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1. INTRODUCTION

Under the influence of the fundamental principles 
of quantum field theory, modern gravitational 
physics suggests that quantum gravity effects 
should be observable at extremely high energies 
and incredibly small length scales [1,2]. This area, 
known as the Planck scale, includes particle energies 
reaching GeV, or lengths of the order of m. Access 
to this range presents significant difficulties, leading 
to very limited prospects of achieving the necessary 
technological solutions in the coming decades 
[3]. The current level of achieved energy range in 
collisions at the Large Hadron Collider is still many 
orders of magnitude below the energies associated 
with the Planck scale. Nevertheless, some hypotheses 
suggest potentially stronger gravitational interaction 
at elevated energies, explaining this, in particular, by 
the presence of additional dimensions [4,5]. Despite 
ongoing efforts, due to the enormous technological 
obstacles associated with achieving extremely 
high energies in particle accelerators, convincing 

evidence for such extensions of the standard model 
has not yet been found. In contrast, at lower energies, 
laboratory experiments with quantum systems with 
masses significantly exceeding atomic ones [6, 7] 
are gradually becoming available in laboratory 
conditions [8]. Within this approach, existing 
theories suggest that gravity influences the dynamics 
of quantum states. Recently, a number of ideas 
have been proposed regarding the manifestation 
of various aspects of quantum gravity, such as 
superpositions of gravitational fields [9], gravity-
induced wave function collapse through self-gravity, 
or decoherence [10] caused by external gravitational 
fields.

It is also encouraging that many of these proposals 
seem experimentally and technologically achievable 
in the near future.

Another approach to studying the quantum 
properties of gravity consists in astrophysical 
observations of the Universe. In particular, paper 
[11] noted that the quantum nature of gravity may 

ATOMS, MOLECULES, OPTICS

TWO-PHOTON GRAVITON CONVERSION  
ON BOUND ATOMIC STATES

© 2024  T. A. Zalyalyutdinov a b *, V. K. Dubrovich c , D. Solovyev a b

aSaint Petersburg State University 198504, Saint Petersburg, Russia
bKonstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute"  

188300, Gatchina, Leningrad Region, Russia
cSpecial Astrophysical Observatory, Saint Petersburg Branch of the Russian Academy of Sciences

196140, Saint Petersburg, Russia

*e-mail: t.zalialiutdinov@spbu.ru

Received March 13, 2024
Revised March 13, 2024 
Accepted May 13, 2024

Abstract. A quantum field approach is developed, combining relativistic electrodynamics and linearized 
quantum gravity in application to the problem of electromagnetic graviton conversion on bound atomic 
states. A hydrogen atom is used as an example, and the process of inelastic graviton scattering on an 
atomic electron with subsequent re-emission of two photons is considered. Expressions for the process 
cross-section and angular correlations are obtained. The prospects for experimental detection of two-
photon graviton conversion using optical amplification of weak signals are discussed.

Keywords: linearized quantum gravity, quantum electrodynamics, S-matrix, hydrogen atom

DOI: 10.31857/S004445102409e025

297



	 TWO-PHOTON GRAVITON CONVERSION...	 289

JETP, Vol. 166, No. 3 (9), 2024

space. Then, in Section 3, within the framework of 
the contour line method and S-matrix for bound 
states, a consistent derivation of the cross-section 
for inelastic graviton scattering on a hydrogen atom 
is given. Discussion of the obtained expressions 
as applied to the problem of detecting individual 
gravitons is given in Section 4. Throughout the 
paper, relativistic units are used in which ħ = c = 1. 
The gravitational constant G in these units can be 
found from the definition of the Planck length

	 35
3 1.616 10 .p
Gl m

c
−= = ⋅ 	

2.   LINEARIZATION OF EINSTEIN 
EQUATIONS

The simplest quantum field model of gravity with 
gravitons as a quantum particle with spin 2 can be 
obtained from considering the linearized Einstein 
equations for gravity [1]. Following the standard 
approach to describing this problem [21], we will 
consider small perturbations hmnof the Minkowski 
metric tensor, = (1, 1, 1, 1)mnh - - - :

	 = .g hmn mn mnh + 	 (1)

Here we assume that hmn represents small 
additions defining gravitational interaction. In this 
approximation, the Ricci tensor is given by the 
expression

	1= ( )
2

R h h h hs s
mn s m n s n m m n mn¶ ¶ + ¶ ¶ - ¶ ¶ - +W

	 2( ),h+O 	 (2)

where the notations =h hmn
mnh  and W = mn

m nh ¶ ¶W  are 
introduced. 

