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Abstract. An explanation is provided for why the Bruggeman equation is unsuitable for calculating the effective
permittivity of a composite material containing a filler with negative permittivity. Formulas have been derived
for calculating the effective permittivity of a composite containing spherical nanoparticles of filler with negative
permittivity. These formulas can be used in producing composite materials with specified permittivity when
metal nanoparticles are used as fillers in composites. The existence of a non-monotonic “resonant” dependence
of the effective dielectric permittivity on the concentration of filler nanoparticles is predicted in these cases.

DOI: 0.31857/5004445102411¢038

1. INTRODUCTION

One of the important advantages of composite
material is that by varying the volume concentration
of filler nanoparticles in its matrix, it is possible
to manufacture artificial material with a specified
value of effective permittivity. In particular, the
use of such composite materials in multilayer
bandpass filters, which belong to frequency-selective
surfaces of microwave and optical ranges, allows to
significantly reduce the number of dielectric layers in
the structure and thereby considerably enhance their
frequency-selective properties [1]. This enhancement
is expressed in the expansion of the lower and upper
stopbands of the filter at a fixed bandwidth.

For calculating the effective dielectric permittivity
of composite materials, the Bruggeman equation is
widely used [2]. In the case of isotropic composites
containing spherical isotropic particles, this equation
takes the form

e — ¢ em —¢°
e T O

g" + 2¢°
where ¢, is the relative volume concentration of filler
particles in the composite material matrix, &” and & are
the relative dielectric permittivities of the composite
matrix material and its filler material respectively, €°

(1

is the relative effective dielectric permittivity of the
composite material. This equation was obtained in
the quasi-static approximation, which assumes that
the dimensions of each particle of the composite
material are small compared to the wavelength both
in the particle itself and in the composite material. The
dipole interaction between composite particles was
taken into account in the effective field approximation,
describing the effect on a selected particle from other
surrounding particles. This approximation became
known as the effective medium approximation [3] or
effective medium theory [4]. The solution to equation
(1) is expressed by the formula

p _H+H” +8" ¢

4 bl

(2)

where
H =(2-3¢c)e" + (¢ -ne.

The generalization of equation (1) to the case
when the sizes of spherical particles are comparable
to the wavelength in the filler material, but remain
much smaller than the wavelength in the composite
material, is most easily accomplished by making the
substitution in equation (1) [5]
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g — &J(k'a), 3)

where k' = \Je'n' ®/c is the wave number for the i-th
material, (i = m, f),a is the particle radius, and the
function J(x) is given by the formula

1 — xctg(x)
x2 4 xctg(x) — 1

J(x)=2 (4)
This function becomes equal to one when x = 0.

The generalization of equation (1) for the case
of anisotropic composite materials containing co-
directed ellipsoidal particles made of isotropic
materials is written as a system of equations [6—8]

(I—c)(E™ —¢€5) _

e m e
&) +Nj(8 —sj)

cf(af—s‘j"-)
8;+Nj(8f—8§)

0,

where sj are the diagonal elements of the tensor
of relative effective permittivity ¢ of the composite
material, index j numbers the coordinate axes x, y, z,
coinciding with the axes of co-directed ellipsoidal
particles, N; are the depolarization coefficients of
ellipsoidal particles of the composite. Equations
(5) express the requirement that the sum of electric
dipole moments p’ of all particles, both matrix and
filler, contained in any sufficiently large selected
volume of composite material, equals zero. Note that
the components of the complex vector p’ of dipole
moment of the i-th particle in an anisotropic medium
with relative permittivity tensor ¢ are expressed by
the formula [9]

ei (e —¢%) 6 B0, ©

e i e 0=y
g; +N;(e —¢;)

i =i

where g is the absolute permittivity of free space,
EY is the complex amplitude of the electric field in the
anisotropic surrounding medium, V7 is the volume, &
is the relative permittivity of the material of the i-th
particle.

Further, harmonic electromagnetic oscillations
will be described by the multiplier exp(—iw?). In this
case, the imaginary part of any of the considered
permittivities cannot take negative values.

Depolarization coefficients N; are known as elements
of the depolarization tensor N, which describe the
relationship between the electric field Ef inside the
sample and the field E° in the space surrounding the
sample. When the sample has an ellipsoidal shape, and
its axes &° are directed along the tensor axes, describing
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the dielectric properties of the surrounding medium,
this relationship is expressed by the formula [9]

e
El = i EY
J ' i’
e + N;(e' — &)

(7

where €’ is the relative dielectric permittivity of the
isotropic material of the th sample. For a spherical
sample in an isotropic medium, the depolarization
coefficient N; does not depend on dielectric
permittivities e’, €¢ and takes a fixed value for any
direction j. In this case, formula (7) has a simple
form [9]

E—_ 3% go.

