limited interaction radius [r;| < d
(red line with circular points). For comparison, data
from work [30] with increased interaction radius
Ir;| <4.237a (blue line with crosses) are added
to the figure. In work [30], data are published for
N <9680, for points, an envelope logarithmic
function is presented, diverging N — oo . In this
work, due to available computational power, the
system size is increased by 10 times and calculation
results are presented up to N < 98000.

In this interval, both functions C(7;)/N reach a
plateau, the specific heat at N = 98000 has values of
C(T})/N = 0.1379 and 0.1455 for red and blue lines
respectively. These values are marked by dashed and
dash-dotted lines in Fig. 3. The behavior of C(7})/N
for both interaction radii qualitatively coincides.
But for [r;| < d the function C(7})/N reaches the
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Fig. 4. The magnitude (upper figure) of the low-temperature
peak of magnetic susceptibility y and its temperature position
(lower figure) depending on the number of particles N

plateau at smaller N, has a lower value and lower
temperature 7.

Temperature 7' also reaches a plateau at the same
values of N, as C (T;) . As noted in the previous section
and in paper [30], the low-temperature peak of heat
capacity is caused exclusively by pair interactions
between vertical or horizontal spins, whose interaction
is similar to the Ising model on a simple square lattice.
The variant with |r;| < d issimilar to the ferromagnetic
Ising model with four nearest neighbors. Variant
Ir;| < 4.237a takes into account more distant pairs,
not all of which are ferromagnetic. Figure 3 shows that
accounting for longer-range interactions increases the
length of interspin correlations, affects the absolute
value of heat capacity at the critical point and the critical
temperature, but generally does not change the nature
of the phase transition.

Figure 4 shows the dependence of critical
temperatures and values of the low-temperature peak
of magnetic susceptibility on N. The susceptibility is
defined as

(m*) — (m)*

T =
x(T) kTN

4

where the magnetization vector is defined as the sum
total vector of all magnetic moments of the system:

N
Im| = |Zsjmj|.
J

Example %(7T) for ¢ =0.797a was published
in paper [30] (Fig. 7). For other values of ¢

&)
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considered in this work, the susceptibility y(7') has
no qualitative differences. The high value of T, at
small N we attribute to the finite size effect, as the
low-temperature transition involves 1/5 of all spins
in the system [30].

Function y(7,;)/N versus N also reaches a
plateau at N > 9680. However, the peak occurs at
higher temperatures than the heat capacity peak. The
temperature increase 7., at low values of N is due to
the size effect.

Analysis of magnetic configurations in the low-
temperature peak region revealed [30] that the peak
is caused by the destruction of order between spins
located on vertical and horizontal edges of length
b. Parameter ¢ does not affect the position of these
spins on the lattice edges and does not affect the
lattice parameter k. Other spins in the ground state
are ordered in such a way that for any horizontal or
vertical spin i the condition

> Ejap =0,
j

is satisfied, where j only considers spins lying on
edges a. The value of any vertical or horizontal spin
only affects the energies of pair interactions of similar
spins, and this ordering is destroyed at 7.

The graph shows C(7,) (upper figure) and
temperature 7, (lower figure) as a function of N,
varying in the interval 320 < N < 98000 spins. Data
are presented for lattice parameters ¢ = 0.797a (red
line with circular points) and ¢ =1.172a (blue line

& — ¢=0.797a
- LOF —— ¢=1.1724 ]
=
S o5t ]
D 1 ol 1
75F ]
)]
S 50F ]
&
25F . ]

103 104 10°

Fig. 5. Heat capacity values (upper figure) and temperature
(lower figure) at which the hightemperature heat capacity peak
is observed, depending on the number of particles N at lattice
parameter ¢ = 0.797a and ¢ = 1.172a

SHEVCHENKO et al.

with crosses). In the first case, the heat capacity value
at the peak does not depend on N and has a value

C(T;)/N = 0.366 + 0.001.

In the second case, C(7,)/N has a logarithmic
dependence on N, and in the limit as N — oo may
diverge.

5. LATTICE PARAMETER EFFECT

As described above, parameter ¢ affects the
distance between two nearest collinear spins.
Increasing ¢ leads to increased pair interaction
energies in triangular lattice nodes and decreased
energies in crosses. The destruction of magnetic
order within crosses and triangles itself requires
energy expenditure and should lead to two heat
capacity peaks at temperatures proportional to pair
interaction energies within crosses and triangles
respectively.

