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1. INTRODUCTION.  
PROBLEM STATEMENT

Intensive theoretical and experimental studies 
begun in the 1970s, aimed at obtaining powerful 
coherent electromagnetic radiation in the 
microwave range using high-current electron beams 
propagating in electrodynamic systems with plasma 
filling, have been undoubtedly successful. Currently, 
there are operating sub-gigawatt plasma sources 
of electromagnetic radiation in the centimeter 
wavelength range [1–3]. During their creation, a new 
direction of applied physics emerged – high-current 
relativistic plasma microwave electronics [4], which 
continues to actively develop today [5]. Therefore, it is 
completely natural to desire to "advance" the existing 
successes and achievements in the microwave field 
to a higher frequency region, for example, to the 
subterahertz or even terahertz ranges. The study 
of the possibility of advancing existing Cherenkov 

plasma sources of electromagnetic radiation into the 
subterahertz range is addressed in work [6].

This paper examines Cherenkov emitters on 
dense relativistic electron beams, using dielectric 
and plasma-dielectric waveguides as electrodynamic 
systems. The idea of using combined plasma-
dielectric structures for wave deceleration in 
Cherenkov emitters was considered, for example, in 
works [7–9]. We will mainly consider the interaction 
of an electron beam with high modes of dielectric 
waveguides when they belong to the type of so-called 
spatially developed (multi-wave) electrodynamic 
systems [10], since the wavelengths of high (and 
therefore high-frequency) waveguide modes are 
small compared to its transverse dimension.

When the inequality / <dc ue , is satisfied, 
where u is beam velocity, de  is dielectric permittivity, 
sufficient wave deceleration exists even without 
plasma. This case represents the main interest in the 
present work. If the opposite inequality e >/ dc u, 
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is satisfied, then wave deceleration is provided only 
by plasma, which is less interesting for us here. We 
consider the case of simultaneous presence of both 
dielectric and plasma in the waveguide, if only 
because in strong high-frequency fields, breakdown 
develops on the dielectric surface, leading to plasma 
formation in waveguide regions adjacent to the 
dielectric [11,12]. Plasma significantly changes the 
electrodynamics of the dielectric waveguide, which 
should be taken into account within the framework 
of the problems outlined above. Essentially, this work 
is a continuation of our work [6], which addressed 
the problem of increasing the operating frequency of 
emitters using only high-density plasma without any 
dielectric inserts. Thus, in this work, we are trying 
to solve the same problem of frequency increase by 
using a different electrodynamic system1.

Let's consider the interaction of a straight electron 
beam with a wave E-type of a circular cross-section 
waveguide with radially inhomogeneous isotropic 
medium filling with dielectric permittivity of the 
form

	 ( , ) = ( , ) , , = , , ,ij ijr r i j r ze w e w d j 	 (1)

where , ,r zj   are cylindrical coordinates, and 
( , )re w   is some function of the radial coordinate r  

(and frequency w). Let's direct the axis 0Z  along the 
waveguide axis, coinciding with the beam direction, 
and define the azimuthally symmetric longitudinal 
component of the electric field intensity by the 
formula 

	
1( , , ) = [ ( )exp( ) . .].
2z zE t z r E r i t ik z C Cw- + + 	 (2)

From Maxwell's equations with the dielectric 
permittivity tensor (1) follows the equation for the 
complex amplitude ( )E r  in formula (2) 

	
æ öe w - e w =ç ÷c wè ø2

1 ( , ) ( , ) 0,
( , )

d r dE
r r E

r dr drr
	 (3)

where 2 2 2 2( , ) = ( , ) /zr k r cc w e w w- .
We will consider two variants of waveguide medium 
filling. In the first variant 

	 0
2 2

0

, 0 < < ,
( , ) =

= 1 / , < < ,
d

p p

r r
r

r r R

e
e w

e w w

ìïïïíï -ïïî
	 (4)

1 Wave amplification in dielectric waveguides without plasma in the 
low-frequency range was considered in work [13].

where pw  is a constant electron Langmuir frequency. 
According to (4), in the inner region of the waveguide 

0<r r  there is a dielectric with permittivity > 1de , 
and in the outer region — cold collisionless electron 
plasma. This filling variant will be called the direct 
geometry case. In the second filling variant, called 
the inverse geometry case, 

	
2 2

0

0

= 1 / , 0 < < ,
( , ) =

, < < ,
p p

d

r r
r

r r R

e w w
e w

e

ìï -ïïíïïïî
	 (5)

i.e., the inner region of the waveguide is filled with 
plasma.

As can be seen from formulas (1), (4), and (5), the 
plasma in the waveguide with a dielectric insert is 
unmagnetized. In the above-mentioned works [7–9], 
the opposite case was considered — fully magnetized 
plasma. Below it will be shown that the cases of 
plasma without external magnetic field and plasma 
in infinitely strong external magnetic field differ 
significantly from each other. The matter here is in 
the different set of eigenwaves of plasma-dielectric 
waveguides.