B 2e¢ +¢' ®

The mathematical solution of the system of
equations (5) can be written as

. H =R,

T I=N))”

©)
R; = H; +4N;(1-N)e"¢
H; =(1—c; —N)E™ +(c; —N))e .

As noted in [8], traditionally values of coefficients
N; are substituted into equation (5), which are

considered as constants independent of 8‘; and
defined by integrals
* a.a,a,ds
N; = L , (10)

0 2s + @) +a2)(s +ad)(s +ad)

where ay, a,, a, are semi-axes of ellipsoidal composite
particles. From this formula, it follows that

Ny+N,+N, =1 (11)

It is also evident that coefficients N in formula
(10) depend only on the shape of particles, but not
on their sizes and dielectric permittivities ¢” and ¢
In the particular case when the ellipsoid is a spheroid,
i.e. a, =a, =a,, formula (10) is significantly
simplified and takes the form [9]

K2

N, = 3 (arctg — x),
K
1-N
N, =N, =——=, (12)
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However, formula (12) was obtained for a
spheroidal sample located only in an isotropic
medium [9]. This means that its use for samples in
anisotropic media is invalid. Therefore, in [8] for
the depolarization coefficients N;, it is proposed to
use another formula, which is rigorous but more
complex. It coincides with formula (10) if instead
of semi-axes a, and a, one uses the semi-axes of the

reduced spheroid [10]
a =a e, a=a /e

Thus, the depolarization coeficients N, in equations
(5) are not constants but functions of concentration ¢,
They must be found together with functions &5 (c;) by
jointly solving the system of equations (9), (10), and
(13). Note that coefficients N, and N,, according to
formulas (12) and (13), can take complex values when
the ratio &}, /e ceases to be real. These facts were
pointed out in work [8]. Comparison of calculation
results sj-, performed using both the traditional and
rigorous formula for depolarization coefficients N;, was
conducted in work [11].

(13)

Further, we will consider the case of a composite
material that is isotropic with respect to a uniform
electric field E°. For definiteness, we will assume
that this field is directed along the axis z. Therefore,
we will call the effective dielectric permittivity of the
composite & the diagonal element & of tensor &°,
which describes the properties of the medium with
respect to inhomogeneous local fields of particle
scattering E*. The depolarization coefficient N,
corresponding to element 827 will be called the
diagonal element N,. Then the equation for the
effective dielectric permittivity ¢, according to
formula (9), takes the form

. H=EJR

€ —m, (14)

H=(l-c, —N)E" +(c; —N),
R=H?+4N(1-N)e"¢ .

This ambiguous formula, when choosing the plus
sign and N = 1/3, coincides with formula (2).

2. UNSOLVED PROBLEM

A significant disadvantage of the Bruggeman
equation (1) is that for negative values of & there
exists a range of concentration values ¢g, in which the
effective dielectric permittivity &€, calculated using

TYURNEV

formula (2), takes complex values even with real
values of ¢” and ¢/. The lower and upper boundaries
of this range for real €” and & are expressed by the
formula

22(\/28_’”$\/3)2‘

15
3" —¢) (1)

S

However, a complex value of & in the absence
of dielectric losses is inadmissible, as it indicates an
unstable state of the composite material, manifested
in the change of amplitude of a plane electromagnetic
wave as it propagates. This drawback of equation (1)
was pointed out in work [12].

Another disadvantage is that at 2¢” +¢ <0
formula (2) at point ¢, = 0 instead of value &° = &"”
gives value €° = ,8//2, and at ¢" +2¢ <0 at
point ¢, =1 instead of value ¢ =¢ gives value
g = —" /2. However, this drawback is easily
eliminated if in formula (2) we choose the opposite
sign before the square root sign, i.e., choose another

root of the quadratic equation (1).

In the optical range, metals possess negative
dielectric permittivity [13, 14].

The purpose of this work is to calculate the
concentration dependence of the effective dielectric
permittivity &° (cr) of an isotropic non-magnetic
composite material containing a filler with negative
dielectric permittivity &

3. CAUSE OF THE PROBLEM

The indicated problem arose as a result of an
erroneous assumption that an isotropic composite
medium always exhibits isotropic properties not only
in relation to a uniform polarizing field E°, but also in
relation to localized inhomogeneous scattering fields
E* generated by polarized particles of the medium,
which have components orthogonal to the field E°.

