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Abstract. A theoretical consideration of high-frequency microfluctuations formed by electron current 
across the magnetic field has been conducted. The Ginzburg–Landau equation with a nonlocal term was 
obtained to describe the dynamics of electron-cyclotron drift fluctuations. The thresholds for transition 
to turbulent regime and the boundaries within which soliton turbulence regime can be realized were 
determined, depending on the parameters of this equation.
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1. INTRODUCTION

Numerous active space experiments involving 
releases of high-velocity or explosion-generated 
plasma clouds have shown that at the plasma cloud 
front, a region forms with significant electron 
heating, increased ionization rate, and anomalous 
transport, where transverse electron transport greatly 
exceeds the level of classical and Bohm diffusion. 
This phenomenon in space plasma physics is known 
as CIV – Critical Ionization Velocity phenomenon 
(see review [1]). Active ionospheric experiments often 
focused primarily on studying this phenomenon. 
Experimental data were interpreted within this 
framework, for example, in the CRIT II experiment 
[2, 3]. At the time, several participants of the active 
space experiment CRIT II saw an analogy between 
these processes in space and laboratory plasma of 
magnetrons and Hall thrusters, and attempted to 
investigate this phenomenon in more detail under 
laboratory conditions [4,5]. It seems reasonable 
to use the extensive experimental material and 
theoretical developments made in the study of 
anomalous transport, heating, and ionization in 
laboratory plasma of magnetrons and Hall thrusters 
as applied to space plasma.

Generally, to explain electron transfer in these 
problems, one of the following hypotheses is 
invoked: electron-cyclotron drift waves, Simon-
Howe instability, lower-hybrid, modified two- 
stream, or ion-acoustic instability. The main factors 
exciting instability are considered to be gradients of 
density, magnetic field, temperature, drift motion, 
and dissipation. Typically, theoretical considerations 
draw a clear line between fluid treatment of low-
frequency long-wave perturbations and kinetic 
treatment of short-wave perturbations. In kinetic 
considerations, plasma is usually non-dissipative. 
In many cases, attempts are made to account for 
nonlinear effects. Including particle-in-cell methods 
that yielded electron-cyclotron wave structures. 
Several examples of nonlinear numerical models 
and calculations can be found in works [6–8]. Some 
authors associate anomalous transport with the 
existence of nonlinear structures (for example, [9]).

In ionospheric experiments, the electron 
concentration in plasma formations has the same 
orders of magnitude (1010−1010 cm−3). With this, 
the electric and magnetic fields are smaller by 2–3 
orders (≈ 0.5 Gs and V/m respectively). Such small 
magnetic field values in the ionosphere (compared to 
laboratory ones) lead to a significant frequency shift 
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in some of these instabilities. As a result, electron-
cyclotron drift (ECD) turbulence appears to be 
the most preferable explanation for high-frequency 
turbulence in ionospheric experiments. There is 
no noticeable deviation of the electron distribution 
function from Maxwellian, due to significantly 
lower electric field values. The directional drift 
velocity of electrons is much less than the electron 
thermal velocity. The problem parameters go beyond 
the kinetic consideration conducted in work [10]. 
This suggests the possibility of fluid treatment of 
high-frequency turbulence with consideration 
of dissipation. Furthermore, the geometry of 
expanding plasma, in which the ion Larmor radius 
is comparable to the plasma front width, while the 
electron Larmor radius is much smaller, allows, 
unlike [11], the use of partially magnetized plasma 
models for constructing nonlinear structures.

In this work, an attempt is made to construct a 
model of small-scale, fast-moving high-frequency 
nonlinear wave structures of electrons forming in 
plasma in the presence of electron drift due to an 
electric field perpendicular to the magnetic field 
(in E × B-plasma). Unlike reproducible laboratory 
plasma conditions, when considering the dynamics 
of plasma formations in ionospheric conditions, 
the main issues become plasma parameters 
corresponding to various modes of small-scale 
turbulence, conditions and time parameters of 
its development, and the effects produced by this 
turbulence. Therefore, to describe turbulence based 
on the system of f luid equations and Maxwell's 
equations using the small parameter expansion 
method, a one-dimensional complex Ginzburg-
Landau equation (CGL) with an additional 
nonlocal (integral) nonlinear term was obtained 
as the simplest model of ECD turbulence near its 
threshold. The boundaries of transition to turbulence 
were investigated. A region of plasma parameters 
corresponding to soliton turbulence was obtained, 
which, according to the authors, is associated with 
the anomalous transport regime.

2. BASICS OF THE MODEL

For high-frequency small-scale f luctuations, 
plasma can be considered partially magnetized, as 
the f luctuation scales are much smaller than the 
ion Larmor radius. For laboratory plasma, several 
authors associate the growth of instability with 
non-Maxwellian electron velocity distribution; 

however, in the present work, a simpler model of 
distribution distortion is adopted in the form of 
adding drift velocity to the Maxwellian distribution. 
The factors determining the growth of instability 
and its nonlinear stabilization are taken to be the 
plasma density gradient and electron collisions and 
diffusion.