Directly from equation (3), the following boundary 
conditions at the interface between dielectric and 
plasma are obtained:

 

	 { } =
=

ì üe wï ï= =í ý
c wï ïî þ

20
0

( , )0, 0.
( , )r r

r r

r dE
E

drr
	 (6)

Here and further, curly brackets denote the difference 
of expressions on both sides of the boundary, that is, 
for example, { } = = + - -0 0

0
( 0) ( 0)r rE E r E r . Another 

boundary condition ( ) = 0E R  is written at the 
perfectly conducting waveguide boundary.

As can be seen from (1), the medium in the 
waveguide is isotropic, which in relation to plasma 
means it is unmagnetized. However, in any of 
the known Cherenkov plasma emitters, there is 
necessarily some external magnetic field required for 
obtaining and transporting high-current relativistic 
electron beam. Plasma unmagnetization assumes the 
fulfillment of inequalities [14] 

	 W2
e ≪ ω2

, W w2
e p ≪ ω3

,	 (7)

where eW   is the electron cyclotron frequency. In 
this work, we are only interested in the region of 
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sufficiently high frequencies, therefore we consider 
inequalities (7) to be unconditionally fulfilled. The 
situation is different with the electron beam. The 
densities of electron beams used in plasma emitters 
are small compared to plasma densities. Therefore, 
assuming the inequalities are fulfilled [7, 14] 

	 W2
e ≫w g d2 3 2, | |b ku- 	 (8)

we consider the electron beam to be fully magnetized. 
Moreover, following experimental conditions, we 
use the model of an infinitely thin tubular electron 
beam. Here bw  is the Langmuir frequency of beam 
electrons, 2 2 1/2= (1 / )u cg -- , bd  is the thickness of 
the tubular beam, and is  kd  is the spatial increment 
(gain coefficient) of resonant Cherenkov beam 
instability.
The current density of an infinitely thin tubular 
magnetized electron beam is defined by the formula 

	 ( , , ) = ( ) ( , ; ),z b b b bj t z r r r j t z rd d - 	 (9)

where ( , ; )b bj t z r  — is a function that requires beam 
dynamics equations to find, and the parametric 
dependence on the tubular beam radius br  indicates 
that the field (2) acts on the electrons of the thin 
beam precisely at point = br r . The presence of 
current with density (9) in the waveguide leads to the 
following jump in the azimuthal component of the 
magnetic field induction 

	 { }
=

4( , , ) = ( , ; ).b b br rb
B t z r j t z r

cj
p d 	 (10 

)

The azimuthal component of the magnetic field 
induction is determined by a formula of type (2) with 
complex amplitude 

	
2

( ) = ( , ) .
( , )

dEB r i r
drc r

we w
c w

- 	 (11) 

Substituting the formula of type (2) with complex 
amplitude (11) into (10) and assuming that the electron 
beam passes through one of the plasma regions of 
the waveguide, we find the following boundary 
conditions for function ( )E r  on the electron beam:  

{ } =
=

c pì ü= = dí ý e wî þ

2 40, ( ) ,p
b b br rb pr rb

dE i
E j r

dr 	 (12)

where 

( )
p ww= w -

p ò
2 /

0

( ) ( , ; )expb b b b zj r j t z r i t ik z dt 	 (13)

is the space-time Fourier harmonic of the beam 
current density, and 2 2 2 2= /p z pk cc e w-   . In 
(12), an obvious condition for the continuity of the 
function itself on the electron beam is added ( )E r . In 
the linear approximation, to calculate function (13), 
one can use the known expression for electron beam 
conductivity obtained in the hydrodynamic model 
[7, 14], which gives 

	
2 3

2
4 ( ) = ( ).

( )
b

b b b
z

i j r E r
k u

w gp
w w

-
-

-
	 (14)

 The procedure for calculating function (14) in 
nonlinear theory will be described below.

2. DISPERSION EQUATION OF LINEAR 
THEORY FOR THE CASE OF DIRECT 

GEOMETRY

Let us now proceed to consider the waveguide 
in the case of direct geometry (4). Since the beam 
passes through the plasma region of the waveguide, 
we assume that 0 < <br r R. Taking into account the 
boundary conditions 0=r r  and   =r R, the solution 
of equation (3) in different regions of the waveguide 
can be written as 

	 0 0

0 0 0 0
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(15)
where 
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 A  and   B   constants, 0( )I x  and   0( )K x    are 
I n feld  a nd MacDona ld  f unct ion s,  a nd  

2 2 2 2= /d z dk cc e w- . Substituting solutions (15) 
into the boundary conditions (12), we obtain the 
following relations: 

	 0

0 0 0

( )
= ,

( ) ( , ; )
p b

p p b z b

F r
A B

r I r D k r

c
c c w

	 (17)

