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1. INTRODUCTION

The rotating wave approximation (RWA) is 
a method of simplifying systems of differential 
equations describing a physical model, used in 
quantum optics and quantum magnetic phenomena. 
In the system of equations, components containing 
high-frequency operators are discarded, and when 
solving the system, only low-frequency processes 
that occur slowly over time are taken into account. 
Typically, the possibility of separating the processes 
existing in the model into high-frequency and low-
frequency components is related to the presence of 
close frequencies, such as the transition frequency 
between atomic energy levels and the frequency of 
the acting field in quantum optics. The difference 
between these closely spaced frequencies corresponds 
to the low-frequency component, while their sum 
represents the high-frequency component.

The work of Bloch and Siegert [3] is considered [1, 
2] the first successful application of the rotating wave 
approximation, which examines the Schrödinger 
equation for a particle with spin 1/2 in an alternating 
magnetic field with strong perpendicular constant 
bias magnetization. In this model, the Larmor 

frequency of the bias field and the frequency of the 
acting alternating field serve as close frequencies. 
Magnetic resonance occurs when these frequencies 
coincide, where the probability of transition between 
states with different spin projections on the direction 
of the bias field increases significantly. In work [3], 
the difference between the two frequencies is indeed 
assumed to be small compared to the frequencies 
themselves; however, in addition to this limit, two 
other important assumptions are used in deriving the 
approximate solution of the Schrödinger equation – ​
the small deviation of the acting field's polarization 
from circular and the small amplitude of the acting 
field compared to the magnitude of the bias field. In a 
certain sense, work [3] can be considered not only as 
an example of successful application of the rotating 
wave approximation but also as the first attempt to 
circumvent it, since in deriving the correction to the 
resonant frequency value, later called the Bloch-
Siegert shift, small quantities inversely proportional 
to the frequency of the acting field are taken into 
account.

The authors of work [3], neither in it nor in 
their subsequent works, use the term “rotating wave 
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approximation” to denote the method used to find 
an approximate solution to the equation under 
consideration. However, the roots of the term's 
origin can be traced precisely to [3]: if the acting 
field has circular polarization, i.e., rotates in a plane 
perpendicular to the direction of the magnetizing 
field, the Schrödinger equation admits an exact 
analytical solution, previously obtained by Rabi [4]. 
If there is a deviation from circular polarization, 
then an exact solution becomes impossible and, to 
find an approximate solution, it becomes necessary 
to resort to additional assumptions, in particular – ​
the smallness of the deviation of the acting field 
frequency from the Larmor frequency of the 
magnetizing field. Thus, Rabi's solution is a zero-
order solution in the rotating wave approximation 
for the problem considered in [3], while Bloch and 
Siegert investigated first-order corrections in the 
said approximation. Rabi in [4], of course, did not 
consider any rotating wave approximation, since 
he initially solved a narrower problem with circular 
polarization of the acting field.

Subsequently, beyond the realm of quantum 
magnetic phenomena, the rotating wave 
approximation began to be applied in quantum optics 
as well. The possibility of such a methodological 
transfer was due to the identity of equations 
mathematically describing seemingly completely 
different physical processes (see [5], Sect. III.6). In 
quantum optics, the close frequencies became the 
frequency of the incident electromagnetic radiation 
and the transition frequency between atomic 
energy levels. However, for a long time, there was 
no consensus on what to call this frequently used 
approximation. Some researchers used the term 

“resonant approximation” [6]. Others designated 
the approach as rotating field approximation, which 
seems quite justified when dealing with quantum 
magnetic phenomena (sometimes the phrase 

“rotating field approximation” appears in modern 
articles [7, 8], but in these cases it can probably be 
considered a terminological error). Often, researchers 
did not designate the used approximation at all, 
limiting themselves to the mathematical formulation 
of the small frequency difference limit [9]. Lamb can 
be considered one of the first proponents of the term 
in its modern form, he used the term “rotating wave 
approximation” in his 1957 paper [10] on microwave 
spectroscopy of the helium atom. Gradually, 
especially after the publication of Lamb's “Theory of 
Optical Masers” [11] and Haken's handbook [5], the 

term “rotating wave approximation” began to replace 
all other variants and became generally accepted in 
the 1970s.

