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Abstract. Polarization spectra of a two-level system in a
the rotating wave approximation and without using this
using two indicators: the average deviation across the ent

polychromatic field were obtained in two cases: using
approximation. The obtained spectra were compared
ire frequency range and the deviation at the transition

frequency. Both indicators allow quantitative assessment of the distortion in polarization spectra introduced
by the application of the rotating wave approximation. The dependencies of the above indicators on key model
parameters were obtained — on the central frequency, detuning, and spectral width of the applied polychromatic
field. The obtained dependencies allow evaluating the applicability limits of the rotating wave approximation
for a given level of acceptable distortions in the polarization spectrum.
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1. INTRODUCTION

The rotating wave approximation (RWA) is
a method of simplifying systems of differential
equations describing a physical model, used in
quantum optics and quantum magnetic phenomena.
In the system of equations, components containing
high-frequency operators are discarded, and when
solving the system, only low-frequency processes
that occur slowly over time are taken into account.
Typically, the possibility of separating the processes
existing in the model into high-frequency and low-
frequency components is related to the presence of
close frequencies, such as the transition frequency
between atomic energy levels and the frequency of
the acting field in quantum optics. The difference
between these closely spaced frequencies corresponds
to the low-frequency component, while their sum
represents the high-frequency component.

The work of Bloch and Siegert [3] is considered [1,
2] the first successful application of the rotating wave
approximation, which examines the Schrodinger
equation for a particle with spin 1/2 in an alternating
magnetic field with strong perpendicular constant
bias magnetization. In this model, the Larmor
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frequency of the bias field and the frequency of the
acting alternating field serve as close frequencies.
Magnetic resonance occurs when these frequencies
coincide, where the probability of transition between
states with different spin projections on the direction
of the bias field increases significantly. In work [3],
the difference between the two frequencies is indeed
assumed to be small compared to the frequencies
themselves; however, in addition to this limit, two
other important assumptions are used in deriving the
approximate solution of the Schrodinger equation —
the small deviation of the acting field's polarization
from circular and the small amplitude of the acting
field compared to the magnitude of the bias field. In a
certain sense, work [3] can be considered not only as
an example of successful application of the rotating
wave approximation but also as the first attempt to
circumvent it, since in deriving the correction to the
resonant frequency value, later called the Bloch-
Siegert shift, small quantities inversely proportional
to the frequency of the acting field are taken into
account.

The authors of work [3], neither in it nor in
their subsequent works, use the term “rotating wave
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approximation” to denote the method used to find
an approximate solution to the equation under
consideration. However, the roots of the term's
origin can be traced precisely to [3]: if the acting
field has circular polarization, i.e., rotates in a plane
perpendicular to the direction of the magnetizing
field, the Schrodinger equation admits an exact
analytical solution, previously obtained by Rabi [4].
If there is a deviation from circular polarization,
then an exact solution becomes impossible and, to
find an approximate solution, it becomes necessary
to resort to additional assumptions, in particular —
the smallness of the deviation of the acting field
frequency from the Larmor frequency of the
magnetizing field. Thus, Rabi's solution is a zero-
order solution in the rotating wave approximation
for the problem considered in [3], while Bloch and
Siegert investigated first-order corrections in the
said approximation. Rabi in [4], of course, did not
consider any rotating wave approximation, since
he initially solved a narrower problem with circular
polarization of the acting field.

Subsequently, beyond the realm of quantum
magnetic phenomena, the rotating wave
approximation began to be applied in quantum optics
as well. The possibility of such a methodological
transfer was due to the identity of equations
mathematically describing seemingly completely
different physical processes (see [5], Sect. I11.6). In
quantum optics, the close frequencies became the
frequency of the incident electromagnetic radiation
and the transition frequency between atomic
energy levels. However, for a long time, there was
no consensus on what to call this frequently used
approximation. Some researchers used the term
“resonant approximation” [6]. Others designated
the approach as rotating field approximation, which
seems quite justified when dealing with quantum
magnetic phenomena (sometimes the phrase
“rotating field approximation” appears in modern
articles [7, 8], but in these cases it can probably be
considered a terminological error). Often, researchers
did not designate the used approximation at all,
limiting themselves to the mathematical formulation
of the small frequency difference limit [9]. Lamb can
be considered one of the first proponents of the term
in its modern form, he used the term “rotating wave
approximation” in his 1957 paper [10] on microwave
spectroscopy of the helium atom. Gradually,
especially after the publication of Lamb's “Theory of
Optical Masers” [11] and Haken's handbook [5], the
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term “rotating wave approximation” began to replace
all other variants and became generally accepted in
the 1970s.

