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1. INTRODUCTION

One of the important advantages of composite 
material is that by varying the volume concentration 
of filler nanoparticles in its matrix, it is possible 
to manufacture artificial material with a specified 
value of effective permittivity. In particular, the 
use of such composite materials in multilayer 
bandpass filters, which belong to frequency-selective 
surfaces of microwave and optical ranges, allows to 
significantly reduce the number of dielectric layers in 
the structure and thereby considerably enhance their 
frequency-selective properties [1]. This enhancement 
is expressed in the expansion of the lower and upper 
stopbands of the filter at a fixed bandwidth.

For calculating the effective dielectric permittivity 
of composite materials, the Bruggeman equation is 
widely used [2]. In the case of isotropic composites 
containing spherical isotropic particles, this equation 
takes the form
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where cf is the relative volume concentration of filler 
particles in the composite material matrix, em and ef are 
the relative dielectric permittivities of the composite 
matrix material and its filler material respectively, ee 

is the relative effective dielectric permittivity of the 
composite material. This equation was obtained in 
the quasi-static approximation, which assumes that 
the dimensions of each particle of the composite 
material are small compared to the wavelength both 
in the particle itself and in the composite material. The 
dipole interaction between composite particles was 
taken into account in the effective field approximation, 
describing the effect on a selected particle from other 
surrounding particles. This approximation became 
known as the effective medium approximation [3] or 
effective medium theory [4]. The solution to equation 
(1) is expressed by the formula
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The generalization of equation (1) to the case 
when the sizes of spherical particles are comparable 
to the wavelength in the filler material, but remain 
much smaller than the wavelength in the composite 
material, is most easily accomplished by making the 
substitution in equation (1) [5]
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where k ci i i= ε µ ω/  is the wave number for the i-th 
material, ( ),i m f a= , is the particle radius, and the 
function J(x) is given by the formula
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This function becomes equal to one when x = 0.
The generalization of equation (1) for the case 

of anisotropic composite materials containing co-
directed ellipsoidal particles made of isotropic 
materials is written as a system of equations [6–8]
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where e j
e  are the diagonal elements of the tensor 

of relative effective permittivity ee of the composite 
material, index j numbers the coordinate axes x, y, z, 
coinciding with the axes of co-directed ellipsoidal 
particles, Nj are the depolarization coefficients of 
ellipsoidal particles of the composite. Equations 
(5) express the requirement that the sum of electric 
dipole moments pi of all particles, both matrix and 
filler, contained in any sufficiently large selected 
volume of composite material, equals zero. Note that 
the components of the complex vector pi of dipole 
moment of the i-th particle in an anisotropic medium 
with relative permittivity tensor ee are expressed by 
the formula [9]
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where e0 is the absolute permittivity of free space, 
E0 is the complex amplitude of the electric field in the 
anisotropic surrounding medium, V i is the volume, ei 
is the relative permittivity of the material of the i-th 
particle.

Further, harmonic electromagnetic oscillations 
will be described by the multiplier exp .( )-i tω  In this 
case, the imaginary part of any of the considered 
permittivities cannot take negative values.

Depolarization coefficients Nj are known as elements 
of the depolarization tensor N, which describe the 
relationship between the electric field Ei inside the 
sample and the field E0 in the space surrounding the 
sample. When the sample has an ellipsoidal shape, and 
its axes ee are directed along the tensor axes, describing 

the dielectric properties of the surrounding medium, 
this relationship is expressed by the formula [9]
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where ei is the relative dielectric permittivity of the 
isotropic material of the th sample. For a spherical 
sample in an isotropic medium, the depolarization 
coefficient Nj does not depend on dielectric 
permittivities ei, ee and takes a fixed value for any 
direction j. In this case, formula (7) has a simple 
form [9]
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The mathematical solution of the system of 
equations (5) can be written as
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As noted in [8], traditionally values of coefficients 
Nj are substituted into equation (5), which are 
considered as constants independent of e j

e  and 
defined by integrals
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where ax, ay, az are semi-axes of ellipsoidal composite 
particles. From this formula, it follows that