	 0( , ; ) =zD k R Bw 	

	
2

0 0
4= ( , ; ) ( ) ( ) ,p

z b p b b b b b
p

iD k r I r r j r
c pw c d
e w

- á ñ	(18)

where 
w = w + w c c0 0 0( , ; ) ( , ) ( , ) ( ) / ( ).z z z p pD k x U k V k K x I x	

(19)
According to formula (15), relation (17) determines 
the field structure of the wave excited by the 
electron beam in the plasma-dielectric waveguide. 
The main one is certainly relation (18), which can 
be interpreted as the excitation equation of the 
waveguide by the beam (see below).
It is easy to see that equation

	 0( , ; ) = 0zD k Rw 	 (20)

is the dispersion equation determining the 
frequencies of the natural waves of the plasma- 
dielectric waveguide without the beam. Indeed, 
in the absence of a beam (for example, at = 0bd ) 
equation (18) has a non-trivial solution 0B ¹  only 
at 0( , ; ) = 0zD k Rw .

In the linear approximation, using formulas 
(14) and (15), from (18) we obtain the following 
dispersion equation for determining complex spectra 
of a plasma-dielectric waveguide with a thin tubular 
straight electron beam in the case of direct geometry: 

   
2 3

0 02 2
( , ; ) ( , ) = 0,

( )
b b b

z z
z

r
D k R W k

R k u

d w g
w w

w

-
-

-
	 (21)

where 

	
2

2
0 0 0 0( , ) = ( , ; ) ( ) ( ).p

z z b p b p b
p

W k R D k r I r F r
c

w w c c
e

	

(22)

If the wavelengths excited by the electron beam 
are small compared to the waveguide radius  
(c/ω ≪ R), which is exactly the case for high modes, 
then the dispersion equation (20) significantly 

simplifies. Indeed, in (19), we obtain the following 
dispersion equation: 
	 0( , ; ) = ( , ) = 0.z zD k U kw w¥ 	 (23)

3. WAVE AMPLIFICATION IN A 
PLASMA-DIELECTRIC WAVEGUIDE IN 

THE REGIME OF SINGLE-PARTICLE 
CHERENKOV EFFECT. CASE OF DIRECT 

GEOMETRY

Let us investigate spatial wave amplification in a 
plasma-dielectric waveguide with a beam in the case 
of direct geometry, for which we will solve equation 
(21) with respect to the complex wave number ( )zk w  
at real frequency w. Assuming, as is usually done in 
Cherenkov interaction of beams with waves of any 
nature [7] 

	 w d d= , | |z zk k k k+  ≪ w,zk 	 (24)

where = /zk uw w , we transform equation (21) into 
a cubic equation for the complex amplification 
coefficient kd  

	 w
w

w

¶ wæ ö
w + d d =ç ÷¶è ø

0 2
0
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D k R k k

k

-
w

w
w

¶ wæ öd w g
= w + dç ÷¶è ø

2 3
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02 2
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z
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Let the condition of single-particle Cherenkov 
resonance be satisfied (i.e., the wave is in Cherenkov 
resonance with the electron), and therefore 

Fig. 1. Characteristic dispersion curves of the plasma-dielectric 
waveguide and lines (lower dashed line) = /z dk cw e  and (upper 
dashed line) ω = kzu
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	 0( , ; ) = 0,zD k Rww 	 (26)
and the beam density is so low that the second 
term in brackets on the right side of the dispersion 
equation (25) can be neglected. Then, for the 
complex amplification coefficient at the frequency 
of single-particle Cherenkov resonance, we obtain 
the following expression: 

	
-w d w g-d w = ´

w

2 3
0

0 2 2
0

1 3( )
2

b b bri
k

u R

	
-¶ wæ ö´ w ç ÷¶è ø

1/31
0 0 0

0 0 0 0
0

( , ; )
( , ) ,

D k R
W k k

k 	 (27)

where 0w    is the solution of equation (26), and  
0 0= /k uw . The amplification coefficient (27) 

has the structure typical for any single-particle 
Cherenkov effect. The condition for applicability of 
solution (27), i.e., the condition for single-particle 
amplification is the inequality

	
¶ w

d w
w ¶

0 0 0
0

0 0 0 0

( , )1 ( ) 1.
( , )

W k
k n

W k k 	 (28) 

To determine the resonant frequencies ω 0 
one should solve equation (26) with respect 
to frequency w. The frequencies ω0 are most 
clearly represented on the dispersion diagram 
(Fig. 1), which shows the dispersion curves — 
solutions of the dispersion equation (20), the line 
w = e/z dk c  (lower dashed line) and the line 

= zk uw  (upper dashed line). Frequencies 0w  are 
given by the intersection points of dispersion 
curves with the line = zk uw . The calculation 
was performed for a system with the following 

parameters: ωp = 2·1011 rad/s, r0 = 1 cm, R = 3 cm, 
εd = 3, u = 2.27 · 1010 cm/s. The figure shows 
resonances only with the six lowest modes (although 
resonance exists at arbitrarily high modes), the first 
of which is plasma mode.