In our consideration, we used a system of 
f luid equations for electron motion in the plane 
perpendicular to the magnetic field. Temperature 
changes at the scale of small-scale high- frequency 
turbulence are not taken into account, and the 
gyroviscosity tensor (inapplicable at such scales) is 
not considered. At the same time, it seems necessary 
to take into account electromagnetic corrections, 
since at electron temperatures of Te ≥1 eV observed 
in experiments, purely electrostatic waves do not 
exist.

The system of equations assumes oscillatory 
motion of electrons only against the background 
of stationary ions. Additional consideration of ion 
motion leads to accounting for the ponderomotive 
force, which introduces a correction to the nonlinear 
term. Electron drift occurs along the x axis with 
velocity ud. The magnetic field is directed along the z 
axis. A wave perturbation propagating along the drift 
direction (axis x) perpendicular to the magnetic field 
is sought. The system of equations includes

1. electron motion equations along the axes x and 
y: 

	 æ ö= + - Ñç ÷è ø
1 ;e

e e e e
d V

m n en E H p
dt c 	 (1)

continuity and Poisson equations  

	

¶
+ Ñ = - Ñ

¶
¶

= -
¶

2

0

( ) ,

;

e
e e e

x
i e

n
n V eD n

t
E

n n
x

	 (2)

2 .   two Max wel l  equations introducing 
electromagnetic corrections: 

	

p=

¶= -
¶

4rot ,

1rot .

H j
c

H
E

c t

	 (3)

In quasi-one-dimensional consideration, all 
quantities depend only on the coordinate x and time 
t taking into account changes in electron velocities 
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along the axes x and y, magnetic field components 
Hz and electric field Ex and Ey. Additionally, non-
uniformity along the axis x of electron gas density 
is assumed

	
¶

g =
¶

ln( ( ))
.e

n
n x
x 	

The modeling is based on expansion in a 
small parameter of the system of equations in 
dimensionless form. Variables are normalized to 
corresponding constants: time t to inverse plasma 
frequency 1

pew- , spatial coordinate – to Debye 
radius Dr , velocities — to electron thermal velocity. 
The Krylov–Bogolyubov–Mitropolsky expansion 
method [12, 13] allows obtaining the dispersion 
equation and Ginzburg-Landau equation for the 
amplitude of the electric field wave perturbation.

In paper [14], when considering two-fluid plasma 
in the 5-moment approximation, it was found that 
the ECR dispersion relation has two asymptotic 
solutions. One of them is similar to the ion-sound 
mode, while the other agrees with the dispersion 
relation obtained in our expansion. This mode is 
defined in this work as a relation for Doppler-shifted 
"hybrid" waves. The authors suggest that the waves 
arise at the intersection of these two branches of the 
dispersion curve, forming the resulting nonlinear 
response. The system of equations used in the present 
work is supplemented so that the dispersion relation 
obtained in this work includes two corrections. One 

is determined by accounting for electromagnetic 
perturbations (two Maxwell equations). The other 
correction is introduced as a dissipative term to 
account for the role of dissipation in the formation 
of nonlinear wave structure. This dissipative term 
is similar to the term in equation (25) of paper 
[15]  – the continuity equation. This is a diffusion 
term 2D n^Ñ , where the diffusion coefficient = eD nr  
depends on the electron Larmor radius er  and their 
collision frequency n with both ions and the neutral 
component. The focus on diffusion when considering 
plasma formation dynamics is also related to the 
fact that in paper [9], when analyzing numerical 
simulation results, diffusion leading to the smearing 
of resonances is assigned the main role in forming 
the frequency spectrum.

The real frequency in dimensionless variables is 
found from equation (4):
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The imaginary frequency component λ determines 
the correction

	 D = l + l¢ ¢2 2( ) 3 2 ,D D k 	

associated with the diffusion coefficient D¢ (in 
dimensionless form).

The resulting equation can be considered as 
a nonlinear Schrödinger equation or complex  
Ginzburg–Landau equation with additional 
terms with coefficients 1c ¢, 2c ¢, the second of which 
represents the coefficient of the nonlocal integral 
term: 
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Fig. 1. a — Amplitude of the exact solution (solid line) and 
analytical estimate (dashed line). b — Example of soliton shape 
lence. 
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The coefficient d¢ is determined by the difference 
of terms proportional to the density gradient and 
electron collision frequency; coefficients b¢ and 
e¢ are determined by the diffusion coefficient; 
coefficient 1c  is determined by the electron collision 
frequency. All these coefficients depend on the wave 
vector. The exact form of the expressions defining 
the coefficients is not provided since some of them 
are quite cumbersome. Further consideration is 
conducted only for wave vector values corresponding 
to the anomalous dispersion of the equation.

An equation of this type is the simplest equation 
describing the system near the turbulence threshold. 
For the wave vector region corresponding to 
anomalous dispersion, the equation describes the 
subcritical bifurcation area, where above a certain 
plasma density gradient threshold, the fluctuation 
regime changes abruptly, and turbulence emerges 
(see [16] and literature cited therein). In the area 
near the bifurcation threshold, the formation of 
soliton turbulence is possible.