	 N N Nx y z+ + = 1. � (11)

It is also evident that coefficients Nj in formula 
(10) depend only on the shape of particles, but not 
on their sizes and dielectric permittivities em and ef. 
In the particular case when the ellipsoid is a spheroid, 
i.e. a a ax y z= ¹ ,  formula (10) is significantly 
simplified and takes the form [9]
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However, formula (12) was obtained for a 
spheroidal sample located only in an isotropic 
medium [9]. This means that its use for samples in 
anisotropic media is invalid. Therefore, in [8] for 
the depolarization coefficients Nj, it is proposed to 
use another formula, which is rigorous but more 
complex. It coincides with formula (10) if instead 
of semi-axes ax and az one uses the semi-axes of the 
reduced spheroid [10]

	 ¢ ¢a a a ax x x
e

z z z
e= , = ./ /e e � (13)

Thus, the depolarization coefficients Nj in equations 
(5) are not constants but functions of concentration cf. 
They must be found together with functions e j

e
fc( )  by 

jointly solving the system of equations (9), (10), and 
(13). Note that coefficients Nx and Nz, according to 
formulas (12) and (13), can take complex values when 
the ratio e ex

e
z
e/  ceases to be real. These facts were 

pointed out in work [8]. Comparison of calculation 
results e j

e ,  performed using both the traditional and 
rigorous formula for depolarization coefficients Nj, was 
conducted in work [11].

Further, we will consider the case of a composite 
material that is isotropic with respect to a uniform 
electric field E0. For definiteness, we will assume 
that this field is directed along the axis z. Therefore, 
we will call the effective dielectric permittivity of the 
composite ee the diagonal element ez

e  of tensor ee, 
which describes the properties of the medium with 
respect to inhomogeneous local fields of particle 
scattering Es. The depolarization coefficient  N, 
corresponding to element ez

e ,  will be called the 
diagonal element Nz. Then the equation for the 
effective dielectric permittivity ee, according to 
formula (9), takes the form
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This ambiguous formula, when choosing the plus 
sign and N = 1/3, coincides with formula (2).

2. UNSOLVED PROBLEM

A significant disadvantage of the Bruggeman 
equation (1) is that for negative values of ef there 
exists a range of concentration values cf, in which the 
effective dielectric permittivity ee, calculated using 

formula (2), takes complex values even with real 
values of em and ef. The lower and upper boundaries 
of this range for real em and ef are expressed by the 
formula

	 c
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However, a complex value of ee in the absence 
of dielectric losses is inadmissible, as it indicates an 
unstable state of the composite material, manifested 
in the change of amplitude of a plane electromagnetic 
wave as it propagates. This drawback of equation (1) 
was pointed out in work [12].

Another disadvantage is that at 2 < 0e em f+  
formula (2) at point cf = 0  instead of value e ee m=  
gives value e ee f= 2- / ,  and at e em f+ 2 < 0  at 
point cf = 1  instead of value e ee f=  gives value 
e ee m= 2- / .  However, this drawback is easily 
eliminated if in formula (2) we choose the opposite 
sign before the square root sign, i.e., choose another 
root of the quadratic equation (1).

In the optical range, metals possess negative 
dielectric permittivity [13, 14].

The purpose of this work is to calculate the 
concentration dependence of the effective dielectric 
permittivity ee

fc( )  of an isotropic non-magnetic 
composite material containing a filler with negative 
dielectric permittivity ef.

3. CAUSE OF THE PROBLEM

The indicated problem arose as a result of an 
erroneous assumption that an isotropic composite 
medium always exhibits isotropic properties not only 
in relation to a uniform polarizing field E0, but also in 
relation to localized inhomogeneous scattering fields 
Es generated by polarized particles of the medium, 
which have components orthogonal to the field E0.