Currently, the rotating wave approximation is
actively used in calculations of models in quantum
optics and quantum magnetic phenomena. For
example, when working with nanophotonics models
[12] such as quantum dots [13, 14] and quantum
wires [15]; in describing processes occurring in
optoelectronic devices [16]; in studying transitions in
Rydberg atoms in external fields [18], etc. However,
in the vast majority of works, quantitative assessments
of the impact of the rotating wave approximation
on the final result are not provided. This is quite
understandable, as it implies performing calculations
without using the rotating wave approximation,
which in most situations can be very difficult due
to the absence of an exact analytical solution and
the large volume of necessary computations when
implementing numerical methods for solving the
problem.

In this work, we consider a two-level atomic
system in a polychromatic field. This model allows
for an analytical solution only in the rotating wave
approximation and at zero detuning of the central
frequency of the acting field from the transition
frequency [17]; in other cases, only a numerical
solution is available. A distinctive feature of this
model is that the spectral range of the acting field
can be very wide, and the limits of applicability of the
rotating wave approximation are significantly affected
not only by the magnitude of detuning of the central
frequency of the acting field from the transition
frequency but also by the number of harmonics in
the polychromatic field.

We evaluate the disturbance in polarization spectra
arising from the use of the rotating wave approximation
using two indicators: the spectral amplitude deviation
averaged over the entire frequency range and the
spectral amplitude deviation at the transition
frequency. Dependencies of both indicators on key
model parameters, such as the central frequency of the
acting field, detuning, and number of polychromatic
components, have been obtained. These dependencies
allow determining whether the rotating wave
approximation is applicable or not for a specific set of
model parameters, given an acceptable deviation value.
Through extrapolation, specific conclusions can also
be drawn for parameter sets where direct calculations
were not performed. We propose that the presented
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methodology for evaluating the impact of the rotating
wave approximation can also be applied to other
quantum optics models.

This paper is organized as follows. Section 2
discusses the density matrix equation for a multilevel
atomic system in a polychromatic field, as well as
a simplified version of the equation arising in the
rotating wave approximation. Section 3 presents
details of the numerical calculations of the original
and simplified equations and introduces criteria for
comparing polarization spectra obtained from solving
these equations. Results of calculations, particularly
the dependencies of spectrum distortion magnitudes
arising from the use of the rotating wave approximation

on key model parameters, are discussed in Section 4.

Conclusions are presented in Section 5.

2. ROTATING WAVE APPROXIMATION
IN THE CASE OF A TWO-LEVEL SYSTEM
IN A POLYCHROMATIC FIELD

Let us consider the density matrix equation
describing a two-level system — a stationary atom in
a polychromatic field in the dipole approximation:

ihd—p =[H,p|— il -p+ihL, (D

dt
where the interaction Hamiltonian
E 0
0 E,

H=E+V=[ .
I

contains time-dependent off-diagonal elements
_ hVueiwlzt + hl};efiwlzt’

My, (2)
+ > 0y, cos(mAt),

m=l

Yj F12} -
I'n 1

respectively relaxation and pumping matrices, and the
symbol «-» corresponds to element-wise multiplication
of matrices. In (2) A,, denotes the spectral interval
between components of the polychromatic field at

the transition between levels with indices 1 and 2; M,
determines the number of spectral field components;

Qe m =0,1,..., M, — their amplitudes.

Vl 2

-~ _Qp
Vi) = —
of the matrix

=

A0
0 %

Let's perform a transformation that shifts the
spectrum of off-diagonal elements of the density
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matrix by a frequency determined by the difference
of the corresponding energy levels:

p= ﬁ'eimta (3)

where the transformation matrix has the following
form:

i® At
iot _ 1 e 12
e = . ; ,
io
e 21 1
0 o
® = 12 ’
(1)21 0
— E2 — El
W = —h .