In reality, a polarized composite medium, being
isotropic with respect to a uniform field E°, cannot
maintain its isotropic properties with respect to
micro-inhomogeneous fields ES if ¢” and ¢ have
opposite signs. Otherwise, i.e., with isotropic
depolarization coefficients N;, the polarized
composite medium will be in an unstable state with
respect to fields E’, as indicated by the appearance
of an imaginary part at real values of ¢” and ¢/, as
noted above.

JETP, Vol. 166, No. 5(11), 2024
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The dependence of the particle scattering field
structure ES on the anisotropic properties of the
surrounding medium, described by tensor &°, can be
judged by formulas

2 2 2
X 3Py 3pexe pyyt pak
& £ & & &
EP o= X y 2 y z
X b
2 2 2172
X 4
4re, 5 |5 € € LRI AR
XA[TX Y T2 e e e
N :

e e + e e a
€ € € € €
B =5 c % % ()
5/2
52 2 2
e e e e
dmeg €y ey €y & |+ +
X 8)/ Z
2 2
2.2 3puxz  3PyY2 pxT pry
e e e e e
g = &, € €, € €,
< 5/2
x? oy 2
drey €5 €% €8 el |— + 7+
TA[TX Y TR e e e
& & &
These expressions follow from formula
e _e e e e e
» €, 8, Py X +EE, P,y + €8, D, 2 (17)
3/2°

dmeg[es €) €5 (x? /el +y2/8; + zz/si )]

which describes in the quasi-static approximation
the potential of a point dipole moment p in an
anisotropic medium. In turn, formula (17) itself is
derived from the known formula [9]

q — q
4n80\/ai &) ai(xz/efc +y2/8; +Zz/8§)

® (18)

for the Coulomb potential of a point charge ¢ in an
anisotropic surrounding medium and the known
relation [15]

4

(19)

_p q
" = —=—grado®,
q

expressing the potential ¢’ of a point dipole moment

p through the Coulomb potential ¢? of a point charge.

Thus, the error in calculating the effective dielectric
permittivity of an isotropic composite material
occurred because equation (14) did not account for
the dependence of the depolarization coefficient N on
the field structure E*, which, in turn, depends on the
concentration ¢ That is, the depolarization coefficient
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was assigned a fixed value N = 1/3, which turned the
correct formula (14) into the erroneous formula (2).

Therefore, the purpose of this work is reduced
to calculating the concentration dependence of the
depolarization coefficient N(cy), which is used in
formula (14) when calculating the effective dielectric
permittivity £°(cy) of an isotropic composite material
containing a filler with negative dielectric permittivity ¢’.

4. PROBLEM SOLUTION

Let’s first consider the case when dielectric losses
in an isotropic composite material are absent and
therefore the dielectric permittivities €”, ¢ and &¢
take real values. This case is interesting because there
are several points of concentration values ¢, where
the values of N and €€ are known in advance.

The most important of these points is the
concentration point ¢, where &¢ takes a zero value.
The existence of a “zero” point in the region
0 <¢, <1 follows from the continuity condition of
the real function &°(cy) and its boundary conditions

e (c —o=¢" >0,
(f)|cf 0
eC _—8f<0.
8(f)lcf—l

The simultaneous zeroing of the function N(cy) at
the “zero” point follows from formulas (12), (13). From
equation (5), we find the value ¢, for the “zero” point:

¢, =" J(e" — ). (20)
We note that at this point, the expression under
the radical R, used in formula (14), becomes zero.
Two other important values of ¢,are the boundary
points ¢,= 0 and ¢, = 1, where &° takes values ¢” and
¢ respectively. To find the value of N at such points,
we can use the formula

cref

N (1—c/)e’

e —¢

which is derived from equation (5). From this, we
find the values N:

N = Q1)
g€ —¢

e” ¢
im N = ———, im N =—— (22
chgl e — ¢ cjlrlrgl e " 22)
Se*)Sm Seﬂef

We note that at these two extreme points, as at
the “zero” point, the expression under the radical R
becomes zero.
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Fig. 1. Concentration dependencies of particle depolarization  Fig. 3. Dependence Im £°(cy), calculated using formulas (26) and
coefﬁc7ient. l—em=7,¢=-32-¢"=5¢=-53-¢"=3, (23) and subject to recalculation using formulas (27) and (23)
Sf: —
By definition, the effective dielectric permittivity
6 ' ' ' ' ] €°(cy) of an isotropic composite medium is a unique
value that can take only one single value. Its imaginary
4 ] part in the presence of dielectric losses must be only
positive at any concentration ¢, and in the absence of
2F . losses must equal zero. From the uniqueness e°(cy) it
follows that in formula (14) the expression under the
w0 I root R must equal zero. Hence, to find the desired
dependence N(cy) we obtain the missing equation:
—2+ 2 _|
m
o (Lmep = N)" +(ef — N)e R
L 3 2(1-N)
6+ From the equality itself R = 0 follows the equation
0.0 0.2 0.4 0.6 0.8 1.0