In reality, a polarized composite medium, being 
isotropic with respect to a uniform field E0, cannot 
maintain its isotropic properties with respect to 
micro-inhomogeneous fields Es if em and ef have 
opposite signs. Otherwise, i.e., with isotropic 
depolarization coefficients Nj, the polarized 
composite medium will be in an unstable state with 
respect to fields Es, as indicated by the appearance 
of an imaginary part at real values of em and ef, as 
noted above.
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The dependence of the particle scattering field 
structure Es on the anisotropic properties of the 
surrounding medium, described by tensor ee, can be 
judged by formulas
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These expressions follow from formula
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which describes in the quasi-static approximation 
the potential of a point dipole moment p in an 
anisotropic medium. In turn, formula (17) itself is 
derived from the known formula [9]
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for the Coulomb potential of a point charge q in an 
anisotropic surrounding medium and the known 
relation [15]

	 j jp q

q
= ,-

p
grad � (19)

expressing the potential jp of a point dipole moment 
p through the Coulomb potential jq of a point charge.

Thus, the error in calculating the effective dielectric 
permittivity of an isotropic composite material 
occurred because equation (14) did not account for 
the dependence of the depolarization coefficient N on 
the field structure Es, which, in turn, depends on the 
concentration cf. That is, the depolarization coefficient 

was assigned a fixed value N = 1/3, which turned the 
correct formula (14) into the erroneous formula (2).

Therefore, the purpose of this work is reduced 
to calculating the concentration dependence of the 
depolarization coefficient N(cf), which is used in 
formula (14) when calculating the effective dielectric 
permittivity ee(cf) of an isotropic composite material 
containing a filler with negative dielectric permittivity ef.

4. PROBLEM SOLUTION

Let’s first consider the case when dielectric losses 
in an isotropic composite material are absent and 
therefore the dielectric permittivities em, ef and ee 
take real values. This case is interesting because there 
are several points of concentration values cf, where 
the values of N and ee are known in advance.

The most important of these points is the 
concentration point cf, where ee takes a zero value. 
The existence of a “zero” point in the region 
0 < < 1cf  follows from the continuity condition of 
the real function ee(cf) and its boundary conditions

e ee
f cf

mc( ) | = > 0,=0

e ee
f cf

fc( ) | = < 0.=1

The simultaneous zeroing of the function N(cf) at 
the “zero” point follows from formulas (12), (13). From 
equation (5), we find the value cf for the “zero” point:
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We note that at this point, the expression under 
the radical R, used in formula (14), becomes zero.

Two other important values of cf are the boundary 
points cf = 0 and cf = 1, where ee takes values em and 
ef respectively. To find the value of N at such points, 
we can use the formula
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which is derived from equation (5). From this, we 
find the values N:
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We note that at these two extreme points, as at 
the “zero” point, the expression under the radical R 
becomes zero.
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Let’s consider two more points c1 and c2, given by 
formula (15). At these points, as we already know, the 
real solutions of the partial equation (1), expressed 
by formula (2), coincide with solutions (14) of the 
generalized equation (5) at N = 1/3. It means that 
the expression under the radical R becomes zero at 
these two points of values cf.

Thus, the known partial solutions of equation (14) 
for the five points of value cf mentioned above can 
serve as a criterion for verifying the correctness of 
the sought solution ee(cf) across the entire range of 
values fc.

By definition, the effective dielectric permittivity 
ee(cf) of an isotropic composite medium is a unique 
value that can take only one single value. Its imaginary 
part in the presence of dielectric losses must be only 
positive at any concentration cf, and in the absence of 
losses must equal zero. From the uniqueness ee(cf) it 
follows that in formula (14) the expression under the 
root R must equal zero. Hence, to find the desired 
dependence N(cf) we obtain the missing equation:
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From the equality itself R = 0 follows the equation
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Its solution is expressed by a two-valued formula:
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In the absence of dielectric losses, as we have 
already noted, there exists a “zero” point cf, where 
N(cf) becomes zero. Therefore, formula (24) in the 
absence of dielectric losses takes the form