In the linearized quantum theory of gravity, the 
potential gauge for the electromagnetic potential hmn, 
satisfying the equation 

	 1= ,
2

h hm r
m n n r¶ ¶ 	 (3)

is called harmonic [21] (this is analogous to the 
Lorentz gauge = 0Am

m¶  for the electromagnetic 
potential Am). Taking into account expression (3), 
the linearized Einstein equation reduces to the 
following equality:

manifest itself in supernova bursts. Furthermore, 
a crucial aspect in modern cosmology is 
understanding how the quantized gravitational 
field affects the early stages of Universe formation. 
Although characteristic signatures could have 
disappeared during the later expansion of the 
Universe, the detection of primordial gravitational 
waves could provide insight into quantum gravity 
effects shortly after the Big Bang [12]. A recent 
paper [13] also discussed that specific features of 
the cosmic microwave background may provide 
additional information about this epoch. Moreover, 
various astrophysical tests have been proposed, such 
as studying light from distant quasars . However, no 
reliable evidence of the quantum nature of gravity 
has been detected so far.

It should be noted that the detection of individual 
gravitons, which are a key indicator of gravity 
quantization, has historically presented significant 
difficulties [16-18]. Despite this, research into 
innovative approaches to this problem still continues 
[19]. Considerable attention is being paid to studying 
elementary processes related to graviton scattering, 
particularly in application to astrophysical studies of 
the early Universe [20], as well as laboratory methods 
for detecting signs of the quantum nature of gravity. 
In this regard, the development of appropriate 
theoretical methods and approaches for investigating 
this problem becomes extremely important.

Given the relevance of the subject matter in 
modern theoretical physics, the aim of this study is 
to apply a quantum field approach that combines 
relativistic quantum electrodynamics and linearized 
quantum gravity theory to the problem of graviton 
scattering on bound atomic states. Using the 
hydrogen atom as an example, we consider the 
process of inelastic graviton scattering on an 
atomic electron with subsequent conversion into 
two photons. Applying the apparatus of relativistic 
quantum field theory for bound states, we provide 
a consistent derivation of the expression for the 
process cross-section, including angular correlations 
between incident and scattered particles. We discuss 
the prospects for experimental detection of two-
photon graviton conversion and optical amplification 
of weak signals.

The paper is structured as follows. Section 2 
provides a brief derivation of linearized Einstein 
equations, discusses their quantization and solution 
in the form of graviton wave functions in coordinate 
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2

h G T T r
mn mn mn rp h

æ ö÷ç= - - ÷ç ÷÷çè ø
	 (4)

where Tmn is the energy-momentum tensor.
Now let us proceed to discuss the secondary 

quantization procedure for the tensor field hmn. 
For this, it is necessary to write down the general 
solution of the linearized equation of motion in the 
absence of matter ( = 0Tmn ), which takes the form 

	 0.hmn = 	 (5)

 The solution to equation (5) represents a free 
gravitational wave. Based on these linear equations 
of motion for metric perturbations, one can 
construct a consistent theory of free quantum field 
for hmn. Taking into account the form of equation 
(5), the quantization of the gravitational field 
can be performed in complete analogy with the 
quantization of the electromagnetic field. This leads 
to the following decomposition for the potential: 

	
3 ( )

3
1ˆ ( ) =

(2 ) 2
g g

g

d
h x

l
mn mn

l
e

p
´å ò

k

k

	 ,,
ˆ ˆ .ikx ikx

gg
a e a ell

-æ ö÷ç ÷´ +ç ÷ç ÷çè økk
† 	 (6)

Here ,
ˆ

g
a lk

†  and ,ˆ
g

a lk  represent creation and 
annihilation operators respectively, which follow 
the canonical commutation relations for bosons [22]; 

0= ( , )gk k k  is the four-dimensional momentum 
vector of the graviton, gk   is the corresponding 
three-dimensional wave vector, is = ( , )x t r  the four-
dimensional spatial vector, 

( )gl
mne  is the polarization 

tensor with  = 0,1,2,3gl .
The harmonic condition given by equation (3) 

still ambiguously determines the choice of inertial 
reference frame. Obviously, a new coordinate 
transformation of the form hmn where the parameters 

	 ( ) = ( ) ( ) ( ),h x h x x xmn mn m n n mx x¢ - ¶ - ¶ 	 (7)

can be performed on the field ( )xnx  satisfy the 
condition 0nx = . 