Let's pay attention to the lowest dispersion curve 
in Fig. 1 — it corresponds to the surface plasma 
wave2. As we can see, the cutoff frequency of this 
wave is not zero, which is characteristic only for a 
waveguide with plasma filling in the external region 
[15], which is exactly the case in direct geometry. 
Therefore, the Cherenkov resonance of the electron 
beam with such a surface plasma wave always exists, 
which must be taken into account when developing 
Cherenkov dielectric amplifiers with an internal 
dielectric insert. Indeed, with high power of the 
amplified signal, the plasma arising from breakdown 
fundamentally changes the electrodynamic 
properties of the system  — instability appears on 
the low-frequency surface plasma wave, which can 
suppress amplification in the high-frequency region.

4. REGIME OF COLLECTIVE  
CHERENKOV EFFECT

In principle, equation (21) also describes the 
collective Cherenkov effect [7,16]. To understand 
this issue, equation (21) should be written in such a 
way as to explicitly highlight the dispersion function 
of the waveguide without beam (it has already been 
highlighted) and the dispersion function of the 
beam's Langmuir waves, which can be done easily 

2 The term "surface wave" refers only to the frequency range  
ω < kzc.

Fig. 2. Gain coefficient dependence on frequency in a dielectric 
waveguide without plasma

Fig. 3. Longitudinal component of the electric field mode E0.13  
during its resonant excitation by electron beam: ReEz solid line,  
ImEz dashed line 
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using expressions (19) and (22). As a result, equation 
(21) transforms to the form 

2
2 3

0( , ; ) ( , ) = ( , ),p
z b z b b b z

p
D k R D k r k

c
w w d w g q w

e
- 	 (29)

where 
	 2 2( , ) = ( ) ( , ) /b z z b z pD k k u kw w W w e- - 	 (30)

is the aforementioned dispersion function of the 
beam's Langmuir waves, where 
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.
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p b p

p b p

z z p b

p b p

p b p

k r I r

K r K R
I r I R

k V k I r

K r K R
I r I R

	 (31)

 The dispersion equation determining the 
frequencies of Langmuir waves (charge density 
waves) of a thin tubular magnetized electron beam 
in a plasma waveguide without a dielectric cylinder 
is ( , ) = 0b zD kw . The left side of the dispersion 
equation (29) is written in the “canonical” form of 
coupled waves equation — waves of the dielectric 
cylinder in plasma and waves of the tubular beam in 
plasma. The wave coupling coefficient is contained 
in the value ( , )zkq w .

When the inequality W2
b ≪ ω2 ~ |kzu|2  is satisfied, 

the spectrum of the slow charge density wave of the 
beam can be determined by the formula3 

3 As is known, instability and amplification occur only during the 
resonance of the plasma wave with the slow beam wave [16].

	 w
w

æ öW w
w = +ç ÷

ç ÷w eè ø

( , )
( ) 1 .b b z

z z
p

k
k k 	 (32)

The resonance frequency 0
bw  of one of the waves 

of the plasma-dielectric waveguide and the slow 
beam wave is determined from the equation 

( )0 , ( ); = 0b
zD k Rw w  . At the resonance frequency, 

the solution of equation (29) is sought in the form 

	 0 0( ) = ,b b
zk k kw d+ 	 (33)

where 0 0= ( )b b b
zk k w . Substituting (33) into equation 

(29), we find the following expression for the 
resonant gain coefficient in the regime of collective 
Cherenkov effect: 

	
2 2 3

0
0 0

1( ) =
2 ( , )

pb b
b b b b

p b

k i r
u k

c w g
d w d

e W w

-
- ´

	
-æ ö¶ w

´ q w ç ÷¶è ø

1/21
0 0

0 0
0

( , )
( , ) .

b b
b b

b
U k
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	 (34)

The condition for the applicability of solution (34), 
i.e., the condition for collective amplification, is the 
inequality4 

4 We do not explicitly present inequalities (28) and (35) here due to 
their complexity. The fulfillment of these inequalities was verified 
by us during numerical calculations. At those densities and radii of 
the electron beam that were taken during numerical calculations, 
the weak inequality (28) was usually satisfied.