	 N
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Dependencies N(cf) and ee(c), defined by formulas 
(26) and (23), are illustrated by the graphs shown in 
Fig. 1 and Fig. 2 for three sets of real values em and ef.
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Fig. 1. Concentration dependencies of particle depolarization 
coefficient. 1 – em = 7, ef = –3; 2 – em = 5, ef = –5; 3 – em = 3, 
ef = –7

Fig. 3. Dependence Im ee(cf), calculated using formulas (26) and 
(23) and subject to recalculation using formulas (27) and (23)

Fig. 2. Concentration dependencies of effective dielectric 
permittivity. 1 – em = 7, ef = –3; 2 – em = 5, ef = –5; 3 – em = 3, 
ef = –7
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It can be seen that the dependencies N(cf) are 
described by continuous smooth functions with one 
minimum at the zero level. Dependencies ee(cf) are 
described by continuous smooth decreasing functions 
intersecting the zero level.

In the presence of dielectric losses, from the two 
values N(cf) in the two-valued formula (24), one should 
choose the value at which the imaginary part ee(cf) does 
not take negative values at any concentration value cf. 
An example where the imaginary part of the function 
ee(cf), calculated using formula (26), takes a negative 
value, is shown in the graph in Fig. 3.

In this case, instead of formula (26), one should 
use formula

	 N
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The result of alternative calculation of dependence 
ee(cf) using formulas (23) and (27), which prevents 

the occurrence of negative values Im ee at the same 
parameter values em and ef, is shown in Fig.4. The 
corresponding dependence N(cf), calculated using 
formula (27), is presented in Fig. 5.

The concentration dependency curves in Fig. 4 
resemble frequency resonance curves. Let’s try 
to provide not a rigorous but at least a simplified 
explanation for this unexpected phenomenon. Each 
nanoparticle of the composite will be simplistically 
considered as a reactive two-terminal network. 
For this, we first write the formula for complex 
conductivity of a parallel oscillatory circuit

	 Y i L i Cpar = 1 ( ) 0/ /R + −ω ω ε � (28)

and the formula for complex impedance of a series 
oscillatory circuit

	 Z i L i Cser = ( ).0R - -ω ω ε/ � (29)

Here e is the relative dielectric permittivity of 
the material filling the capacitor, and C0 is the 
capacitance when e = 1.

Both from formula (28) and formula (29), it is 
evident that when R e < 0  the sign of the reactive 
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Fig. 5. Dependencies Im N(cf) and R N(cf), calculated using 
formula (27)
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part of the capacitor impedance coincides with the 
sign of the reactive part of the inductance impedance. 
This means that the nanoparticles of the composite 
filler with negative dielectric permittivity ef will 
exhibit only inductive properties.

In the case of R  e > 0  the sign of the reactive 
part of the capacitor impedance is opposite to the 
sign of the reactive part of the inductance impedance. 
Therefore, the matrix nanoparticles of the composite, 
having positive dielectric permittivity em, can exhibit 
both capacitive and inductive properties, depending 
on whether the capacitive or inductive term of the 
reactive part is larger.

In cases where matrix nanoparticles exhibit 
capacitive properties, they, together with the filler 
nanoparticles with inductive properties will represent 
a system whose dielectric properties depend on the 
filler concentration in a “resonant” manner cf. At 
the “resonant” concentration, the real part of the 
effective dielectric permittivity ee becomes zero, 
while the imaginary part reaches its maximum value. 
Below the “resonant” concentration, the composite 

material has an effective dielectric permittivity ee 
where the real part is positive. Above the “resonant” 
concentration, the real part is negative.