After substituting (3) into (1) and element-wise

multiplication of both sides of the equation by e~

taking into account the value of the commutator of
the diagonal matrix £ with the density matrix,

[Ep] = ~ho-p,
and the equality
L-e7 =]

leads us to the following equation:

: dﬁ — ~ ot —iot : ~ :
lhdt [V,p~e ]-e — ikl -p+ihL.

Since the elements of the matrix o are determined
by the difference in energy levels, for any three
indices 1 < j, k,/ -we have

(,Ojk +O‘)kl +('olj =0

This allows us to put the exponential under the
commutator sign:

dﬁ — i —iof ~ ~
dr 'VJVf B|-T-p+L,
and, substituting (2), we obtain
dﬁ — . yiw—o) ~ A * _ —i(wto)
ar —I{V‘e ,p]—z[V -e Pl —

—-T-p+ L. 4)

In the resulting expression, there are two
commutators with different frequency characteristics.
The first commutator contains a slowly varying
operator over time — the characteristic frequencies
are determined by the differences between the
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frequencies of the acting field w and transition
frequencies . In the second commutator, conversely,
there is a rapidly oscillating operator, whose
characteristic frequencies are determined by the sum
of frequencies w and .

The rotating wave approximation consists in
dropping the second, high-frequency commutator
in the density matrix equation (4), resulting in a
simplified equation that describes exclusively low-
frequency, slowly time-dependent processes.

As a justification for such simplification, the
following considerations can be presented. Let's
consider the limit such that w + ® — oo

(5
(6)

W —o<w+ o,
M- A<Lw+o,

where matrices M, A, characterizing the polychromatic
field, for a two-level system have the form

0 My, 0 Ap

My 0 } A_[_Alz 0 ]
Matrix inequalities (5), (6) imply that any non-

diagonal element of the matrix from the left side is

much smaller in modulus than any non-diagonal

element of the matrix on the right side. For matrices

of size everything reduces to relationships between
the single non-diagonal elements

M:

Wiy — 0| < wiy + o,

M A < wip + o).

Requirement (5) is universal and applicable,
including for monochromatic field; requirement (6)
is specific for polychromatic field. In the considered
limit, the solution of equation (4) can be represented
as a sum of components, each of which relates to one
of the non-overlapping spectral domains with centers
at frequencies

(w12+c012)s, s=0,+1,£2,..., (7
where the interaction between components of
adjacent domains occurs exclusively due to the
second, high-frequency commutator. Indeed, the
remaining components of equation (4) at sufficiently
large values w + o of perform mapping only
within individual spectral domains: multiplication

i(w—o)

by e does not significantly change the
spectrum p due to (5), multiplication by ¥V — due
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to (6), differentiation does not generate new spectral
components, G and are not time-dependent at all.

Let's consider the asymptotic expansion of the
solution of equation (4) in the limit w + ® — oo

p= p(RWA) + p(l) + p(2) T, (8)
where p), 1 =1,2,... —terms of different orders of
smallness in the considered limit,

o o (w + )"
or, for individual matrix elements,
P o Jw + o " o (wyy + o) 1<k <2

It can be stated that the first term in the asymptotic
expansion (8), which does not vanish at w + ® — oo
and denoted as p®" | relates exclusively to the
lowest-frequency spectral domain (with index s = 0);
in other words, its spectrum has only frequencies
within the range

—Wp Fop) /2. .+ W, +op)/2.

Indeed, if this were not the case, then, considering
the presence of time differentiation in (4), when
examining any other spectral domain, we would

obtain an infinitely growing left side at w + ® — oo
which cannot be compensated by a finite right side.