Currently, the rotating wave approximation is 
actively used in calculations of models in quantum 
optics and quantum magnetic phenomena. For 
example, when working with nanophotonics models 
[12] such as quantum dots [13, 14] and quantum 
wires [15]; in describing processes occurring in 
optoelectronic devices [16]; in studying transitions in 
Rydberg atoms in external fields [18], etc. However, 
in the vast majority of works, quantitative assessments 
of the impact of the rotating wave approximation 
on the final result are not provided. This is quite 
understandable, as it implies performing calculations 
without using the rotating wave approximation, 
which in most situations can be very difficult due 
to the absence of an exact analytical solution and 
the large volume of necessary computations when 
implementing numerical methods for solving the 
problem.

In this work, we consider a two-level atomic 
system in a polychromatic field. This model allows 
for an analytical solution only in the rotating wave 
approximation and at zero detuning of the central 
frequency of the acting field from the transition 
frequency [17]; in other cases, only a numerical 
solution is available. A distinctive feature of this 
model is that the spectral range of the acting field 
can be very wide, and the limits of applicability of the 
rotating wave approximation are significantly affected 
not only by the magnitude of detuning of the central 
frequency of the acting field from the transition 
frequency but also by the number of harmonics in 
the polychromatic field.

We evaluate the disturbance in polarization spectra 
arising from the use of the rotating wave approximation 
using two indicators: the spectral amplitude deviation 
averaged over the entire frequency range and the 
spectral amplitude deviation at the transition 
frequency. Dependencies of both indicators on key 
model parameters, such as the central frequency of the 
acting field, detuning, and number of polychromatic 
components, have been obtained. These dependencies 
allow determining whether the rotating wave 
approximation is applicable or not for a specific set of 
model parameters, given an acceptable deviation value. 
Through extrapolation, specific conclusions can also 
be drawn for parameter sets where direct calculations 
were not performed. We propose that the presented 
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methodology for evaluating the impact of the rotating 
wave approximation can also be applied to other 
quantum optics models.

This paper is organized as follows. Section  2 
discusses the density matrix equation for a multilevel 
atomic system in a polychromatic field, as well as 
a simplified version of the equation arising in the 
rotating wave approximation. Section  3 presents 
details of the numerical calculations of the original 
and simplified equations and introduces criteria for 
comparing polarization spectra obtained from solving 
these equations. Results of calculations, particularly 
the dependencies of spectrum distortion magnitudes 
arising from the use of the rotating wave approximation 
on key model parameters, are discussed in Section 4. 
Conclusions are presented in Section 5.

2. ROTATING WAVE APPROXIMATION 
IN THE CASE OF A TWO-LEVEL SYSTEM 

IN A POLYCHROMATIC FIELD

Let us consider the density matrix equation 
describing a two-level system – ​a stationary atom in 
a polychromatic field in the dipole approximation:

	 i
d
dt
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respectively relaxation and pumping matrices, and the 
symbol “⋅” corresponds to element-wise multiplication 
of matrices. In (2) D12 denotes the spectral interval 
between components of the polychromatic field at 
the transition between levels with indices 1 and 2; M12 
determines the number of spectral field components; 
W12m, m M= 0,1, , 12  – their amplitudes.

Let's perform a transformation that shifts the 
spectrum of off-diagonal elements of the density 

matrix by a frequency determined by the difference 
of the corresponding energy levels:

	 ρ ρ ω= , × ei t � (3)

where the transformation matrix has the following 
form:
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After substituting (3) into (1) and element-wise 
multiplication of both sides of the equation by e i t- w  
taking into account the value of the commutator of 
the diagonal matrix E with the density matrix,

E, = ,ρ ω ρ[ ] − ⋅

and the equality

L e Li t⋅ − w =

leads us to the following equation:

i
d
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Since the elements of the matrix w are determined 
by the difference in energy levels, for any three 
indices 1 2£ £j k l, ,  we have

w w wjk kl lj+ + = 0.

