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Abstract. Flat horizontal infinite layer of viscous incompressible poorly conducting liquid is investigated. 
The layer is placed in gravitational and electric field and heated from above. Eight-mode electroconvection 
model (extended Lorenz-model) is used to carry the problem out numerically. As a result of the linear 
stability analysis of the system, the critical wave number and critical electric Rayleigh number are 
obtained for different external electric field periods. In the case of nonlinear evolution of the system, 
bifurcation diagrams are obtained as dependences of the dimensionless heat flow on the amplitude of 
the oscillations of the external electric field. Various types of system response to the external impact are 
found: periodic, quasiperiodic and chaotic oscillations, as well as hysteretic transitions between them 
and quiescent state. The map of flow regimes is obtained.
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1. INTRODUCTION

Currently, the problem of controlling heat flux in 
continuous media, for example, in fluids, is relevant. 
The ability to control heat and mass transfer in fluids 
can be used in various technological applications: 
in designing effective heat removal systems or for 
process control in zero gravity [1–3].

The problem of thermogravitational mechanism 
of convection generation, when motion in non- 
uniformly heated fluid occurs due to buoyancy force, 
has been very well studied [4]. In this case, the fluid 
can possess a number of other physical properties, 
for example, it can be a carrier of free charge. In 
this case, there appears an additional way to control 
convective motion by affecting the fluid through the 
application of an external electric field [5, 6]. It is 
known that such influence can lead to changes in 

convection onset thresholds [6–9], to the generation 
of oscillatory [10] and chaotic [11] motion regimes.

This article examines the case of interaction 
b et we en  t wo  c onve c t ion  m e ch a n i s m s: 
thermogravitational and electroconductive  
[6, 9], associated with inhomogeneous conductivity 
distribution.

There are many approaches to studying the 
dynamics of nonlinear systems, most of which 
reduce to the application of numerical methods. The 
main difficulty is related to the absence of analytical 
solutions in the general form of the Navier–Stokes 
equations describing the behavior of viscous fluid.

In the mid-20th century, E. Lorenz demonstrated 
a new method of numerical modeling of the Navier-
Stokes equations, based on studying the amplitudes 
of system field decomposition using a small set of 
trial functions [12]. In this convection model, the 
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phase variables are time-dependent amplitudes of 
spatial trigonometric functions (modes), one for the 
velocity field and two for temperature.

This approach revealed new important patterns 
in the behavior of dynamical systems and led to the 
creation of a new branch of physics – the theory of 
dynamical chaos [13]. Despite the intensive use of 
numerical models and commercial computational 
packages, low-mode systems are still used to analyze 
the nonlinear evolution of flows in various fluids  
[14–17], including the initial stage of laminar-
turbulent transition [14]. The use of low-mode 
models for theoretical description of convection 
in variable fields shows good agreement with 
experiments even for large supercriticalities [18,19].

In this work, a modified Lorenz model is used to 
analyze electrothermo-convective flows, based on 
the decomposition of hydrodynamic system fields 
into eight basis functions reflecting the symmetry of 
the problem [10, 20]. Within the framework of the 
proposed model, cases of instantaneous and finite-
time charge relaxation have been studied for heating 
of weakly conducting fluid from below in a constant 
electric field [20], in the isothermal case and with 
strong heating from above in an alternating electric 
field [9]. This paper presents the results of studying 
the evolution of weakly conducting fluid flows 
arising in an alternating electric field with moderate 
heating from above. New sequences of transitions 
between regular and chaotic oscillatory flows have 
been discovered and analyzed.

2. PROBLEM STATEMENT

A flat infinite horizontal layer of viscous 
incompressible weakly conducting fluid of thickness 
h, placed between plates of a flat infinite horizontal 
capacitor, is considered. The fluid is subjected 
to an alternating electric field with intensity E, 
gravitational field g, and the capacitor plates are 
heated to a temperature difference Θ. The capacitor 
plates are perfectly heat and electrically conductive, 
with physical conditions on them expressed by the 
following relations:

	
= = Q F = w

= = F =

ˆ ˆ0 : , cos( ),
ˆ: 0, 0,

z T U t

z h T
	 (1)

where z is the vertical coordinate, w is the frequency 
of the external electric field, Û  is the amplitude of 
electric potential variation F .