The equation defining function p®" is equation
(4), considered closed in the low-frequency domain —
spectral domain with index s = 0. This means that
the high-frequency commutator is removed from
equation (4), as it transfers p®®"? to adjacent spectral
domains with indices s = £1, where the result of the
high-frequency commutator action on p®"4 equals
the time derivative of p") in the corresponding
domain — a value of the same order of smallness in
w + o (zero), as pR"):

1
dpEZ)il

- I;*'e—i(w-&-o))t’ (RWA) )
dt P

(©))

Thus, in the equation defining p®"®  the
dependence on the sum of the transition frequency
o and the central frequency of the acting field w
completely disappears, leaving only the dependence
on their difference. Introducing the detuning

0 W12—®12}

=W —-—0n=
W = Wiy 0
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we finally obtain the equation for the density matrix
in the rotating wave approximation:

dpR"A)

—— = _i[7. e RV _ . s RWA) L f - (10)

Compared to the original equation (4), equation
(10) turns out to be significantly simpler, allowing in
some cases to present the solution in analytical form
[17]. From the perspective of performing numerical
calculations, equation (10) is also more preferable
than (4). In numerical calculations, the time step size
is determined by the maximum frequency at which
the density matrix elements fluctuate. Therefore,
when working with equation (10), which describes
low-frequency processes, one can take a smaller
time step compared to the time step required when
numerically solving equation (4). In cases where the
ratios of maximum frequencies and, consequently,
time steps are large, the volume of necessary
calculations can differ by orders of magnitude. This
is why the rotating wave approximation is so popular
in numerical solutions of density matrix equations.

After making the substitution

ot

(RWA) — 5(RWA) _ gidt

p
it's possible to shift the zero frequency of the spectrum
to the detuning frequency, thereby replacing the
oscillating factor in the commutator with a purely
imaginary addition to the relaxation matrix

dpR"A)

LA R R

3. PERFORMED CALCULATIONS

We studied the influence of the rotating wave
approximation on the spectra of polarization

1 jjA ot
P = *§<Plzelj 1)

1
of a two-level system, which determine the
dispersion and absorption of the medium. For this
purpose, equation (4) for the density matrix was
solved numerically, and the obtained spectra of
off-diagonal elements of the density matrix were
compared with similar spectra obtained from solving
equation (10) for the density matrix in the rotating
wave approximation.
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For the numerical solution of the density matrix
equations, the second-order Runge-Kutta method was
used. An initial value of the density matrix was set

after which a sequence of matrices was recursively
constructed p, = p(kAf), k =1,2,..., reflecting the
discrete evolution of the density matrix over time
with a step Af:

At
Pe = Pt + 5 (K =DALp_p) +

+f (kAL py_y + Atf ((k = DAL _y))],  (11)

where matrix

f@p)= —i[V- e p ] — i[V*-e”'(Q“’*S)’,p } ~T-p+L

was used in solving the exact equation,
fepy=—ilV-e™p|-T-p+1L

was used in solving the equation in the rotating wave
approximation. For time-independent relaxation
and pumping matrices to the levels, the following
matrices were taken

11 1 0
L =
11 0 0
For the two-level system in matrices M, A, I', w, o,
3 there is only one off-diagonal element (M,,, A,,, ...).

In the further exposition, the lower indices of these
quantities will be omitted.

I =

The time step value Ar was chosen so that for
the period of maximum frequency of the spectral
domain (7) with index s = 1, i.e. (4n/3)/(w + ®),
required 50 steps. When using the rotating wave
approximation, in most situations, such a step
size is excessive; however, to keep the calculation
procedure as identical as possible in both cases,
the value Af = (4n/150)/(w +®) was taken in
calculations both using the exact formula and in
the rotating wave approximation. The number of
steps required for calculation is determined by the
duration of transient processes, which ultimately lead
to the density matrix elements becoming periodic
functions with a period equal to the period of 2n/A
intercomponent shift frequency of the polychromatic
field. The A intercomponent shift frequency becomes
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the minimum base frequency of the established
processes in the system. The duration of transient
processes, expressed in periods of the base frequency,
is determined by the ratio of A to the averaged
value of relaxation matrix elements I', and with the
parameters under consideration, it was sufficient to
calculate several periods of the base frequency to
eliminate the influence of transient processes on
calculation results. Taking into account the chosen
time step size Az, the number of required steps was
approximately 10° — 109.

After obtaining two sequences of matrices (11),
matrices corresponding to the last period of the
21/A base frequency of the polychromatic field were
selected, and the spectra of off- diagonal elements
p,, at frequencies 0, +A, £2A... were calculated using
discrete Fourier transform. In the obtained spectra,
which represent the polarization spectra of the two-
level system up to a coefficient, real and imaginary
components were considered separately.