This allows us to put the exponential under the 
commutator sign:

d
dt
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and, substituting (2), we obtain
d
dt
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In the resulting expression, there are two 
commutators with different frequency characteristics. 
The first commutator contains a slowly varying 
operator over time – ​the characteristic frequencies 
are determined by the differences between the 



JETP,  Vol. 166,  No. 5(11),  2024

558	 Antipov, Uvarova

frequencies of the acting field w and transition 
frequencies w. In the second commutator, conversely, 
there is a rapidly oscillating operator, whose 
characteristic frequencies are determined by the sum 
of frequencies w and w.

The rotating wave approximation consists in 
dropping the second, high-frequency commutator 
in the density matrix equation (4), resulting in a 
simplified equation that describes exclusively low-
frequency, slowly time-dependent processes.

As a justification for such simplification, the 
following considerations can be presented. Let's 
consider the limit such that w + → ∞w

	 w w− +w w , � (5)

	 M w⋅ +∆  ω, � (6)

where matrices M, D, characterizing the polychromatic 
field, for a two-level system have the form
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Matrix inequalities (5), (6) imply that any non-
diagonal element of the matrix from the left side is 
much smaller in modulus than any non-diagonal 
element of the matrix on the right side. For matrices 
of size everything reduces to relationships between 
the single non-diagonal elements

w w12 12 12 12,− +w w

M w12 12 12 12.∆  + ω

Requirement (5) is universal and applicable, 
including for monochromatic field; requirement (6) 
is specific for polychromatic field. In the considered 
limit, the solution of equation (4) can be represented 
as a sum of components, each of which relates to one 
of the non-overlapping spectral domains with centers 
at frequencies

	 w s s12 12 , = 0, 1, 2, ,+( ) ± ±w  � (7)

where the interaction between components of 
adjacent domains occurs exclusively due to the 
second, high-frequency commutator. Indeed, the 
remaining components of equation (4) at sufficiently 
large values w  +  w of perform mapping only 
within individual spectral domains: multiplication 
by ei w t( )-w  does not significantly change the 
spectrum r  due to (5), multiplication by V  – due 

to (6), differentiation does not generate new spectral 
components, G and are not time-dependent at all.

Let's consider the asymptotic expansion of the 
solution of equation (4) in the limit w + → ∞w

	 � …r r r r= ,( ) (1) (2)RWA + + + � (8)

where r(l ), l = 1,2,  – terms of different orders of 
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It can be stated that the first term in the asymptotic 
expansion (8), which does not vanish at w + → ∞w  
and denoted as r(RWA), relates exclusively to the 
lowest-frequency spectral domain (with index s = 0); 
in other words, its spectrum has only frequencies 
within the range
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Indeed, if this were not the case, then, considering 
the presence of time differentiation in (4), when 
examining any other spectral domain, we would 
obtain an infinitely growing left side at w + → ∞w  
which cannot be compensated by a finite right side.

The equation defining function r(RWA) is equation 
(4), considered closed in the low-frequency domain – ​
spectral domain with index s = 0. This means that 
the high-frequency commutator is removed from 
equation (4), as it transfers r(RWA) to adjacent spectral 
domains with indices s = 1± ,  where the result of the 
high-frequency commutator action on r(RWA) equals 
the time derivative of r(1) in the corresponding 
domain – ​a value of the same order of smallness in 
w + w (zero), as r(RWA):
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we finally obtain the equation for the density matrix 
in the rotating wave approximation:

  d
dt

i V e L
RWA

i t RWA RWAρ
ρ ρδ

( )
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Compared to the original equation (4), equation 
(10) turns out to be significantly simpler, allowing in 
some cases to present the solution in analytical form 
[17]. From the perspective of performing numerical 
calculations, equation (10) is also more preferable 
than (4). In numerical calculations, the time step size 
is determined by the maximum frequency at which 
the density matrix elements fluctuate. Therefore, 
when working with equation (10), which describes 
low-frequency processes, one can take a smaller 
time step compared to the time step required when 
numerically solving equation (4). In cases where the 
ratios of maximum frequencies and, consequently, 
time steps are large, the volume of necessary 
calculations can differ by orders of magnitude. This 
is why the rotating wave approximation is so popular 
in numerical solutions of density matrix equations.