 Since hmn is a solution to the wave equation (5), the 
four-dimensional vectorkalso satisfies the equality 

2 = = 0k k km
m . Then the harmonic condition for 

the polarization tensor, following from equation (3), 
takes the form [21] 

	 1= .
2

k km
mn n mme e 	 (8)

 Setting ( ) = ikxx i en nx x -  in equation (7), we can 
obtain the following relation: 

	 = .k kmn mn m n n me e x x¢ - - 	 (9)

 Both of these equations imply that the tensor 
components mne  cannot be arbitrary: they must 
satisfy the constraints given by equations (8) and (9). 
To determine which polarizations are permissible, let 
us consider a gravitational wave moving along the 
axis z, i.e., choose the four- dimensional momentum 
vector in the form = (1,0,0,1).gk w  Then, according 
to equation (9), it is possible to choose the function
mx  in such a way that the polarization tensor 

components 00e , 13e , 23e  and 33e  are eliminated. 
Consequently, only two independent polarization 
tensors remain for the gravitational wave, which can 
be written in matrix form as follows:

 

	

(1)

(2)

0 0 0 0
0 0 1 01 ,
0 1 0 02
0 0 0 0

0 0 0 0
0 1 0 01 ,
0 0 1 02
0 0 0 0

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ÷ç ÷ç - ÷ç ÷ç ÷ç ÷÷çè ø

e

e

	 (10)

where the coefficient 1 / 2  is chosen to satisfy the 
normalization condition 

	 ( ) 1.TTr e e× = 	

The representation of gravitational wave 
polarization tensors in the form of equations (10) 
corresponds to the so-called Transverse Traceless 
gauge. With this choice, the transversality condition 
given by equation (8) reduces to 

	 = 0.km
mne 	 (11)

Taking into account that the timelike components 
of the polarization tensors are zero, for (10) the 
parameterization in spherical coordinates is 
permissible for an arbitrary direction of vector gk , 
which is defined by spherical angles q and f  [23]:
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Thus, in linearized theory, all angular correlations 
in the gravitational wave scattering process are 
completely determined by the matrices of two 
possible polarizations (12), (13).

 3. S-MATRIX APPROACH FOR 
DESCRIBING GRAVITON SCATTERING 

ON BOUND STATES

The expression for the cross-section of the two-
photon conversion process on a bound electron can 
be obtained by considering the S-matrix element 
corresponding to the process of atomic electron 
excitation by a graviton, followed by emission of two 
photons, see Fig. 1. According to Feynman rules in 
momentum space for linearized gravity theory, see 
[24, 25], the corresponding interaction vertex of 
quantized gravitational field with spinor field is given 
by the expression [26, 27]

	 1 2 1 2= [( ) ( )
8
i p p p pmn m n m nkG g g- + + + -

	 1 22 ( 2 )].p p mmnh- + - 	 (14)

Here = 32 Gk p , where G  is the gravitational 
constant; 0= ( , )mg g g  are Dirac matrices; 1p  and 

2p   are momenta of incoming and outgoing spinor 
particles respectively). The interaction of spinor 
and photon fields is given by the standard vertex

ie mg- . Taking into account the conservation law 
2 1 1=p p k-  at the fermion-graviton vertex, the 

transversality condition (11), properties of the 
graviton polarization tensor in TT-gauge, the 
S-matrix element corresponding to the diagram 
in Fig. 1 can be written in the coordinate 
representation as

	 (3) 2 4 4 4
3 2 1 3

ˆ = ( ) ( )
2 fif
ikS ie d x d x d x xy

æ ö÷ç ÷- - ´ç ÷ç ÷çè øò

	 * *3 2
3 3 2 2 2 13 2

( ) ( , ) ( ) ( , )A x S x x A x S x x
m m

m mg g´ ´

	 1 1
1 11 1

( ) ( ) ( ).ii x h x
n m

m ny g´ - ¶ 	 (15)

In expression (15) it is taken into account 
that the momentum operator entering mnG , in 
coordinate representation transforms into operator 

i m- ¶ ; ( ) = ( )
i ta

a ax ey y
-

r
E

, ( )ay r , is the solution of 
the Dirac equation for bound electron, is the Dirac 
energy, y  denotes Dirac conjugation, aE 1 2( , )S x x  is 
the electron propagator, Aµ(x) is the photon wave 
function in coordinate representation [28],

	
( )1( ) = .