The distortions of spectra arising from the use of
the rotating wave approximation were quantitatively
evaluated using two characteristics. First, the
quadratic deviation across the entire polarization
spectrum, normalized to the total energy of the exact
spectrum, was calculated,

dye = )

> P
7

(12)

and this deviation can be calculated separately for
both the real part of the polarization spectrum and
the imaginary part. The deviation d,,,,, calculated
using formula (12) for the real part of the polarization
spectrum, provides a quantitative assessment of the
frequency- averaged distortion of the dispersion
spectrum caused by the use of the rotating wave
approximation, while calculated for the imaginary
part of the spectrum — a similar assessment of the

averaged distortion of the absorption spectrum.

Second, in some situations, it is also reasonable to
use the spectrum deviation at the transition frequency
to assess polarization spectrum distortions j = 0:

RWA
d — P(g ) — PO
peak PO

. (13)

Often, it is at the transition frequency in the
imaginary part of the polarization spectrum that
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a pronounced peak is observed, which makes it
possible to evaluate the influence of the rotating wave
approximation in this part of the absorption spectrum.
For the real part of the polarization spectrum, the
assessment using formula (13) is generally of little
use, since the dispersion value at the transition
frequency turns out to be close to zero. Thus, at zero
detuning, the real part of the polarization spectrum
in the rotating wave approximation equals zero at the
transition frequency, while using the exact formula
(4) yields a small but non-zero value. Consequently,
the assessment of the real part of the spectrum
performed using formula (13) gives exactly one,
which does not adequately reflect the situation.

Obviously, the magnitude of spectrum
perturbations arising from the use of the
approximation depends on several parameters,
such as the transition frequency, detuning value,
and spectral width of the polychromatic field. The
dependencies calculated and presented below allow
evaluating the correctness of applying the rotating
wave approximation in various cases.

4. CALCULATION RESULTS

Fig. 1 shows polarization spectra obtained
using the rotating wave approximation and without
using this approximation, for a two-level system
under the influence of a polychromatic field
consisting of 101 components with equal amplitudes
(M =50, Q = 0.2I'). This case in the rotating wave
approximation was considered in works [19, 20] and
is distinguished by the presence of radiation at the
transition frequency (negative pulse in the spectrum
ImP at j = 0).

Two clear differences are notable between the
spectra in the rotating wave approximation (shown
by dotted line) and the exact spectra. First, the
spectrum in the rotating wave approximation
possesses certain parity with respect to the transition
frequency j — —j, while the exact spectrum does
not demonstrate such parity. This is related to the
fact that in a two-level system with zero tuning in
the rotating wave approximation, there is no real
part of the off-diagonal density matrix elements [17].
As a result, the polarization spectrum is characterized
by certain parity — the real part turns out to be
odd, and the imaginary part is even. If the rotating
wave approximation is not used, the real part of
the off-diagonal elements becomes non-zero and
the spectrum parity is violated. Secondly, in the
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Fig. 1. Polarization spectra obtained using the rotating wave approximation and without using this approximation: a — real part of

polarization; b — imaginary part of polarization. M = 50, Q = 0.2I', A= 0.3T", 8 = 0, w = 150A
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Fig. 2. Absorption spectrum in the high-frequency spectral region M = 50, Q = 0.2I', A= 0.3T", 6 = 0, w = 150A

the transition frequency (j =~ (w + )/A = 2w /A),

polarization spectra calculated using the rotating wave
i.e., in the spectral domain with index s = 1 (see (7)).

approximation, there are no perturbations near twice
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Fig. 3. (Color online) The magnitude of polarization spectra distortions arising from the use of rotating wave approximation, depending
on the central frequency of the acting field w: @ — spectrum-averaged distortion (d,,,) for both parts of polarization; b — pulse amplitude

distortion at the transition frequency (d,,

for Re(P) g
for Im(2, B
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) of the imaginary part of polarization spectrum. M =50, Q =02, A=0.3[,6 =0
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2% b

0% T T T T T T T T

Fig. 4. (Color online) Same as in Fig. 3, but for 9-component polychromatic field (M = 4)

The latter is not surprising since, as noted earlier, in
solution p®") of equation (10), only low-frequency
components in the spectral domain with index
s = 0 play a significant role. Fig. 2 shows the high-
frequency spectral region in more detail s = 1. To
achieve better approximation to the exact solution
in this spectral region, it is necessary to consider
the next correction after p®®") in the asymptotic
expansion (8), calculated using formula (9) and
shown in Fig. 2 by dashed line.