Fig. 4. Gain coefficients versus frequency: homogeneous plasma 
filling – dashed line; plasma-dielectric filling – solid line

Fig. 5. Dependence of gain coefficient on frequency in plasma-
dielectric waveguide.
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	 0 0 0| ( ) | ( , ).b b b
bk u kd w W w= 	 (35)

5. WAVE GAIN COEFFICIENTS BY 
ELECTRON BEAM FOR THE CASE 

OF DIRECT GEOMETRY OF PLASMA-
DIELECTRIC WAVEGUIDE

Let us now consider the results of calculating wave 
gain coefficients in a waveguide with the following 
parameters: waveguide radius = 3R  cm, dielectric 
cylinder radius 0 = 1r  cm, dielectric permittivity 

= 3de . Let's take the following beam parameters: 
velocity 10= 2.27 10u ×  cm/s, Langmuir frequency 

10= 2.5 10bw ×  rad/s, average radius = 1.05br  cm, 
thickness = 0.1bd  cm (the current of such beam is 
about 1 kA). For the case when there is no plasma in 
the waveguide, the frequency dependence of the gain 
coefficient is shown in Fig. 2.

A large number of gain zones can be seen, each 
corresponding to Cherenkov interaction of the beam 
with one of the waveguide modes — from mode 01E  
to mode 0,16E . Higher gain zones, which, if not 
accounting for frequency dispersion of permittivity 

de , are infinitely many, are located in the higher 
frequency region. The gain zones are quite narrow, 
although even at frequency: 1012 rad/s, their width 
is several units at 1010 rad/s. Moreover, the gain 
coefficients are quite large. Thus, at frequency: 
1012 rad/s,  the gain coefficient is about 0.1  cm−1, 
which provides power amplification by 1000 times 
with an amplifier length of 35 cm.

It should be noted that the results shown in Fig. 2 
were obtained for the case when the inner boundary 
of the electron beam - d / 2b br  coincides with the 
dielectric boundary 0r . When the beam moves away 
from the dielectric boundary, due to strong wave field 
attenuation in the vacuum region, the gain coefficient 
drops sharply. This circumstance constitutes one of 
the main difficulties for using already implemented 
Cherenkov microwave emitters in higher frequency 
ranges. Fig. 3 shows the real and imaginary parts 
of the longitudinal component of the electric field 
mode 0,13E  at the point of maximum gain coefficient 
( 10= 112.85 10w ×  rad/s, = (50.46 0.08 )zk i-  cm 1- ). 
 It is evident that there is virtually no field in the 
vacuum region of the waveguide, and at = br r  the 
field is not large.

 Let us now turn to the case when plasma is 
present in the waveguide region Î 0( , )r r R  The 
presence of plasma, as noted above, significantly 

changes the electrodynamics of the waveguide and 
considerably complicates the overall picture of 
wave amplification. To better understand this, let's 
consider special cases of independent interest. Let's 
assume that in the waveguide region Î 0(0, )r r  
instead of a dielectric, there is the same plasma as in 

Î 0( , )r r R . The dispersion equation for this case is 
obtained by replacing de  with   pe . It can be shown that 
this equation reduces to  w =( , ) 0b zD k  (see formula 
(30)), which is convenient to rewrite as follows:  

	
2 2

2 2

( , )
1 = 0.

( )
p b z

z

k

k u

w W w

w w
- -

-
	 (36)

If we replace 2( , )b zkW w  with 2 3
bw g- , we obtain the 

dispersion equation describing the interaction of 
an unbounded electron beam with an unbounded 
isotropic plasma [14]. From it, for the complex wave 
number we have 

	
2 3

2 2
= .b

z
p

k i
u u

w gw w
w w

-
-

-
	 (37)

At < pw w  formula (37) describes the spatial 
amplification of the longitudinal field during beam 
self-modulation in a medium with negative dielectric 
permittivity [17]. At = pw w  the amplification 
coefficient (37) becomes infinite, which is due to the 
zero group velocity of the Langmuir wave in cold 
plasma (oscillation accumulation effect). Similar 
processes occur in the waveguide as well. Indeed, 
at < pw w  the dielectric permittivity of the plasma is 
negative, and the longitudinal Langmuir wave with 
frequency ( ) =z pkw w  exists in the waveguide with 
homogeneous isotropic plasma. Figure 4 shows the 
modulus of the imaginary part of the wave number 
obtained by numerical solution of equation (36) at 

10= 20 10pw ×  rad/s (dashed line).
Now let the plasma be present only in the region 
Î 0( , )r r R , while the rest of the waveguide is filled 

with a dielectric with permittivity 2 2< /d c ue  
(one can even set = 1de ). In this case, Cherenkov 
resonance of the beam with electromagnetic 
waveguide modes is impossible. However, in 
addition to the potential Langmuir wave = pw w  
due to the presence of plasma boundary 0=r r  
a non-potential surface wave appears in the 
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waveguide. In the shortwavelength limit, the 
surface wave frequency approaches / 1p dw e +  , 
and at = 0zk  there is a certain non-zero cutoff 

frequency (see the lower dispersion curve in Fig. 1). 
Therefore, there are two Cherenkov resonances — 
with bulk Langmuir and surface Langmuir 
waves. Consequently, two frequency regions of 
amplification appear. The gain coefficient for this 
case is shown by solid lines in Fig. 4.