2
ikxA x e

l g
m m

g

e
w

- 	 (16)

In equation (16) k  is the photon momentum 
4-vector ( ,g gw k ), gk  – photon wave vector, =| |g gw k  

–photon energy, xm is the spatial 4-vector. For 
components of the photon polarization 4-vector, the 
notation is introduced 

( )l g
me  ( = 0,1,2,3gl ), where Am

corresponds to the absorbed photon, and *Am(complex 

		  (12)

	

	 (13)

2 2 2 2

(1) 2 2 2 2

2

sin cos sin cos sin cos coscos cos sin cos
1= sin cos sin cos sin cos sin ,cos cos sin cos
2

sin cos cos sin cos sin sin

q f f q f f f f q q f

e q f f f f q f f q q f

q q f q q f q

æ ö- + - ÷ç ÷ç ÷ç ÷ç ÷+ - -ç ÷ç ÷÷ç ÷ç ÷- -ç ÷çè ø

2 2

(2) 2 2

2cos sin cos cos cos sin sincos sin
1= cos cos 2cos sin cos sin cos .cos sin
2 sin sin sin cos 0

q f f q f q f q f

e q f q f q f f q f
q f q f

æ ö- - ÷ç ÷ç ÷ç ÷ç ÷- -ç ÷ç ÷÷ç ÷ç - ÷ç ÷çè ø

Fig. 1. Feynman diagram describing the conversion of an incident 
graviton (dashed line) into two photons (wavy lines) on a bound 
atomic electron in the Furry picture (double solid line) 
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conjugate function) to emitted photon. In complete 
analogy with (16), the graviton wave function ( )h xmn  
in expression (15) is written as

	
( )1( ) = ,

2
ikxg

g

h x e
l

mn mne
w

- 	 (17)

where =| |g gw k   is graviton energy, 
( )gl
mne   are 

polarization tensor components, see equations (12) 
and (13). The expansion of electron propagator 

1 2( , )S x x  in equation (15) over one- electron 
eigenstates of Dirac Hamiltonian for hydrogen atom 
can be conveniently written as follows [28]:

	 1 2( , ) =S x x

	
( ) 1 21 2 ( ) ( )

= ,
2 (1 0)

i t t nn

nn

i d e
i

W y y
W

p W

¥
- -

- ¥
- -åò

r r
E

	 (18)

where summation over n implies summation over the 
entire Dirac spectrum for electron in the Coulomb 
field of nucleus, including continuum.

The description of real photons also implies the 
transversality condition = 0km

me , 2 = = 0k k km
m . 

Then for a photon wave propagating along the z, сaxis, 
there are two independent polarizations: 

	 (1) (2)

0 0
1 0

= , = .
0 1
0 0

e e

æö æö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

	 (19)

For an arbitrary direction of the wave vector gk
, defined by spherical angles q and   f , the spatial 
part of these polarization vectors can be found by 
rotating the axis z in the direction gk . This leads to 
the following parameterization:

 

	 (1) (2)
cos cos sin

= cos sin , = cos .
sin 0

q f f
e q f e f

q

æ ö æ ö-÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç ç-è ø è ø

	 (20)

Note that the two graviton polarization tensors 
given by equations (12) and (13) can be obtained 
from expressions (20) as a linear combination of 
tensor products:

	 (1) (1) (1) (2) (2)1= ( ),
2

e e e e eÄ - Ä 	 (21)

	 (2) (1) (2) (2) (1)1= ( ).
2

e e e e eÄ + Ä 	 (22)

Substituting expressions (18), (17), and (16) into 
equation (15) and performing integration over time 
variables and electron propagator frequencies, we 
obtain 

	 (3) (3)
2 1

ˆ = 2 ( ) ,if f i g ifS i Up d w w w- - + + -E E 	(23)

where the process amplitude is denoted as 

	
2

(3)

21
4 2if

g

eU = ´
g

k
w w w

	 *( ) *( )2 12 1
2 2 12 1

2, 21 2

[

ik r ik r

f nn n

f e n n e ná ñá ñ
´ +

+ -å
l l

ae ae

E w E

	 *( ) *( )1 21 2
2 2 11 2

1 2

]

ik r ik r

f n

f e n n e ná ñá ñ
+ ´

E + - E

l l
ae ae

w

	

( )
1

1

.

ik rg g
i j ij

i g n

n p e iá ñ
´

E + - E

l
a e

w
	 (24)

 Here we omitted the infinitesimal part in the 
denominators of equation (18) for brevity, and indices 
1(2)n , i and   f  and imply a set of all quantum numbers 

describing intermediate, initial, and final atomic 
states, respectively. The second term in square 
brackets of expression (24) arises when considering 
permutations of photon vertices in Fig. 1 among 
themselves. The remaining four terms, arising from 
the complete set of all six gauge-invariant Feynman 
diagrams and also taking into account permutations 
of photon vertices with the graviton, represent small 
non- resonant corrections to the resonant scattering 
amplitude [28, 29] . Thus, amplitude (24) is written 
in the resonant approximation [28, 29].