After making the substitution
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it's possible to shift the zero frequency of the spectrum 
to the detuning frequency, thereby replacing the 
oscillating factor in the commutator with a purely 
imaginary addition to the relaxation matrix
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3. PERFORMED CALCULATIONS

We studied the influence of the rotating wave 
approximation on the spectra of polarization
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of a two-level system, which determine the 
dispersion and absorption of the medium. For this 
purpose, equation (4) for the density matrix was 
solved numerically, and the obtained spectra of 
off-diagonal elements of the density matrix were 
compared with similar spectra obtained from solving 
equation (10) for the density matrix in the rotating 
wave approximation.

For the numerical solution of the density matrix 
equations, the second-order Runge-Kutta method was 
used. An initial value of the density matrix was set
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discrete evolution of the density matrix over time 
with a step Dt:
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was used in solving the equation in the rotating wave 
approximation. For time-independent relaxation 
and pumping matrices to the levels, the following 
matrices were taken
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For the two-level system in matrices M, D, G, w, w, 
d there is only one off-diagonal element (M12, D12, …). 
In the further exposition, the lower indices of these 
quantities will be omitted.

The time step value Dt was chosen so that for 
the period of maximum frequency of the spectral 
domain (7) with index s  =  1, i.e. (4 3) ( )π ω/ / w + ,  
required 50 steps. When using the rotating wave 
approximation, in most situations, such a step 
size is excessive; however, to keep the calculation 
procedure as identical as possible in both cases, 
the value ∆t w= (4 150) ( )π ω/ / +  was taken in 
calculations both using the exact formula and in 
the rotating wave approximation. The number of 
steps required for calculation is determined by the 
duration of transient processes, which ultimately lead 
to the density matrix elements becoming periodic 
functions with a period equal to the period of 2p/D 
intercomponent shift frequency of the polychromatic 
field. The D intercomponent shift frequency becomes 
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the minimum base frequency of the established 
processes in the system. The duration of transient 
processes, expressed in periods of the base frequency, 
is determined by the ratio of D to the averaged 
value of relaxation matrix elements Γ, and with the 
parameters under consideration, it was sufficient to 
calculate several periods of the base frequency to 
eliminate the influence of transient processes on 
calculation results. Taking into account the chosen 
time step size Dt, the number of required steps was 
approximately 105 – 106.

After obtaining two sequences of matrices (11), 
matrices corresponding to the last period of the 
2p/D base frequency of the polychromatic field were 
selected, and the spectra of off- diagonal elements 
r12 at frequencies 0, ±D, ±2D… were calculated using 
discrete Fourier transform. In the obtained spectra, 
which represent the polarization spectra of the two-
level system up to a coefficient, real and imaginary 
components were considered separately.

The distortions of spectra arising from the use of 
the rotating wave approximation were quantitatively 
evaluated using two characteristics. First, the 
quadratic deviation across the entire polarization 
spectrum, normalized to the total energy of the exact 
spectrum, was calculated,

	 d

P P

P
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j
j
RWA

j

j
j

=

( ) 2

2

∑

∑

−( )
, � (12)

and this deviation can be calculated separately for 
both the real part of the polarization spectrum and 
the imaginary part. The deviation davg, calculated 
using formula (12) for the real part of the polarization 
spectrum, provides a quantitative assessment of the 
frequency- averaged distortion of the dispersion 
spectrum caused by the use of the rotating wave 
approximation, while calculated for the imaginary 
part of the spectrum – ​a similar assessment of the 
averaged distortion of the absorption spectrum.

Second, in some situations, it is also reasonable to 
use the spectrum deviation at the transition frequency 
to assess polarization spectrum distortions j = 0:

	 d
P P

Ppeak

RWA

= .0
( )

0

0

-
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Often, it is at the transition frequency in the 
imaginary part of the polarization spectrum that 

a pronounced peak is observed, which makes it 
possible to evaluate the influence of the rotating wave 
approximation in this part of the absorption spectrum. 
For the real part of the polarization spectrum, the 
assessment using formula (13) is generally of little 
use, since the dispersion value at the transition 
frequency turns out to be close to zero. Thus, at zero 
detuning, the real part of the polarization spectrum 
in the rotating wave approximation equals zero at the 
transition frequency, while using the exact formula 
(4) yields a small but non-zero value. Consequently, 
the assessment of the real part of the spectrum 
performed using formula (13) gives exactly one, 
which does not adequately reflect the situation.