The analysis of CGL regimes is typically carried 
out for the equation form normalized so that

	 = ± = ±1 , 1.
2

P Q 	

Under standard normalization transformation, 
the equation is reduced to a form depending on 
fewer parameters: 

	 + + = d + b +2| |t xx xxiA A A A i A i A
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In this form, the main factors affecting the 
solution become d and b. Many authors have studied 
the equation in this form. The stabilizing role of 
nonlocal (integral) terms of various types in CGL 
has been analyzed in recent years in works [19–21]. 
Additional dissipative and nonlocal terms in our 
derived equation suggest the possibility of soliton 
turbulence formation. To estimate the amplitudes of 

Fig. 2. Boundaries of parameter regions where soliton turbulence 
is realized: a – at plasma concentration 5×1011 cm–3 and two drift 
velocity values; b – at plasma concentration 5×109 cm–3:

Fig. 3. Time dependence of average oscillation amplitude |A|

Fig. 4. Numerical solution of system (6)
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emerging solitons, works [22,23] were used with a 
somewhat different integral term 

- ¥
ò 2| |
x

A A dx  in the 

auto-soliton generation mode [24,25]. The exact 
semi-analytical solution was obtained using the 
method proposed in work [26]. Comparing it with 
the analytical estimate shows that such an estimate 
gives several times overestimated soliton amplitudes 
and does not account for their shape distortion. 
However, these solutions allow estimating the range 
of plasma parameters where stable solitons exist 
(soliton stability was evaluated using the method 
described in works (27, 28), and estimating their 
amplitudes and wave vectors. The stable soliton 
regime is only realized for fluctuations with wave 
vectors > sk k , where 2

sk ~ δ/β. Thus, this solution 
applies only to short-wave turbulence.

Comparison of analytically estimated amplitudes 
and amplitudes of the exact solution is shown in 
Fig. 1a. The solid line represents exact solution 
amplitudes, the dashed line represents analytical 
estimate. Fig. 1b shows an example of soliton shape. 
The exponential in the integrand of the integral 
included in equation (6) leads to soliton shape 
distortion and frequency shifts.

The stability limits determine the lower boundary 
of soliton wave vectors in Fig. 1a. The asymmetric 
shape of solitons (see Fig.1b) is determined by the 
density gradient value.

Fig. 2 shows the regions of soliton turbulence 
existence depending on two defining parameters 
d and b. In Fig.  2a  these regions are shown for 
plasma typical for magnetrons, with large magnetic 
and electric fields and high ionization level. In this 
case, the plasma has the following parameters: 

11= 5 10en ×  cm 3- ; / = 0.02d Teu v  (shaded area 
within boundaries 1) and   / = 2.0d Teu v  (shaded 
area within boundaries 2). To the right of this region, 
chaotic turbulence forms. The main conclusion that 
can be drawn from this graph: soliton turbulence 
occurs only with small deviations of  from zero, and 
with increasing electric field, the region of soliton 
turbulence implementation decreases and partially 
transitions into chaotic. Figure d shows the region 
of soliton turbulence realized under parameters 
corresponding to space experiment conditions. In 
this case 9= 5 10en ×  cm 3- , / = 0.002d Teu v . Under 
these conditions, soliton turbulence is realized at 

< 0d . Under these conditions, soliton turbulence is 
realized at. Solitons have negative group velocity. 

3. NUMERICAL CALCULATIONS

To conf irm the possibility of forming a 
sequence of solitons in the system described by 
the above equation, numerical calculation was 
performed to reach stable solutions from initial 
chaotic perturbation of small amplitude at system 
parameter values corresponding to the region of 
stable solitons, in particular, at point = 0.0773d , 

= 0.0176b , lying in the region of soliton turbulence 
on the plane of Fig. 2a. Equation (6) was solved on 
a segment of length 4/ = 10DL r  Equation (6) was 
solved on a segment of length 20.765 10-- × .For 
the approximation of spatial derivatives, a compact 
differencing scheme was used (see, for example, 
[29]) with periodic boundary conditions. A small 
initial perturbation was set as random oscillations 
with frequencies within the Nyquist frequency. For 
time integration, a 6th order Runge–Kutta method 
was used. Figure 3 shows the time dependence of 
the average oscillation amplitude on the considered 
segment. During the shown time 610petw »  the 
amplitude of forming solitons stabilizes. The 
dependence | ( , ) |A x t  obtained from solving system 
(6) is shown in Fig. 4. Formation of soliton structures 
with limited amplitude is observed.

4. CONCLUSION

Thus, the paper shows the possibility of formation 
of small-scale wave structures of ECD. This 
consideration allows finding the parameter region 
where soliton turbulence and associated anomalous 
plasma transport are formed. Obtaining these criteria 
for soliton turbulence can help both in numerical 
modeling of collisionless plasma expansion in the 
ionosphere and in analyzing experimental data on 
such expansion.
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