If we transition to the non-relativistic limit using 
the Foldy–Wouthuysen transformation, which 
in the first order implies 

ˆ
m

y ay f f+ +» p , where 
f   is the solution of the Schrödinger equation with 
the corresponding non-relativistic eigenvalue E
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,and considering that kr ≪ 1, then equation (24) 
simplifies to  

	
2

(3)

21

=
4 2if

g

eU
g

k
w w w

´ 	

	

*( ) *( )2 1
2 2 2 1 1

2, 21 2 f nn n

f n n n

E E

l l
e e

w

é
ê
ê
ê´ +ê + -ê
êë

å
p p

	

	

*( ) *( )1 2
1 2 2 2 1

1 2f n

f n n n

E E

l l
e e

w

ù
ú
ú
ú+ ú́+ - ú
úû

p p
	

	
1

1

.
ij i j

i g n

n p p i

E E

e

w
´

+ -
	 (25)

Here, unlike equation (24), it is assumed that the 
matrix elements are calculated with non- relativistic 
wave functions and non-relativistic energy spectrum.

Since we are interested in a specific scattering 
process

	 1 21 3 1 ,s g d s g g+ ® ® + + 	

It is necessary to set = = 1i f s  and 1 = 3n d. Then 
according to the selection rules for matrix elements 
of the dipole operator, it immediately follows that 
only transitions to intermediate states with  2 =n np. 
are allowed. Using the known commutation relation 

= [ , ]i S ip i H r  and applying the completeness 
condition 

	 | |= 1
n

n nñáå 	

in the matrix element involving only spatial 
components of the operator ij i jp pe , equation (25) 
can be rewritten in the “length form” as follows: 

	
2 2

2 1(3)
1 2

21

= ( , ).
4 2

g
if

g

e
U

g

k w w w
w w

w w w
M 	 (26)

Here and further, the following notation is used for 
the process amplitude: 

1 2
, ,

( , ) =
n m mp d

w w ´åM
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1 3

3 , | | 1
,

2

g
d ij i j

d
s g d

d m r r s

E E i

l
e

G
w

á ñ
´

+ - +
(27)

where pm  and  dm  are magnetic quantum numbers of 
states with  p- and d-orbital moments respectively. 
It is important to note that in the nonrelativistic 
expression (25), the contribution arising from 
summation over the negative spectrum exactly 
cancels out when transitioning from the velocity 
form to the “length form” (27) when using the 
aforementioned commutation relation. A detailed 
discussion of the corresponding transformations 
can be found in book [30] (see equation (29.37) in 
chapter 29.8, as well as chapter 35) and works [31, 
32].

The differential scattering cross-section can be 
obtained from the squared modulus of amplitude (23) 
with subsequent multiplication by the corresponding 
phase volumes of two emitted photons 

 
3 3

1 2
3 3(2 ) (2 )

d d

p p

k k . If the polarizations of particles in 

initial and final states are considered unknown, then 
it is also necessary to perform additional summation 
over all possible polarizations of each particle 
participating in the considered process. This leads to 
the following expression for the cross-section:

	
2 2

3 3
1 12

1 1 2
= ( ) ( )

2
p

g g

ld
d d d

as w w w w
w W W p

- ´ 	

	
2

1 1
, ,1 2

( , ) ,g

gl l l
w w w´ -å M 	 (28)
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where it is taken into account that 2 2= 32 = 32 pG lk p p  
and   2 = 4e pa .

If we perform summation over polarizations in 
equation (28) and projections of angular momenta 
of intermediate states, using the Wigner–Eckart 
theorem [33], and also perform angular integration 
in matrix elements, then the radial and angular 
dependencies of the scattering cross-section are 
factorized as follows:

	
2 2

3 3
1 12

1 1 2
= ( ) ( )

2
p

g g

ld
d d d

as w w w w
w W W p

- ´ 	

	
2

1 ; ;1 1 ; ;1

1 1 1 1

s np np s s np np s

s np s g npn

D D D D

E E E Ew w w

æ ö÷ç ÷ç´ + ´÷ç ÷ç + - + - - ÷çè ø
å 	

	

2
3 ;1

1 1 2 22
2 3

3 1

( , , , , , ).