As shown in Fig. 2, at low values of ¢ the heat
capacity has one smooth high-temperature peak.
As c increases, upon reaching a critical value of
approximately 0.966a (456 nm), a second sharp
high-temperature peak appears in the heat capacity,
which is visible on the green shown by the blue
line with crosses in Fig. 2. With further increase in
¢, the height of the sharp peak increases, and the
smooth peak decreases until it becomes impossible
to definitively identify.

Fig. 6 shows the heat capacity values and
temperatures of the two described high-temperature
peaks. The lines are marked with different colors,
and in the region of ¢ = 0.966a two peaks are present
simultaneously.

Let's introduce a correlation parameter that only
accounts for the sign of the pair interaction energy,
whose absolute value does not depend on parameter c:

E. .

G = =
2z,
The sum [i,j] only considers unique pair
interactions that require correlation analysis, # is the
number of such pairs. Let's define that parameter G,
only accounts for pair interactions in all triangles.
There is no triangle configuration where all pair
interactions will be Ej; < 0. In the minimum energy
configuration, two pairs will have E; <0 and one
pair will have E; > 0. In the maximum energy
configuration, all three pairs will have E; >0. The

(6)

/n.
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Fig. 6. The dependence of heat capacity in the high-temperature
peak (upper figure) and the temperature of this peak on the lattice
parameter c in the range from 0.797a to 1.172a at N = 5120. The
red line with circular points indicates data for the crossover peak,
while the blue line with crosses indicates the peak separating
thermodynamic phases

values of parameter G, for a single triangle will vary
from —1/3 in the minimum energy configuration to 1
in the maximum energy configuration.

Defined similarly to G, parameter G, considers
only nearest-neighbor pair interactions in all crosses
separated by distanc J2c . For a cross, it is possible to
create a configuration where all four pair interactions
will be with E;; <0, therefore the parameter values
G, for an individual cross will vary from —1 in the
minimum energy configuration to 1 in the maximum
energy configuration.

Figure 7 shows the Gibbs thermodynamically
averaged parameters G, (upper half) and G, (lower
half) as a function of temperature for lattice
parameters ¢ = 0.797a, 0.966a, 1.172a and N = 5120
spins. Data is presented for temperatures at which the
heat capacity experiences a high-temperature peak.
The change in value G(T) indicates the influence
of the corresponding temperature on the magnetic
ordering of crosses or triangles.

For parameter ¢ = 0.797a the correlation level
in triangles and crosses decreases at temperatures
close to each other. Since all spins lying on edges of
length a, are simultaneously present in both triangles
and crosses, random temperature fluctuations of
individual lattice spins lead to the disappearance
of magnetic ordering simultaneously in crosses and
triangles adjacent to these spins, as the energies of
nearest-neighbor interactions in crosses and triangles
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Fig. 7. Temperature dependence of correlations within triangles
G, and crosses G, for lattice parameters ¢ = 0.797a, 0.966a, 1.172a
and N = 5120 spins

are approximately equal in magnitude. Such behavior
corresponds to the definition of a crossover, where
the phase change from frozen order to disorder
occurs over a temperature zone rather than at a
specific temperature point.

As parameter ¢ decreases, the distance between
the spins of triangles decreases, which results in
an increase in the magnitude of pair interaction
energies within triangles, leading to an increase in
the temperature required to destroy the order. On
the other hand, increasing parameter ¢ leads to an
increase in the distance between cross spins. As a
result, when ¢ increases, the inflection temperature
G, rises, while G, decreases. At parameter ¢ =1.172a
the temperature difference becomes significant.
Parameter G, for c¢ =1.172a experiences an
inflection in the region of the high-temperature heat
capacity peak from Fig. 2. In this temperature range,
parameter G, takes the minimum possible value. This
means that magnetic ordering disappears in crosses
but persists in all triangles. This can only be achieved
if temperature fluctuations lead to remagnetization
of the entire triangle instead of a single dipole.
Triangle remagnetization has a higher energy barrier
compared to remagnetization of a single dipole. This
results in the sharp nature of the high-temperature
peak in Fig. 2.

Let's note how parameter c affects the pair energy
interactions between triangle spins. The decrease of
¢ moves two of the three spins along the lattice edge
of length a. The third spin of the triangle remains in
place, so the pair interaction energies in the triangle
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change in different proportions. The triangle angles
are not equal to each other. Pair interactions within
the triangle break down at different temperatures,
therefore the drop in G,(T) in Fig. 7 does not lead
to a sharp heat capacity peak at the corresponding
temperature. Unlike the triangle, the cross edges
are positioned at right angles to each other, the
parameter ¢ equally affects all cross spins, all four
pair interaction energies within the cross are equal in
magnitude. This further explains the sharp nature of
the corresponding heat capacity peak.