Obviously, the magnitude of spectrum 
perturbations arising from the use of the 
approximation depends on several parameters, 
such as the transition frequency, detuning value, 
and spectral width of the polychromatic field. The 
dependencies calculated and presented below allow 
evaluating the correctness of applying the rotating 
wave approximation in various cases.

4. CALCULATION RESULTS

Fig.  1 shows polarization spectra obtained 
using the rotating wave approximation and without 
using this approximation, for a two-level system 
under the influence of a polychromatic field 
consisting of 101 components with equal amplitudes 
(M = 50, W = 0.2G). This case in the rotating wave 
approximation was considered in works [19, 20] and 
is distinguished by the presence of radiation at the 
transition frequency (negative pulse in the spectrum 
ImP at j = 0).

Two clear differences are notable between the 
spectra in the rotating wave approximation (shown 
by dotted line) and the exact spectra. First, the 
spectrum in the rotating wave approximation 
possesses certain parity with respect to the transition 
frequency j j→ − ,  while the exact spectrum does 
not demonstrate such parity. This is related to the 
fact that in a two-level system with zero tuning in 
the rotating wave approximation, there is no real 
part of the off-diagonal density matrix elements [17]. 
As a result, the polarization spectrum is characterized 
by certain parity – ​the real part turns out to be 
odd, and the imaginary part is even. If the rotating 
wave approximation is not used, the real part of 
the off-diagonal elements becomes non-zero and 
the spectrum parity is violated. Secondly, in the 
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polarization spectra calculated using the rotating wave 
approximation, there are no perturbations near twice 

the transition frequency ( ),j w w≈ +( ) = 2ω / /∆ ∆  
i.e., in the spectral domain with index s = 1 (see (7)). 

Fig. 1. Polarization spectra obtained using the rotating wave approximation and without using this approximation: a – ​real part of 
polarization; b – ​imaginary part of polarization. M = 50, W = 0.2G, D = 0.3G, d = 0, w = 150D

Fig. 2. Absorption spectrum in the high-frequency spectral region M = 50, W = 0.2G, D = 0.3G, d = 0, w = 150D

a

b
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The latter is not surprising since, as noted earlier, in 
solution r(RWA ) of equation (10), only low-frequency 
components in the spectral domain with index 
s = 0 play a significant role. Fig. 2 shows the high-
frequency spectral region in more detail s = 1. To 
achieve better approximation to the exact solution  
in this spectral region, it is necessary to consider 
the next correction after r(RWA ) in the asymptotic 
expansion (8), calculated using formula (9) and 
shown in Fig. 2 by dashed line.

A less obvious difference in the spectra in Fig. 1 
lies in the distortions near the transition frequency 
(j ≈  0), in the low-frequency spectral domain (7) 
with index s  =  0. The amplitude of the negative 
peak in the imaginary part of polarization spectrum 
at the transition frequency in the rotating wave 
approximation turns out to be approximately 1.4% 
larger than calculated using the exact formula (4). 
Furthermore, more precise calculations show a 
rightward shift of the peak, while the rotating wave 
approximation predicts emission exactly at the 

transition frequency j = 0. The amplitude and shape 
of the lateral positive pulses in the imaginary part of 
polarization spectrum also differ. Similar distortions 
are observed in the real part of polarization spectrum.