( )
4

d s
g g

d
d s g

Q
A

E E

q f q f q f
G

w

´

- - +
	

(29)

The multiplier determining the correlation 
between the directions of the incident graviton and 
emitted photons is given by the expression

	 2 2
1 1 2 2 1

1( , , , , , ) = [8sin sin28800g g gA q f q f q f q q ´ 	

	 1 1 1cos 2( ) 8sin 2 sin 2 cos( )g g gf f q q f f´ - + - + 	

	 1 13cos 2( ) 3cos 2( )g gq q q q+ - + + + 	

	 12cos 2 2cos 2 22]gq q+ + + ´ 	

	 2 2
2 2[8 cos 2( )sin sin g gq q f f´ - + 	

	 2 28sin 2 sin 2 cos( )g gq q f f+ - + 	

	 2 23cos 2( ) 3cos 2( )g gq q q q+ - + + + 	

	 22cos 2 2cos 2 22],gq q+ + + 	 (30)

where ,g gq f  are spherical angles determining the 
direction of the graviton incident on the atom, 

,i iq f  ( = 1,2i ) are spherical angles determining the 
direction of emission of the radiated photons. The 
summation over n in expression (29) implies both 
summation over discrete states and integration over 
momentum of continuous states of radial solutions 
of the Schrödinger equation for the hydrogen atom. 
The dipole and quadrupole radial matrix elements in 
(29) are defined as follows: 

	 3
;

0

= ( ) ( ),n l nl n l nlD dr r R r R r
¥

¢¢ ¢¢ò 	 (31)

	 4
;

0

= ( ) ( ).n l nl n l nlQ dr r R r R r
¥

¢¢ ¢¢ò 	 (32)

The structure of the obtained graviton scattering 
cross-section on a hydrogen atom is analogous 
to the structure of photon scattering cross-
section during absorption in the line 1 3s d®  with 
subsequent two-photon re-emission in the decay 
3 1 ( 1) ( 1)d s E Eg g® + +  [34]. The only difference 
is that the angular correlation, determined by 
expression (30), has a different angular dependence 
due to the tensor structure of graviton polarization. 
It should also be taken into account that in a graviton 
scattering experiment, such a transition could 
also be caused by “parasitic” blackbody radiation 
inevitably acting on the atomic system. Therefore, 
in addition to different angular distributions in 
these two processes, it is important to understand 
to what temperature the walls of the proposed 
setup should be cooled to unambiguously suppress 
such inf luence. The estimate of thermal photon 
absorption rate in the quadrupole transition 1 3s d- , 
denoted hereinafter as 2,

1 3
E abs
s dW , should be compared 

with the corresponding graviton absorption 1 3
g
s dW  in 

the same line. The absorption rate 2,
1 3
E abs
s dW  relates to 

spontaneous, 2, 1
3 1 = 594E spon

d sW -n  [35], and induced, 
2,

3 1
E ind
d sW , emission rates according to the relations 

	 2, 2,1
1 3 3 1

3
= =E abs E inds

s d d s
d

g
W W

g
	

	 2,1
3 1

3 13

1= ,

1

E spons
d s

d sd
k TB

g
W

g

e

w

-

	 (33)

where the level population = 2(2 1)a ag l + , Bk   — 
Boltzmann constant, T   is temperature in Kelvin. 
At = 300T  K (room temperatures) the probability 
of thermal photon absorption per unit time 
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2, 200 1
1 3 10ñE abs

s dW - -:  and, consequently, can be 
considered negligibly small, since 2,

3 1 1 3
E ind g
d s s dW W= . 

Taking this into account, graviton scattering in the 
line 1 3s d-  is more preferable than thermal photon 
scattering in the same transition at typical room 
temperatures.

The obtained angular dependencies (30) are 
significantly simplified if we assume that the incident 
graviton propagates along the z, axis, i.e., setting 

= 0gq  and  = 0gf . Then the orientation of the two 
emitted photons does not depend on either of the 
azimuthal angles 1f  and   2f , which simplifies the 
correlation factor in equation (30) to the following 
expression:

	 1 2( , , = 0, = 0) =g gA q q q f 	

	 1 2
1= (3 cos(2 ))(3 cos(2 )).