Now let, as in the case of Fig. 2, = 3de , but there 
is also plasma with Langmuir frequency 1020 10×  
rad/s. In this case, resonances with surface plasma 
wave, bulk Langmuir wave, and electromagnetic 
modes become possible. The gain coefficient for 
this case is shown in Fig. 5, which is essentially a 
combination of Fig. 2 and 4.

One might assume that the presence of plasma 
in a dielectric waveguide with dielectric in region 

0<r r  is a negative factor for solving the problem 
of increasing the frequency of amplified waves. 
Indeed, in the presence of plasma in the frequency 
region below the plasma frequency, the wave gain 
coefficients are high. The lower the wave frequency, 
the worse it radiates through the amplifier output 
boundary. Therefore, parasitic self-excitation of the 
amplifier in the low-frequency region is possible, 
which leads to beam “deterioration” and reduction in 
Cherenkov radiation efficiency in the high-frequency 
region5. One can, of course, take another approach: 
use such dense plasma that Cherenkov radiation of 
the surface plasma wave would occur in the sub-
terahertz region. Then there would be no need for a 

5 As for the amplification coefficients in the high-frequency region, 
as can be seen from Fig. 2 and Fig. 3, plasma practically does not 
affect them.

Fig. 6. Characteristic dispersion curves of the plasma-dielectric 
waveguide in the case of inverse geometry and lines = /z dk cw e  
(lower dashed  line) and = zk uw  (upper dashed line)

Fig. 7. Cherenkov resonances depending on the dielectric 
permittivity

Fig. 8. Dependence of gain coefficient on frequency in a dielectric 
waveguide  without  plasma,  inverse geometry

Fig. 9. Longitudinal component of electric field strength of 
mode E0,24 during its resonant excitation  by  electron  beam  
in inverse geometry: Â zE – solid line, Á zE – dashed line  
ω = 100.8 × 1010 rad/s, kz = (44.9 − 0.07i)  cm−1 
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dielectric insert in the waveguide. This approach has 
both advantages and disadvantages [6].

6. THE CASE OF INVERSE GEOMETRY 
OF THE PLASMA-DIELECTRIC 

WAVEGUIDE

Let us now consider the inverse geometry of system 
(5). Assuming 0<br r  and taking into account the 
boundary conditions 0=r r  and   =r R, the solution 
of equation (3) in different regions of the waveguide 
can be written as 

	
0
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0 0
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Substituting solutions (38) into boundary conditions 
(12), we obtain the following relations: 

=B A ´
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´ á ñ	 (41)

where 

	 0( , ) = ( , )z zD k V kw w 	 (42)

is the dispersion equation determining the 
frequencies of natural waves of the plasma-dielectric 
waveguide without beam in the case of inverse 
geometry.

In the linear approximation, using formulas 
(14) and (38), from (42) we obtain the following 
dispersion equation for determining the complex 
spectra of a plasma-dielectric waveguide with  a thin 
tubular straight electron beam:

	
2 3

0 2 2
( , ) ( , ) = 0,

( )
b b b

z z
z
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d w g
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where
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p
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w

e
´

	 0 0[ ( , ) ( ) ( , ) ( )]z p b z p bU k I r V k K rw c w c´ + ´

	 0( ).p btimesI rc 	 (44)

 Equation (43) does not differ in form from the 
dispersion equation (21), therefore we omit its 
approximate analytical consideration here, and we 
will consider numerical solutions a little later.

An essential feature of inverse geometry is 
associated with the surface plasma wave. In the  
case of plasma localized in the inner region of the 
waveguide 0<r r  the cutoff frequency of the surface 
plasma wave equals zero. Using formulas (39) and 
(42), it is easy to show that in the long-wavelength 
limit, the frequency of the surface plasma wave is 
determined by the formula

  

	
-w wæ ö

w = +ç ÷we è ø

1/2
1 0 0

0 0 0

( / )
1 ln .

( / )
p pz

pd

I r c rk c R
I r c c r 	(45)

 
Considering that in the long-wavelength limit 
the phase velocity of the surface plasma wave is 
maximal, from (45) we see that at > / du c e  
the surface plasma wave cannot be excited. In 
principle, it can be excited, but only when the inverse 
inequality is satisfied < / du c e , when Cherenkov 
resonance of the beam and electromagnetic waves 
is absent. For this work, the case < / du c e , i.e., 
weak deceleration of electromagnetic waves, is of 
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no interest (unlike work [6], in which there is no 
deceleration of electromagnetic waves at all).

The surface plasma wave in this case is not excited 
since because 2 2= 3 > / 1.73d c ue » . Resonances 
possible at different dielectric permittivities, for 
electron beam with velocity 10= 2.27 10u ×  cm/s are 
shown in Fig.7.