cf

Fig. 2. Concentration dependencies of effective dielectric
permittivity. | —e” =7, ¢/ =-3;2—¢" =5, =—-5;3—¢"=3,
f=-7

Let’s consider two more points c¢; and c,, given by
formula (15). At these points, as we already know, the
real solutions of the partial equation (1), expressed
by formula (2), coincide with solutions (14) of the
generalized equation (5) at N = 1/3. It means that
the expression under the radical R becomes zero at
these two points of values cy.

Thus, the known partial solutions of equation (14)
for the five points of value ¢, mentioned above can
serve as a criterion for verifying the correctness of
the sought solution &°(cy) across the entire range of
values f,.

[(1—¢; —N)e" +(c, — N + (24)
+4N(1—N)e"e =o.

Its solution is expressed by a two-valued formula:

l\/(l—cf)am j:\/—cfefr
L .

In the absence of dielectric losses, as we have
already noted, there exists a “zero” point ¢, where
N(cp) becomes zero. Therefore, formula (24) in the
absence of dielectric losses takes the form

O e
e — ¢ .
Dependencies N(cy) and €%(c), defined by formulas

(26) and (23), are illustrated by the graphs shown in
Fig. 1 and Fig. 2 for three sets of real values ¢” and &

(25)

(26)
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Fig. 4. Dependencies Im &°(cy) and R °(c)), calculated using
formulas (27) and (23)

It can be seen that the dependencies N(c)) are
described by continuous smooth functions with one
minimum at the zero level. Dependencies £°(c,) are
described by continuous smooth decreasing functions
intersecting the zero level.

In the presence of dielectric losses, from the two
values N(cy) in the two-valued formula (24), one should
choose the value at which the imaginary part (¢ does

not take negative values at any concentration value Cr

An example where the imaginary part of the function
e°(¢y), calculated using formula (26), takes a negative
value, is shown in the graph in Fig. 3.

In this case, instead of formula (26), one should
use formula

v [ —c)e™ + \—c e I
e — ¢
The result of alternative calculation of dependence
e%(cy) using formulas (23) and (27), which prevents

(27)
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Fig. 5. Dependencies Im N(cp) and R N(cy), calculated using
formula (27)

the occurrence of negative values Im ¢¢ at the same
parameter values €” and ¢/, is shown in Fig.4. The
corresponding dependence N(c,), calculated using
formula (27), is presented in Fig. 5.

The concentration dependency curves in Fig. 4
resemble frequency resonance curves. Let’s try
to provide not a rigorous but at least a simplified
explanation for this unexpected phenomenon. Each
nanoparticle of the composite will be simplistically
considered as a reactive two-terminal network.
For this, we first write the formula for complex
conductivity of a parallel oscillatory circuit

Yo =1/R+i/(0Ll)—ioCje (28)
and the formula for complex impedance of a series
oscillatory circuit

Zyr =R —iol —i/(oCe). (29)
Here ¢ is the relative dielectric permittivity of
the material filling the capacitor, and C, is the
capacitance when ¢ = 1.

Both from formula (28) and formula (29), it is
evident that when R ¢ < 0 the sign of the reactive
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Fig. 6. Dependencies £°(cy) at frequency 426 THz, calculated
using formulas (23) and (26)

part of the capacitor impedance coincides with the
sign of the reactive part of the inductance impedance.
This means that the nanoparticles of the composite
filler with negative dielectric permittivity & will
exhibit only inductive properties.

In the case of R € >0 the sign of the reactive
part of the capacitor impedance is opposite to the
sign of the reactive part of the inductance impedance.
Therefore, the matrix nanoparticles of the composite,
having positive dielectric permittivity €™, can exhibit
both capacitive and inductive properties, depending
on whether the capacitive or inductive term of the
reactive part is larger.