A less obvious difference in the spectra in Fig. 1
lies in the distortions near the transition frequency
(j = 0), in the low-frequency spectral domain (7)
with index s = 0. The amplitude of the negative
peak in the imaginary part of polarization spectrum
at the transition frequency in the rotating wave
approximation turns out to be approximately 1.4%
larger than calculated using the exact formula (4).
Furthermore, more precise calculations show a
rightward shift of the peak, while the rotating wave
approximation predicts emission exactly at the

transition frequency j = 0. The amplitude and shape
of the lateral positive pulses in the imaginary part of
polarization spectrum also differ. Similar distortions
are observed in the real part of polarization spectrum.

An even less obvious difference in the spectra is
found near the negative doubled transition frequency
(J = —(w + w)/A = =2w /A). The insets in Figs. la,b
with enlarged vertical scale show polarization spectra
in the spectral domain with index s = —1. Spectra
calculated using the exact formula have non-zero
components in this frequency region, although, of
course, the magnitude of perturbations is almost
2 orders lower than that observed in the spectral
domain s =1 at 2w/A — M <j < <2w/A + M. The
dispersion of perturbation at negative frequencies
is higher and affects a wider part of the spectrum.
Moreover, the center of perturbation is slightly
shifted towards positive frequency values, just like
the spectrum near the transition frequency. As
for the spectrum obtained in the rotating wave

JETP, Vol. 166, No. 5(11), 2024
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Fig. 5. (In color online) The magnitude of polarization spectra distortions arising from the use of the rotating wave approximation,

depending on the detuning &: a — relative distortion d,,,,;

.b_

polarization spectra energy Eg.p, £Ej,p Wwithout using the

approximation and absolute values of distortions Ef{ie),,, Effffp. M=50,Q=0.2I'A=0.3I", w=150A

approximation, any perturbations at j  —2w/A are
practically completely absent.

With increasing frequency of the acting field
(and transition frequency at zero detuning), the
perturbation at j ~ 2w/A, observed in Figs. 1a,b shifts
to the right, its magnitude decreases. The deviations
in the spectra in the low-frequency domain s = 0
near the transition frequency j ~ 0 also become
smaller. All this manifests in a monotonic decrease
of the averaged spectra deviation d,,,, which is
demonstrated in Fig. 3a. The magnitude d,,, at high
frequencies of the acting field becomes inversely
proportional to w (see inset in Fig. 3a). Similar
dependencies are observed for the spectra of both
real and imaginary parts of polarization.

As the frequency of the acting field decreases,
the magnitude of spectrum distortions when using
the rotating wave approximation increases. When
approaching frequencies w/A ~ M condition (6)
is violated, the magnitude of distortions sharply
increases, making the rotating wave approximation
absolutely unsuitable for calculating polarization
spectra. The edges of the polychromatic field spectra
regions —M Sj S Mand 2w/A—M S j S 2w/A+ M
begin to overlap, resulting in significant changes
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in dispersion and absorption spectra. Calculations
using the exact formula (4) fully reflect these changes,
while calculations in the rotating wave approximation
do not, as they fail to correctly describe the spectra
in the frequency range 2w/A — M < j < 2w/A+ M.
As a result, at small the rotating wave approximation
for polychromatic radiation becomes inadequate not
when approaching zero, but already at w/A ~ M.

The distortion of the imaginary part of polarization
at the transition frequency d,,, also tends to zero
at high frequencies of the acting field (Fig. 3b).
However, as shown in the inset in Fig. 3/, the
magnitude d,,, turns out to be inversely proportional
not to the first power of w, but to its square. The
faster decrease in the error of the rotating wave
approximation compared to that observed on average
across the spectrum is characteristic exclusively for
the component at the transition frequency (f = 0) and
is apparently related to the special symmetry of the
spectrum manifesting in the limit w — ooc.