An even less obvious difference in the spectra is 
found near the negative doubled transition frequency 
( ).j w w≈ − + −( ) = 2ω / /∆ ∆  The insets in Figs. 1a,b 
with enlarged vertical scale show polarization spectra 
in the spectral domain with index s = –1. Spectra 
calculated using the exact formula have non-zero 
components in this frequency region, although, of 
course, the magnitude of perturbations is almost 
2 orders lower than that observed in the spectral 
domain s = 1 at 2w/D – M  j  < 2w/D + M. The 
dispersion of perturbation at negative frequencies 
is higher and affects a wider part of the spectrum. 
Moreover, the center of perturbation is slightly 
shifted towards positive frequency values, just like 
the spectrum near the transition frequency. As 
for the spectrum obtained in the rotating wave 

Fig. 3. (Color online) The magnitude of polarization spectra distortions arising from the use of rotating wave approximation, depending 
on the central frequency of the acting field w: a – ​spectrum-averaged distortion (davg) for both parts of polarization; b – ​pulse amplitude 
distortion at the transition frequency (dpeak) of the imaginary part of polarization spectrum. M = 50, W = 0.2G, D = 0.3G, d = 0

Fig. 4. (Color online) Same as in Fig. 3, but for 9-component polychromatic field (M = 4)
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approximation, any perturbations at j ≈ –2w/D are 
practically completely absent.

With increasing frequency of the acting field 
(and transition frequency at zero detuning), the 
perturbation at j ≈ 2w/D, observed in Figs. 1a,b shifts 
to the right, its magnitude decreases. The deviations 
in the spectra in the low-frequency domain s = 0 
near the transition frequency j  ≈  0 also become 
smaller. All this manifests in a monotonic decrease 
of the averaged spectra deviation davg, which is 
demonstrated in Fig. 3a. The magnitude davg at high 
frequencies of the acting field becomes inversely 
proportional to w (see inset in Fig.  3a). Similar 
dependencies are observed for the spectra of both 
real and imaginary parts of polarization.

As the frequency of the acting field decreases, 
the magnitude of spectrum distortions when using 
the rotating wave approximation increases. When 
approaching frequencies w/D  ∼  M condition (6) 
is violated, the magnitude of distortions sharply 
increases, making the rotating wave approximation 
absolutely unsuitable for calculating polarization 
spectra. The edges of the polychromatic field spectra 
regions –M  j  M and 2w/D – M  j  2w/D + M 
begin to overlap, resulting in significant changes 

in dispersion and absorption spectra. Calculations 
using the exact formula (4) fully reflect these changes, 
while calculations in the rotating wave approximation 
do not, as they fail to correctly describe the spectra 
in the frequency range 2w/D – M  j  2w/D + M. 
As a result, at small the rotating wave approximation 
for polychromatic radiation becomes inadequate not 
when approaching zero, but already at w/D ∼ M.

The distortion of the imaginary part of polarization 
at the transition frequency dpeak also tends to zero 
at high frequencies of the acting field (Fig. 3b). 
However, as shown in the inset in Fig.  3b, the 
magnitude dpeak turns out to be inversely proportional 
not to the first power of w, but to its square. The 
faster decrease in the error of the rotating wave 
approximation compared to that observed on average 
across the spectrum is characteristic exclusively for 
the component at the transition frequency (j = 0) and 
is apparently related to the special symmetry of the 
spectrum manifesting in the limit w → ∞.

Fig.  4 shows the dependences of polarization 
spectra distortions on w for the case of a nine- 
component (M = 4) polychromatic field. This case 
was considered in the rotating wave approximation 
[17] and, unlike the case with M  =  50, has no 

Fig. 5. (In color online) The magnitude of polarization spectra distortions arising from the use of the rotating wave approximation, 

depending on the detuning d: a – ​relative distortion davg; b – polarization spectra energy E PRe ,  E PIm  without using the 

approximation and absolute values of distortions E P
d

Re ,( )  E P
d

Im .( )  M = 50, W = 0.2G, D = 0.3G, w = 150D
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radiation at the transition frequency. However, the 
nature of dependencies davg, dpeak remains the same 
as in the case of a broader spectral band of the 
acting field. The distortion of the component at the 
transition frequency (Fig.  4b) decreases inversely 
proportional to the square of  w, and the average 
distortion across the spectrum (Fig. 4a) is inversely 
proportional to the first power of w. This indicates the 
fundamental nature of the error dependencies caused 
by the application of the rotating wave approximation 
in the limit of high frequencies of acting fields.