450
q q+ + 	 (34)

 The corresponding graphical representation of the 
angular distribution is shown in Fig. 2.

4. CONCLUSION

Considering the hydrogen atom as an example 
and applying the quantum electrodynamic approach 
combined with linearized quantum gravity theory, 
we obtained expressions for the cross-section of the 
two-photon conversion process and corresponding 
angular correlations. In the considered scenario, 
any massive astrophysical object can serve as a 
source of gravitons without loss of generality. In 
particular, in recent years there have seendiscussions 
in literature regarding the emission of gravitons from 
binary Primordial Black Holes (PBH) in the early 
Universe or those arising from PBH evaporation 
[36]. Such gravitons can contribute to the stochastic 
background of gravitational waves. The spectrum of 
such radiation depends on both the mass and spin 
of black holes, as well as their redshift [37]. The 
same applies to the situation considered in work 
[38], where perturbations of hydrogen atoms by 
gravitons in the primordial plasma were investigated. 
In [38], gravitons emitted by hydrogen and helium 
in the early Universe during recombination were 
considered as a possible source of high-frequency 
gravitational waves. The calculations showed that the 
most notable contribution is given by the transition 
3d − 1sof singly ionized helium He+, which leads to 
a peak in the Planck distribution at a frequency of 
1013 Hz. However, as shown by the study authors, 
the corresponding energy density is too small for 
detection.

In the scenario proposed here, where a hydrogen 
atom serves as a detector of incident gravitons, the 
analysis of angular correlations in the inelastic 
scattering process could serve as a means of 
determining the nature of the particle that acts as the 
source of atomic excitation. However, the practical 
implementation of such a detector under laboratory 
conditions is hindered due to the extremely small 
cross-section of the process.

This circumstance, apparently, does not seem so 
hopeless if we apply an experimental scheme with 
laser amplification of a weak signal, similar to that 
previously discussed in works [39–41]. Following 
[40], let's consider a system of three-level atoms. 
These atoms are assumed to be in a specially 
constructed optical cavity containing a resonant 
signal mode at the transition frequency 1s–3d, 
as well as two resonant modes at the transition 
frequency 3d–4p. In the absence of population at 

Fig. 2. (In color online) Angular distr ibution function

1 2( , , = 0, = 0)g gA q q q f  of scattered photons for the case of 
graviton propagation along the z  axis, see expression (34)
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levels 3d and 4p, the latter two modes are frequency 
degenerate and not coupled to each other. One of 
these two modes (pump mode 3d–4p) is excited, 
i.e., contains a strong monochromatic pump field 
specified by an external source (laser). The second 
mode is intended for output signal excitation ― we 
will further refer to it as output 4p–3d. In the initial 
state, i.e., before the signal arrival, it is not excited 
and contains no fields. The detector's operating 
principle is as follows. Before the signal arrives in 
the signal mode, the atom, not being in resonance 
with the pump field and practically not interacting 
with it, remains in the ground state 1s. After the 
signal arrives at frequency ω1s3d, some population 
appears at level 3d. At this point, under the influence 
of the strong pump field, transitions begin between 
levels 3d and 4p, and an oscillating dipole moment 
appears at frequency ω3d4p, which excites the field 
in the output mode. The task is to demonstrate 
that the output signal can be significantly larger 
than the input and determine the characteristic 
time of output signal increase. The corresponding 
estimates carried out in work [42] showed that with 
100 photons in the pump mode and one photon in 
the signal mode, in the considered scheme, under 
the influence of a weak signal, the excitation level of 
the output mode reaches the pump mode excitation 
level within τ = 10−8 s, and consequently, has high 
sensitivity [43]. The effectiveness of such a scheme in 
case the signal mode is excited by a graviton requires 
separate consideration. It is important to note that 
the number of gravitons in a classical low-frequency 
gravitational wave can be very large (on the order of 
1036cm, see, for example, [19]).

Despite the limitations we have considered in 
detecting a single graviton, it should be emphasized 
that the approach developed in this work to describe 
angular correlations can be applied to any other 
hypothetical tensor particle with spin 2 and a higher-
order coupling constant. Although the graviton 
scattering cross-section is proportional to the 
square of the Planck length, research of this kind 
continues. In particular, it was recently proposed 
to increase the sensitivity of graviton detection in 
laboratory experiments using perturbations of a 
massive ensemble of atoms [19]. The estimates of 
graviton absorption probabilities in various media 
provided in [19] give hope for the implementation of 
the approach proposed by the authors.