Let's now consider wave amplification in a system 
with inverse filling6. Let the parameters of plasma-
dielectric waveguide and electron beam be the same 
as in the case discussed in Fig. 2–5, only interchange 
plasma and dielectric, and set beam radius to 

= 0.95br  cm. The calculation results are presented 
in Fig. 8,9 and 10, which are analogous to Fig. 2, 3 
and 5 respectively.

Notable is the similarity between Fig. 5 and 10. It 
was previously stated that when > / du c e , which is 
the case in Fig. 5 and 10, excitation of surface plasma 
wave is impossible in a system with inverse geometry7. 
However, resonant excitation of bulk Langmuir wave 
occurs for any geometry. This resonance appears as 
the highest maximum both in Fig. 5 and Fig. 10. 
Regarding the maxima in the region < pw w , in 
case of Fig. 5 one of them is related to resonance 
on surface plasma wave, while in Fig. 10 all maxima 
are caused by resonances with electromagnetic waves 
(see Fig. 6). The main features of inverse geometry 
are more frequent placement of amplification zones 
and smaller width of each zone. The latter, in our 

6 Equation (42) has a degenerate solution χp=0, shown in Fig. 6 by 
a solid line. As can be seen from formulas (38), the solution χp=0 
corresponds to zero electromagnetic field.
7 Mathematically, this is described by the multiplier ε−1

p in 
expressions (22) and (44) and is related to the fact that in any 
geometry, the beam passes through the plasma volume.

opinion, is a serious disadvantage of the system with 
inverse geometry. 

7. NONLINEAR THEORY OF CHERENKOV 
WAVE AMPLIFICATION IN PLASMA-
DIELECTRIC WAVEGUIDE IN CASE  

OF DIRECT GEOMETRY

Let us now turn to the nonlinear theory. We will 
limit ourselves to the case of geometry with internal 
localization of the dielectric insert. The nonlinear 
theory of Cherenkov plasma-dielectric amplifiers 
can be based on equation (18), which, taking into 
account (15), can be written as

	 0 0 0( , ; ) ( ) = ( , ; ) ( )z b z b p bD k R E r D k r I rw w c- ´ 	

	
2

0
4( ) ( ) .p

p b b b b b
p

iF r r j r
c pc d
e w

´ á ñ	 (46)

 
Here ( )bE r  is the field amplitude (2) at the electron 
beam passage location. If the field were represented 
not in the form of (2), but in the form

ww1( , , ) = [ ( , )exp( ) C.C.],
2z zE t z r E z r i t ik z- + + 	

(47)
then in the linear approximation it would be 

( , ) = ( )exp( )E z r E r i kzd , and in the dispersion 
equation, the wave number   would be replaced by 

zk kw d+  (see (24)). In the nonlinear case, formula 
(14) for the beam current density is not valid, but 
equation (46) is still relevant if rewritten in the 
following operator form:

	 0
ˆ( , ; ) ( , ) =z bD k R E z rw 	

	 0 2
4ˆ= ( , ; ) ( ; ) ,b b

z b b b
r iW k r j z r

R

d pw
w

- á ñ	 (48) 

where the wave number zk  is replaced by the wave 
number operator ˆ = /z zk k id dzw - .

To calculate the nonlinear beam current density, 
we use the method of integration over initial data 
in the boundary value problem formulation [18]. 
Omitting the standard derivation procedure, which 
can be found, for example, in [6], we present only the 
final formula for the beam current density

Fig. 10. Dependence of gain coefficient on frequency in plasma-
dielectric waveguide, inverse  geometry  
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where 0bn  is the unperturbed electron beam density. 
Function 0( , )zt t  is the local time at which the beam 
electron, which entered the waveguide cross-section 

= 0z  at moment 0t , reaches cross-section z. This 
function is determined from the following equations 
of motion:
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and  0= ( , )V V z t   — is the perturbation of the 
electron beam velocity. The boundary conditions for 
equations (50) are 

	 0( = 0) = , ( = 0) = 0.z V zt t 	 (51)

 
  In addition to the electron beam entry conditions 

(51), the system with the wave excitation condition at 
the amplifier input

	 0( = 0, ) = .bE z r E 	 (52)

 If the electron beam was pre-modulated before 
injection into the waveguide, then conditions

(50) should be set as

	 0 0 0

0 0

( = 0) = sin( ),
( = 0) = sin( ),

z p
V z q

t t a t
b t
+ +

+
	 (53) 

where 0 0, , ,p qa b  sets the velocity modulation depth.
The pseudodifferential equation (48) is not 

suitable for computer modeling purposes; it should   
be properly simplified. Due to inequality (24), the 
dispersion operator 0

ˆ( , ; )zD k Rw  and the right-hand 
side of equation (48) can be expanded in   /id dz, 
which leads to the following equation::
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where 0D  — function (19) at =z zk k w  and   =x R, 
and   0W  — function (22) at =z zk k w. Equation (54) 
and equations (50) form a closed nonlinear system 
of equations for the Cherenkov plasma-dielectric 
amplifier. The efficiency of electromagnetic wave 
amplification by electron beam can be determined 
by the obvious formula