In cases where matrix nanoparticles exhibit
capacitive properties, they, together with the filler
nanoparticles with inductive properties will represent
a system whose dielectric properties depend on the
filler concentration in a “resonant” manner c. At
the “resonant” concentration, the real part of the
effective dielectric permittivity €° becomes zero,
while the imaginary part reaches its maximum value.
Below the “resonant” concentration, the composite

cf

Fig. 7. Dependencies £°(cy) at frequency 510 THz, calculated
using formulas (23) and (26)

material has an effective dielectric permittivity &€
where the real part is positive. Above the “resonant”
concentration, the real part is negative.

Note that the obtained solution, expressed by
formulas (26), (27), is in complete agreement with
the previously known solutions of the problem for the
five indicated points ¢, This solution also satisfies the
boundary conditions

m

(e, —g =€",
(f)|cf 0

Se(Cf)|cf=1 = 8f

5. CALCULATION EXAMPLES FOR
POLYSTYRENE FILLED WITH SILVER
NANOPARTICLES

As an example, we present the calculation
results of the effective dielectric permittivity of a
composite, where polystyrene is the matrix and silver
nanoparticles are the filler. The calculation will be
performed using formulas (26), (27), and (23) at

JETP, Vol. 166, No. 5(11), 2024
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Fig. 8. Dependencies €%(¢cy) at a frequency of 688 THz, calculated
using formulas (23) and (26)

three frequencies of the visible optical range and one
frequency of the invisible ultraviolet range.

The first calculation was performed for a
frequency of 426 THz, corresponding to the red
color range. At this frequency, polystyrene has a
dielectric permittivity €™ = 2.503 [16], and silver
¢/ = —23.4 + i0.495 [14]. The result of calculating
the complex effective dielectric permittivity of the
composite is shown in Fig. 6.

The second calculation was performed for a
frequency of 510 THz, corresponding to the yellow
color range. At this frequency, polystyrene has a
dielectric permittivity €™ = 2.534 [16], and silver
¢/ = —15.18 + i0.389 [14]. The result of calculating
the effective dielectric permittivity of the composite
is shown in Fig. 7.

The third calculation was performed for a frequency
of 688 THz, corresponding to the violet color range. At
this frequency, polystyrene has a dielectric permittivity
e =2.608 [16], and silver & = —6.415 + i0.262
[14]. The result of calculating the effective dielectric
permittivity of the composite is shown in Fig. 8.
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Fig. 9. Dependencies £°(cy) at a frequency of 914 THz, calculated
using formulas (23) and (27)

The fourth calculation was performed for a
frequency of 914 THz, corresponding to the invisible
ultraviolet range. At this frequency, polystyrene has
a dielectric permittivity £” =1.59 [17], and silver —
¢ =—0.94 + i0.38 [14]. The result of calculating the
effective dielectric permittivity of the composite is
shown in Fig. 9.

The presented results of calculating the effective
dielectric permittivity of a composite material, where
polystyrene serves as the matrix and silver nanoparticles
as the filler, show that across the entire visible optical
frequency range, the concentration dependencies
Reef(c,) and Ime®(cy) are continuous monotonic
functions. Only in the ultraviolet frequency range, the
concentration dependence £°(cy) ceases to be monotonic
and exhibits “resonant” properties.

6. CONCLUSIONS

The paper shows that the reason why the Bruggeman
equation (1) does not allow calculating the effective
dielectric permittivity £(c,) of an isotropic composite
material containing spherical filler particles with



592

negative dielectric permittivity is the use of an erroneous
assumption in its derivation that the depolarization
coefficient N for any of its particles in a polarized
composite is always equal to 1/3.

In reality, the depolarization coefficient N
at negative values of the real part of the filler’s
dielectric permittivity ¢ is a function of the volume
concentration of the filler ¢,in the composite matrix.
To calculate the dependence N(cy), a two-valued
formula (24) was obtained. For given parameter
values ¢” and ¢/, one should exclude from the two
values N the value that does not ensure a stable state
of the composite material. The criterion for material
state instability in the presence of dielectric losses is a
negative value of the imaginary part of €°(cy) in at least
some range of values ¢y In the absence of dielectric
losses, in the two-valued formula (25), one should
choose the value N expressed by the single-valued
formula (26). To calculate €%(cy) corresponding to
the chosen value N(cy), formula (23) was obtained.

The numerical calculations performed &°(cy) using
the obtained formulas showed that the dependence
&°(cp) is not always monotonic. When the real part ™
is sufficiently large compared to |¢/|, the dependence
£°(cy) resembles a frequency resonance curve.

The results of this work may be useful in
developing composite materials with specified
effective dielectric permittivity values for their use in
optical range devices.
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