Fig. 4 shows the dependences of polarization
spectra distortions on w for the case of a nine-
component (M = 4) polychromatic field. This case
was considered in the rotating wave approximation
[17] and, unlike the case with M = 50, has no
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Fig. 6. The spectrum of the imaginary part of polarization, obtained using the rotating wave approximation and without using the
specified approximation. M = 50, Q = 0.2I", A = 0.3I", w = 150A. The maximum deviation is observed at the transition frequency (j = 0)

radiation at the transition frequency. However, the
nature of dependencies d,,,, d,,,, remains the same
as in the case of a broader spectral band of the
acting field. The distortion of the component at the
transition frequency (Fig. 4b) decreases inversely
proportional to the square of w, and the average
distortion across the spectrum (Fig. 4a) is inversely
proportional to the first power of w. This indicates the
fundamental nature of the error dependencies caused
by the application of the rotating wave approximation
in the limit of high frequencies of acting fields.

A peculiarity of the polarization spectra distortion
dependencies on detuning 6 (Fig. 5), compared to the
dependencies on the frequency of the acting field w at
zero detuning, is that the total energy of the spectra
significantly depends on the variable parameter. When
the detuning value ¢ is sufficiently large and exceeds
half the width of the spectral range of the acting
polychromatic field, i.e., the transition frequency goes
beyond the specified range, the total energy of the
polarization spectra, both calculated using the exact
equation (4) and in the rotating wave approximation
(10), begins to decrease exponentially. This is clearly
visible in Fig. 5, which shows the total energies of the
polarization spectra

Epep = Z(Rer)z,

J

Epnp = Z(Impj)2
J

and the total energies of spectral deviations arising
from the use of the rotating wave approximation,

2
ED, = Z(ReP}RWA> ~Re?; ),

J

2
d) — (RWA)
ED, = Z(Iij ~ImP;)’,
J
on a logarithmic scale along the vertical axis. At
large detuning values, the decay rate of the total
polarization spectrum energy slows down — at

8 — oo the energy of the real part of the spectrum
decreases inversely proportional to 82, and the energy
of the imaginary part — inversely proportional to &*.
If we consider a sufficiently wide range of parameter
values 9, the energy of the polarization spectrum
can differ by orders of magnitude. Thus, it turns out
that the oscillations of the relative, averaged over
the entire spectrum magnitude of distortions d,,,,,
observed in Fig. 5a, are the result of a combination
of two factors. First, d,, is directly affected by
deviations caused by the use of the rotating wave
approximation, which is accounted for in the
numerator of expression (12). Second, part of the
oscillations in the magnitude of d,,,, is the result of
changes in the total energy of polarization spectra,
which enters the denominator of expression (12).
Thus, the minima for the spectrum of the imaginary
part of polarization, observed at 6= £MA,

detunings, are consequences of the second factor —
at these detuning values, the edges of the spectral
range coincide with the transition frequency. This
causes a sharp increase in the total energy of

the imaginary part of the polarization spectrum,
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Fig. 7. (In color online) The magnitude of distortions in polarization spectra arising from the use of the rotating wave approximation,
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Fig. 8. (In color online) The magnitude of distortions in polarization spectra arising from the use of the rotating wave approximation,
depending on the number of polychromatic field components M. The frequency of the incident field w here changes proportionally
to M, thus fixing the fraction of the spectral range covered by the polychromatic field band (considered fractions 1/5, 1/3, 1/2);
Q=02ILA=03T,8=0

which ultimately leads to a decrease in the relative 20+ 20 4+8
magnitude of distortions. The maximum d,,,, —M<j<
detected at 6 ~ 39 + 3, on the contrary, is the result
of the first factor — at these detuning values, there is
a significant deviation of the spectrum in the rotating
wave approximation from the exact one (see Fig. 6).
The rotating wave approximation predicts here the
existence of absorption at the transition frequency,
while when using the more exact equation (4), this
conclusion cannot be made.

+M.