A peculiarity of the polarization spectra distortion 
dependencies on detuning d (Fig. 5), compared to the 
dependencies on the frequency of the acting field w at 
zero detuning, is that the total energy of the spectra 
significantly depends on the variable parameter. When 
the detuning value d is sufficiently large and exceeds 
half the width of the spectral range of the acting 
polychromatic field, i.e., the transition frequency goes 
beyond the specified range, the total energy of the 
polarization spectra, both calculated using the exact 
equation (4) and in the rotating wave approximation 
(10), begins to decrease exponentially. This is clearly 
visible in Fig. 5b, which shows the total energies of the 
polarization spectra

E P

E P

P j
j

P j
j

Re

Im

(Re ) ,

(Im )

=

=

∑

∑

2

2

and the total energies of spectral deviations arising 
from the use of the rotating wave approximation,

E P PP
d

j
j
RWA

jRe Re Re( ) ( ) 2
= ,∑ −( )

E P PP
d

j
j
RWA

jIm Im Im( ) ( ) 2
= ,∑ −( )

on a logarithmic scale along the vertical axis. At 
large detuning values, the decay rate of the total 
polarization spectrum energy slows down – ​at 
d→ ∞  the energy of the real part of the spectrum 
decreases inversely proportional to d2, and the energy 
of the imaginary part – ​inversely proportional to d4. 
If we consider a sufficiently wide range of parameter 
values d, the energy of the polarization spectrum 
can differ by orders of magnitude. Thus, it turns out 
that the oscillations of the relative, averaged over 
the entire spectrum magnitude of distortions davg, 
observed in Fig. 5a, are the result of a combination 
of two factors. First, davg is directly affected by 
deviations caused by the use of the rotating wave 
approximation, which is accounted for in the 
numerator of expression (12). Second, part of the 
oscillations in the magnitude of davg is the result of 
changes in the total energy of polarization spectra, 
which enters the denominator of expression (12). 
Thus, the minima for the spectrum of the imaginary 
part of polarization, observed at δ = ±M ∆,  
detunings, are consequences of the second factor – ​
at these detuning values, the edges of the spectral 
range coincide with the transition frequency. This 
causes a sharp increase in the total energy of 
the imaginary part of the polarization spectrum, 

Fig. 6. The spectrum of the imaginary part of polarization, obtained using the rotating wave approximation and without using the 
specified approximation. M = 50, W = 0.2G, D = 0.3G, w = 150D. The maximum deviation is observed at the transition frequency (j = 0)
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which ultimately leads to a decrease in the relative 
magnitude of distortions. The maximum davg, 
detected at d ≈ ±39 3,  on the contrary, is the result 
of the first factor – ​at these detuning values, there is 
a significant deviation of the spectrum in the rotating 
wave approximation from the exact one (see Fig. 6). 
The rotating wave approximation predicts here the 
existence of absorption at the transition frequency, 
while when using the more exact equation (4), this 
conclusion cannot be made.

At large detuning values, the polarization spectrum 
splits into two non-interacting frequency regions:

− − − +
δ δ
∆ ∆

M j M< < ,

2
< <

2
.

ω δ ω δ+
−

+
+

∆ ∆
M j M

The spectrum in the first region is described with high 
accuracy by the rotating wave approximation, while 
the spectrum in the second region is completely 
absent in this approximation. The energies of the 
spectral regions at δ ω 2  are practically equal, 
therefore davg, as shown in Fig. 5a, asymptotically 
approaches 1 2 70.7/ » %  at d→ ∞.  Such a high 
level of distortions in this limit is associated with the 
violation of the applicability condition for the rotating 
wave approximation (5). This behavior of the averaged 
spectrum deviation at d→ ∞  is characteristic for 
both the real and imaginary parts of polarization.