Note that the obtained solution, expressed by 
formulas (26), (27), is in complete agreement with 
the previously known solutions of the problem for the 
five indicated points cf. This solution also satisfies the 
boundary conditions

e ee
f cf

mc( ) = ,=0|

e ee
f cf

fc( ) = .=1|

5. CALCULATION EXAMPLES FOR 
POLYSTYRENE FILLED WITH SILVER 

NANOPARTICLES

As an example, we present the calculation 
results of the effective dielectric permittivity of a 
composite, where polystyrene is the matrix and silver 
nanoparticles are the filler. The calculation will be 
performed using formulas (26), (27), and (23) at 
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Fig. 6. Dependencies ee(cf) at frequency 426 THz, calculated 
using formulas (23) and (26)

Fig. 7. Dependencies ee(cf) at frequency 510 THz, calculated 
using formulas (23) and (26)
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three frequencies of the visible optical range and one 
frequency of the invisible ultraviolet range.

The first calculation was performed for a 
frequency of 426 THz, corresponding to the red 
color range. At this frequency, polystyrene has a 
dielectric permittivity em  =  2.503 [16], and silver 
ef = –23.4 +  i0.495 [14]. The result of calculating 
the complex effective dielectric permittivity of the 
composite is shown in Fig. 6.

The second calculation was performed for a 
frequency of 510 THz, corresponding to the yellow 
color range. At this frequency, polystyrene has a 
dielectric permittivity em  =  2.534 [16], and silver 
ef = –15.18 + i0.389 [14]. The result of calculating 
the effective dielectric permittivity of the composite 
is shown in Fig. 7.

The third calculation was performed for a frequency 
of 688 THz, corresponding to the violet color range. At 
this frequency, polystyrene has a dielectric permittivity 
em = 2.608  [16], and silver ef  =  –6.415  +  i0.262 
[14]. The result of calculating the effective dielectric 
permittivity of the composite is shown in Fig. 8.

The fourth calculation was performed for a 
frequency of 914 THz, corresponding to the invisible 
ultraviolet range. At this frequency, polystyrene has 
a dielectric permittivity em = 1.59  [17], and silver –
ef = –0.94 + i0.38 [14]. The result of calculating the 
effective dielectric permittivity of the composite is 
shown in Fig. 9.

The presented results of calculating the effective 
dielectric permittivity of a composite material, where 
polystyrene serves as the matrix and silver nanoparticles 
as the filler, show that across the entire visible optical 
frequency range, the concentration dependencies 
Reee

fc( )  and Im ee
fc( )  are continuous monotonic 

functions. Only in the ultraviolet frequency range, the 
concentration dependence ee(cf) ceases to be monotonic 
and exhibits “resonant” properties.

6. CONCLUSIONS

The paper shows that the reason why the Bruggeman 
equation (1) does not allow calculating the effective 
dielectric permittivity ee(cf) of an isotropic composite 
material containing spherical filler particles with 
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Fig. 8. Dependencies ee(cf) at a frequency of 688 THz, calculated 
using formulas (23) and (26)

Fig. 9. Dependencies ee(cf) at a frequency of 914 THz, calculated 
using formulas (23) and (27)
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negative dielectric permittivity is the use of an erroneous 
assumption in its derivation that the depolarization 
coefficient N for any of its particles in a polarized 
composite is always equal to 1/3.

In reality, the depolarization coefficient N 
at negative values of the real part of the filler’s 
dielectric permittivity ef is a function of the volume 
concentration of the filler cf in the composite matrix. 
To calculate the dependence N(cf), a two-valued 
formula (24) was obtained. For given parameter 
values em and ef, one should exclude from the two 
values N the value that does not ensure a stable state 
of the composite material. The criterion for material 
state instability in the presence of dielectric losses is a 
negative value of the imaginary part of ee(cf) in at least 
some range of values cf. In the absence of dielectric 
losses, in the two-valued formula (25), one should 
choose the value N expressed by the single-valued 
formula (26). To calculate ee(cf) corresponding to 
the chosen value N(cf), formula (23) was obtained.

The numerical calculations performed ee(cf) using 
the obtained formulas showed that the dependence 
ee(cf) is not always monotonic. When the real part em 
is sufficiently large compared to | ef |, the dependence 
ee(cf) resembles a frequency resonance curve.

The results of this work may be useful in 
developing composite materials with specified 
effective dielectric permittivity values for their use in 
optical range devices.
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