6. CONCLUSIONS

We investigated the temperature behavior of the
heat capacity in a model of Ising-like dipoles on
the Cairo lattice. According to Ehrenfest's universal
classification, a second-order phase transition is
accompanied by divergence of second derivatives of
internal system parameters as the number of particles
in the system approaches infinity. For the considered
finite-size lattice, two heat capacity peaks are
observed when conducting numerical experiments
using the Metropolis algorithm. In work [30], it was
shown that the low-temperature heat capacity peak
has no tendency to diverge and is solely caused by the
order-disorder transition between spins connected
only by long-range dipole-dipole interaction. In
other words, the low-temperature peak is caused by
the disappearance/emergence of long-range ordering.

According to the classification of phase transitions
(see §3 in work [41]), systems of the same universality
class possess a similar set of phases, and the phase
change process can be described by universal critical
exponents. The universality class of our system is
determined by two parameters: the space dimension
and the number of degrees of freedom of a single
spin. We showed that the lattice parameter ¢, which
does not determine the universality class, can change
the nature of the phase transition in this classification
while other system parameters remain unchanged.

At a low value of the parameter ¢ the system
undergoes a “phase” transition, where shortrange
magnetic ordering within crosses and triangles
disappears in a temperature zone rather than at
a specific critical temperature. This leads to the
absence of heat capacity singularity across the entire
temperature interval at N — oo, and such transition
is called a crossover [39, 40]. A similar effect occurs,
for example, in ultracold Fermi gases, where the
system transitions from a Bose-Einstein condensate

SHEVCHENKO et al.

state to a Bardeen-Cooper-Schrieffer state as the
interaction strength changes [42]. Another example
is magnetic alloys with magnetic impurities, where
the Kondo effect is studied [43], where a normal
Fermi liquid phase (weakly coupled to impurities)
transitions to a “local” Fermi liquid phase, in which
conduction electrons form strongly bound spin-
singlets with impurity electrons, without an explicit
phase transition.

At a high value of the parameter ¢ the system
undergoes a phase transition “short-range order-
disorder” in the high-temperature zone. It is
characterized by heat capacity divergence at a specific
temperature point at N — oo and is caused by the
disappearance of order in the crosses.

Thus, we have demonstrated the existence of
a magnetic system where changing a single lattice
parameter leads to a qualitative change in its
thermodynamic behavior
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APPENDIX

To prove the possibility of experimental
reproduction of the effects shown in this work, we
will demonstrate that the average relaxation time
of a nanoparticle with the considered geometry is
within typical experimental observation limits. The
magnetic relaxation time t of a superparamagnet
follows the Neel-Arrhenius law

v =fyexp(—AU /kpT), (7)
where kj is the Boltzmann constant, 7'is temperature,
AU, f, is the pre-exponential factor or frequency
factor, which for permalloy nanoparticles is 10'? s~
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[44, 5, 45]. Ising-like behavior of the nanoparticle is
achieved through shape anisotropy in the absence of
other magnetic anisotropy sources (permalloy).

Let's consider the relaxation time of an individual
nanoparticle without external field influence. Then
AU = KV, where V is the particle volume, K is the
magnetic anisotropy energy density. Shape anisotropy
along the d € {x,y,z} axis is defined as [46]

1 2
Ky = Mo Ny M=,
where p,, is the magnetic constant, M is the residual
magnetization of the material, /V is the demagnetizing

factor.

At room temperature 7 =290 K for bulk
permalloy M =800 kA/m [7], but for a film with
thickness of 2.6 nm M =100 kA/m [5].

The method for determining N, is presented in
work [47] for ellipsoids and refined in [48] for prisms.
N, = 0.14036 along the direction of the long side of
the prism.

The magnitude of the energy barrier caused by
shape anisotropy without the influence of other
forces will be AU = 6.87 - 102° J, or 0.43 eV, which

corresponds to © = 2.89-107 s.

Let's consider the average energy of dipole-dipole
interaction from Monte Carlo simulation results:

AU= KV +(E)/N,

where FE is defined by formula (2), and the value
of (E) is taken in absolute terms. We obtain
(E)/N =8.09- 10721 J, or 0.05 eV, which corresponds
to 1 =2.18-10"*s.

With decreasing 7'the M permalloy increases and,
consequently, AU, increases, which will lead to a
rapid increase in t. Estimating the dependence of M
on 7 for a nanoparticle is the subject of additional
research and is beyond the scope of this article. For
example, at 7 =250 K and M =120 kA/m we
obtain t =38 s.

The presented estimates are in the order of seconds
and correspond to the experiment [49](Fig. 4b).
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