Fig. 7. (In color online) The magnitude of distortions in polarization spectra arising from the use of the rotating wave approximation, 
depending on the number of polychromatic field components M at three fixed values of the incident field frequency w = 70D, 150D, 
250D; W = 0.2G, D = 0.3G, d = 0

Fig. 8. (In color online) The magnitude of distortions in polarization spectra arising from the use of the rotating wave approximation, 
depending on the number of polychromatic field components M. The frequency of the incident field w here changes proportionally 
to M, thus fixing the fraction of the spectral range covered by the polychromatic field band (considered fractions 1/5, 1/3, 1/2); 
W = 0.2G, D = 0.3G, d = 0
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At negative detuning values when approaching 
M ∆-ω,  the spectral regions begin to overlap, 
violating the applicability condition of the 
rotating wave approximation (6), resulting in this 
approximation becoming completely inadequate, 
producing spectra that strongly differ from those 
calculated based on the exact equation (4).

Fig. 7 shows the dependencies of relative magnitudes 
of polarization spectra distortions arising from the use 
of rotating wave approximation, davg on the number 
of components M of the acting polychromatic field 
at several values of the central frequency w. The 
central frequency of the acting field w determines the 
distance between spectral regions, and the number of 
components M, at a fixed value of distance between 
components D, determines the width of spectral 
regions. With the increase of the relative magnitudes of 
polarization spectra distortions monotonically increase, 
reaching values at M = w/D close to 100%. The latter 
means that when the edges of spectral regions begin 
to overlap, the energy of spectra deviation caused by 
the use of rotating wave approximation becomes close 
to the energy of the initial, exact spectrum. Obviously, 
condition (6) is violated here, and the rotating wave 
approximation in this case gives unsatisfactory results.

Similar form of dependencies davg(M) at different 
values of w with accuracy up to stretching along the 
horizontal axis in Figure 7 indicates that the spectra 
distortions in rotating wave approximation are 
determined not by the number of components in the 
acting polychromatic field as such, but by the fraction 
in the spectral range between frequencies w – w and 
w + w, which is occupied by the polychromatic field 
spectrum. This is confirmed by Fig. 8, which shows 
the graphs of dependency davg(M) not at fixed w, but 
at fixed ratios MD/w, i.e., at fixed fractions of spectral 
range occupied by the polychromatic field spectrum. If 
w changes proportionally to M, the form of polarization 
spectra changes weakly, as well as the magnitudes of 
spectra distortions caused by the use of rotating wave 
approximation. Note that at sufficiently large M and w 
the value davg(M) stabilizes at a level approximately 
equal to two-thirds of the ratio MD/w.

5. CONCLUSIONS

We performed a quantitative assessment of the 
impact that the rotating wave approximation has 
on the polarization spectra of a two-level system 
in a polychromatic field. The frequency-averaged 
deviation of the spectra caused by the rotating wave 

approximation was calculated for various system 
parameters, specifically – ​the frequency of the acting 
field w, the detuning value d, and the number of 
components of the acting field M.

The magnitude of the averaged spectral deviation 
proved to be inversely proportional to the frequency 
of the acting field, which confirms the assumption 
that the first correction to the density matrix in the 
asymptotic expansion in the limit w + → ∞w  has 
an order of (w + w)1. However, the deviation at the 
transition frequency demonstrated a faster decrease 
with increasing acting field frequency, specifically 
being inversely proportional to the frequency squared.

The dependence of the averaged spectral 
deviation on the detuning of the central frequency 
of the polychromatic field w from the transition 
frequency w shows no clear trends when the 
detuning magnitude is small relative to the sum of 
the transition frequency and the mean frequency 
of the acting field, and is largely determined by the 
total energy of the polarization spectrum. A local 
minimum of spectral deviation is observed when the 
transition frequency corresponds to the boundary of 
the acting polychromatic field. At large detunings, 
the applicability condition of the rotating wave 
approximation is violated and the spectral deviations 
asymptotically approach 1 2/ .

Regarding the influence of the number of 
components of the acting polychromatic field on the 
averaged spectral deviation, it manifests indirectly 
through the fraction of the frequency range occupied 
by the polychromatic field in the frequency range 
from w  –  w to w  +  w. With an increase in the 
number of components at a fixed distance between 
them, the fraction increases, leading to increased 
deviations. If the fraction is fixed, for example, due 
to the growth of the central frequency of the acting 
field proportionally to the number of components, 
then the magnitude of deviations stabilizes at a level 
approximately equal to 2/3 of the fraction.
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