Fig. 11.  A mpl i fication efficiencies of h igh-frequency 
electromagnetic wave at frequency ω = 50.6 · 1010 rad/s (dashed  line),  
ω = 100.9 · 1010 rad/s (solid line) 

Fig. 12. Diagram of amplifier with plasma-dielectric waveguide in 
direct geometry

Fig. 13. Diagram of amplifier with plasma-dielectric waveguide in 
inverse geometry
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where angle brackets denote averaging over all 
electrons entering the cross-section z = 0 during 
the period 2π/ω. Value (55) depends on coordinate, 
which allows determining the optimal amplifier 
length in terms of achieving maximum efficiency 
and output radiation power.

In the linear approximation, the dispersion 
equation (25) can be obtained from equations (54) 
and (50). Earlier, when presenting the linear theory, 
we proceeded not from solutions of the approximate 
equation (25), but from solutions of the exact 
dispersion equation (19), which is not accidental. 
The fact is that in the case of a high-density electron 
beam, the solutions of equations (19) and (25) differ, 
sometimes significantly, although they qualitatively 
coincide. Therefore, we always precede the solution 
of the nonlinear problem with linear analysis. 
Nonlinear solutions can be considered quantitatively 
reliable only in cases where the solutions of 
dispersion equations (19) and (25) are close. We will 
dedicate a separate work to the systematic analysis 
of nonlinear amplification modes. Here, we present 
some particular results characterizing possible values 
of amplification efficiencies and powers of amplified 
signals.

In Fig. 11 for a system with parameters 
ωp = 20 · 1010 rad/s, r0 = 1 cm, R = 3 cm, εd = 3, 
u = 2.27 · 1010 cm/s, ωb = 2.5 · 1010 rad/s, the gain 
efficiencies at the frequencies of the eighth and 
fourteenth resonances are shown. The maximum 
efficiency of 15 to 25 percent is achieved at a length 
of 15–25 cm, after which it begins to decrease. As we 
can see, the gain efficiencies are quite high, and the 
optimal amplifier lengths are quite acceptable from 
an experimental point of view. 

One of the important problems in developing 
Cherenkov amplifiers on high-current electron 
beams is the problem of radiation output through 
the output boundary of the beam-wave interaction 
region. The matching of the interaction region with 
the radiating device should be as good as possible. 
The electromagnetic field structure of high modes 
in the considered plasma-dielectric waveguides (see 
Fig. 3 and 9) suggests possible schemes of radiating 
devices. In the case of a waveguide in direct 
geometry, a conventional horn with a radius smaller 

than   the waveguide radius can be used (Fig. 12). 
The walls of the waveguide and horn should be at  
the potential of the high-current accelerator anode. 
In this case, the surface connecting the waveguide to 
the horn simultaneously serves as a collector for the 
electron beam.

In the case of a waveguide in inverse geometry, a 
coaxial horn can be used (Fig. 13), such as those used 
in operating amplifiers on cable plasma waves [1–3]. 
The electron beam collector is the inner part of the 
coaxial. To equalize potentials, a jumper between 
the inner and outer parts of the coaxial horn is used, 
which makes the scheme less convenient compared 
to the direct geometry scheme.

8. CONCLUSION

In conclusion, let us formulate some findings from 
this work.

1. The use of waveguides with dielectric inserts 
allows the implementation of powerful single-mode 
(single-frequency) amplifiers with an  operating  
frequency of about 1012 rad/s and even higher 
(wavelength: ~ 0.2 cm and even less). The efficiency 
of amplification at a length of ~ 20 cm can reach 
15%. For an electron beam with a current of 1 kA 
and electron energy of 270 keV, this means an output 
power of about 40 MW.

2. The presence of plasma in waveguides with 
dielectric inserts should be considered undesirable. 
On one hand, in the sub-terahertz frequency range, 
the gain coefficient practically does not depend on 
the presence or absence of plasma. On the other 
hand, in the low-frequency region, due to the 
excitation of potential bulk Langmuir waves with 
high gain coefficient, low-frequency self-excitation of 
the emitter is possible, which will lead to suppression 
of gain in the sub-terahertz region.

3. The characteristic dependences of gain 
coefficients on frequency indicate the possibility 
of creating broadband amplifiers, including noise 
amplifiers, based on waveguides with dielectric 
inserts. Indeed, as can be seen from Fig. 2 and 8, the 
gain coefficient consists of a set of relatively narrow 
lines of approximately equal magnitude over a wide 
frequency range. There are reasons to believe that 
with an increase in the electron beam current, these 
individual lines broaden and merge into a single 
wide region of electromagnetic wave amplification.
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4. The case of direct geometry of a waveguide 
with a dielectric insert is preferable compared to the 
case of inverse geometry due to the greater width of 
amplification zones.
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