FUNDING

This work was carried out within the framework 
of the state assignment to the SAO RAS, approved 
by the Ministry of Science and Higher Education 
of the Russian Federation. The work of T. A. Z. 
was supported by the BASIS Foundation for the 
Development of Mathematics and Theoretical 
Physics (grant No. 23-1-3-31-1).

REFERENCES

1.	 S. Weinberg, Gravitation and Cosmology: Principles 
and Applications of the General Theory of Relativity, 
Wiley (1972).

2.	 A. Lightman, W. Press, R. Price, and S. Teukolsky, 
Problem Book in Relativity and Gravitation, Princeton 
University Press (2017). 

3.	 S. Bose, I. Fuentes, A. A. Geraci, S. M. Khan, S. 
Qvarfort, M. Rademacher, M. Rashid, M. Toroš, 
H. Ulbricht, and C. C. Wanjura, Massive Quantum 
Systems as Interfaces of Quantum Mechanics and 
Gravity, arXiv: 2311.09218 [quant-ph]. 

4.	 N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, 
The Hierarchy Problem and New Dimensions at a 
Millimeter, Phys. Lett. B 429, 263 (1998).

5.	 S. Dimopoulos and G. Landsberg, Black Holes at the 
Large Hadron Collider, Phys. Rev. Lett. 87, 161602 
(2001).

6.	 S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. 
Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M.S. 
Kim, and G. Milburn, Spin Entanglement Witness for 
Quantum Gravity, Phys. Rev. Lett. 119, 240401 (2017).

7.	 F. Gunnink, A. Mazumdar, M. Schut, and M. Toroš, 
Gravitational Decoherence by the Apparatus in the 
Quantum-Gravity-Induced Entanglement of Masses, 
Class. Quant. Grav. 40, 235006 (2023).

8.	 T. W. van de Kamp, R. J. Marshman, S. Bose, and 
A. Mazumdar, Quantum Gravity Witness via 
Entanglement of Masses: Casimir Screening, Phys. 
Rev. A 102, 062807 (2020).

9.	 	S. G. Elahi and A. Mazumdar, Probing Massless and 
Massive Gravitons via Entanglement in a Warped 
Extra Dimension, Phys. Rev.D 108, 035018 (2023).

10.	 	L. Asprea, A. Bassi, H. Ulbricht, and G. Gasbarri, 
Gravitational Decoherence and the Possibility of 
Its Interferometric Detection, Phys. Rev. Lett. 126, 
200403 (2021).

11.	 	G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D. V. 
Nanopoulos, and S. Sarkar, Tests of Quantum Gravity 
from Observations of -Ray Bursts, Nature 393, 763 
(1998).



	 TWO-PHOTON GRAVITON CONVERSION...	 297

JETP, Vol. 166, No. 3 (9), 2024

12.	 	M. Kamionkowski and E. D. Kovetz, The Quest for 
B Modes from Inflationary Gravitational Waves, Ann. 
Rev. Astron. Astrophys. 54, 227 (2016).

13.	 	E. Komatsu, Hunting for Primordial NonGaussianity 
in the Cosmic Microwave Background, Class. Quant. 
Grav. 27, 124010 (2010).

14.	 	R. Lieu and L. W. Hillman, The Phase Coherence of 
Light from Extragalactic Sources: Direct Evidence 
against First-Order Planck-Scale Fluctuations in 
Time and Space, Astrophys. J. 585, 77 (2003).

15.	 	R. Ragazzoni, M. Turatto, and W. Gaessler, The Lack 
of Observational Evidence for the Quantum Structure 
of Spacetime at Planck Scales, Astrophys. J. 587, 1 
(2003).

16.	 	F. Dyson, Is a Graviton Detectable?, Int. J. Mod. Phys. 
A 28, 1330041 (2013).

17.	 	S. Boughn and T. Rothman, Aspects of Graviton 
Detection: Graviton Emission and Absorption by 
Atomic Hydrogen, Class. Quant. Grav. 23, 5839 (2006).

18.	 	T. Rothman and S. Boughn, Can Gravitons Be 
Detected?, Found. Phys. 36, 1801 (2006).

19.	 	G. Tobar, S. K. Manikandan, T. Beitel, and I. Pikovski, 
Detecting Single Gravitons with Quantum Sensing, 
arXiv: 2308.15440 [quant-ph].

20.	 L. M. Krauss and F. Wilczek, Using Cosmology to 
Establish the Quantization of Gravity, Phys. Rev. D 
89, 047501 (2014).