The spectrum in the first region is described with high
accuracy by the rotating wave approximation, while
the spectrum in the second region is completely
absent in this approximation. The energies of the
spectral regions at & > 2w are practically equal,
therefore d_,, as shown in Fig. 5a, asymptotically

avg>

approaches 1/\/5 ~ 70.7% at & — co. Such a high

level of distortions in this limit is associated with the

violation of the applicability condition for the rotating

wave approximation (5). This behavior of the averaged

8 M<i<_ 3 M spectrum deviation at § — oo is characteristic for
A J A + M, both the real and imaginary parts of polarization.

At large detuning values, the polarization spectrum
splits into two non-interacting frequency regions:

JETP, Vol. 166, No. 5(11), 2024
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At negative detuning values when approaching
MA — o, the spectral regions begin to overlap,
violating the applicability condition of the
rotating wave approximation (6), resulting in this
approximation becoming completely inadequate,
producing spectra that strongly differ from those
calculated based on the exact equation (4).

Fig. 7 shows the dependencies of relative magnitudes
of polarization spectra distortions arising from the use
of rotating wave approximation, d,,, on the number
of components M of the acting polychromatic field
at several values of the central frequency w. The
central frequency of the acting field w determines the
distance between spectral regions, and the number of
components M, at a fixed value of distance between
components A, determines the width of spectral
regions. With the increase of the relative magnitudes of
polarization spectra distortions monotonically increase,
reaching values at M = w/A close to 100%. The latter
means that when the edges of spectral regions begin
to overlap, the energy of spectra deviation caused by
the use of rotating wave approximation becomes close
to the energy of the initial, exact spectrum. Obviously,
condition (6) is violated here, and the rotating wave
approximation in this case gives unsatisfactory results.

Similar form of dependencies d,,,(M) at different
values of w with accuracy up to stretching along the
horizontal axis in Figure 7 indicates that the spectra
distortions in rotating wave approximation are
determined not by the number of components in the
acting polychromatic field as such, but by the fraction
in the spectral range between frequencies ® — w and
o + w, which is occupied by the polychromatic field
spectrum. This is confirmed by Fig. 8, which shows
the graphs of dependency d,,,(M) not at fixed w, but
at fixed ratios MA/w, i.e., at fixed fractions of spectral
range occupied by the polychromatic field spectrum. If
w changes proportionally to M, the form of polarization
spectra changes weakly, as well as the magnitudes of
spectra distortions caused by the use of rotating wave
approximation. Note that at sufficiently large M and w
the value d,, (M) stabilizes at a level approximately
equal to two-thirds of the ratio MA/w.

5. CONCLUSIONS

We performed a quantitative assessment of the
impact that the rotating wave approximation has
on the polarization spectra of a two-level system
in a polychromatic field. The frequency-averaged
deviation of the spectra caused by the rotating wave

ANTIPOV, UVAROVA

approximation was calculated for various system
parameters, specifically — the frequency of the acting
field w, the detuning value &, and the number of
components of the acting field M.

The magnitude of the averaged spectral deviation
proved to be inversely proportional to the frequency
of the acting field, which confirms the assumption
that the first correction to the density matrix in the
asymptotic expansion in the limit w + ® — oo has

an order of (w + ®)'. However, the deviation at the
transition frequency demonstrated a faster decrease
with increasing acting field frequency, specifically
being inversely proportional to the frequency squared.

The dependence of the averaged spectral
deviation on the detuning of the central frequency
of the polychromatic field w from the transition
frequency ® shows no clear trends when the
detuning magnitude is small relative to the sum of
the transition frequency and the mean frequency
of the acting field, and is largely determined by the
total energy of the polarization spectrum. A local
minimum of spectral deviation is observed when the
transition frequency corresponds to the boundary of
the acting polychromatic field. At large detunings,
the applicability condition of the rotating wave
approximation is violated and the spectral deviations

asymptotically approach 1/ V2.

Regarding the influence of the number of
components of the acting polychromatic field on the
averaged spectral deviation, it manifests indirectly
through the fraction of the frequency range occupied
by the polychromatic field in the frequency range
from ® — w to o + w. With an increase in the
number of components at a fixed distance between
them, the fraction increases, leading to increased
deviations. If the fraction is fixed, for example, due
to the growth of the central frequency of the acting
field proportionally to the number of components,
then the magnitude of deviations stabilizes at a level
approximately equal to 2/3 of the fraction.
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