A weakly conducting fluid is defined as having 
electrical conductivity σ ~ 10−9−10−11 Ohm−1 · m−1, 
which allows using the electrohydrodynamic 
approximation: due to small currents, magnetic 
effects and Joule heating can be neglected [6, 
7].The system of differential equations describing 
the system includes the Navier–Stokes equation, 
heat conduction equation, charge conservation law, 
Gauss's law, relation between electric field intensity 
and its potential, continuity equation [21]:
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 	 = ee0/ ,div qE 	

	 = -ÑF ,E 	

	 = 0,divv 	

where ˆ, , p Tv  are velocity, pressure, and temperature 
fields respectively, h is fluid dynamic viscosity, c  is 
fluid density, q  is fluid density, s   is fluid electrical 
conductivity, e is dielectric permittivity, 0e  is electric 
constant.

Linear dependencies of fluid density and electrical 
conductivity on temperature are considered: 

	 q sr = r - b s = s + b0 0
ˆ ˆ(1 ), (1 ),T T 	

see [6,21], where ρ0 and σ0 are density and 
conductivity values at mean temperature, βθ and βσ 
are positive coefficients. Thus, thermogravitational 
and electroconductive mechanisms are the main 
causes of convection onset [9]. Due to small 
conductivity inhomogeneity (for weakly conducting 
fluid under moderate heating sb T̂ ≪ 1), spatial 
inhomogeneity of the electric field and field changes 
caused by charge redistribution can be neglected, i.e., 
the induction-free approximation can be used [20].

System (2) is reduced to dimensionless form 
according to the following relations: 
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and considering the Boussinesq approximation [4], it 
can be written as
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where j  is a unit vector codirectional with the 
vertical z-axis. System (4) contains the following 
dimensionless parameters:

	 qr b Q
=

ch

3
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Ra

— Rayleigh number, characterizing the intensity of 
fluid heating, 

	 s
s

e e b Q
=

ch

2
0 Û

Ra 	

— electrical analog of the Rayleigh number, related 
to the amplitude of the external electric field, 

0
=Pr h

cr
 

— Prandtl number, reflecting the ratio between 
viscous and heat-conductive energy transfer in the 
fluid,

	
ee h

=
s r

0
2

0 0
Pre h

	

— electrical analog of the Prandtl number, 
characterizing the ratio between viscous and 
electrical forces.

3. LOW-MODE MODEL

Let's represent the fields ˆ, v T  and q in the form 
0

ˆ ˆ, =v T T q+   and 0=q q q¢+ , where , v q and q¢ are 
deviations of values from their equilibrium values 
(hereafter primes will be omitted). Considering the 
absence of horizontal anisotropy, we can consider 
only two-dimensional perturbations in the vertical 
plane x z- , which actually arise at the threshold 
of convective stability. Let's introduce the stream 
function y , such that 

	 = -¶y ¶ = ¶y ¶/ , / ,x zv z v x 	

see [9], then the system of equations (4) can be 
rewritten as [20]

	
¶ ¶y ¶ ¶y ¶æ öDy + Dy - Dy = D y +ç ÷¶ ¶ ¶ ¶ ¶è ø

21
Prt x z z x

 	 s
¶q ¶+ + w
¶ ¶

cos( ),q
Ra Ra t

x x 	

 	
¶q ¶y ¶q ¶y ¶q ¶y+ - = Dq +
¶ ¶ ¶ ¶ ¶ ¶

Pr ,
t x z z x x 	 (5)

 	
¶ ¶y ¶ ¶y ¶æ ö+ - +ç ÷¶ ¶ ¶ ¶ ¶è ø

Pr
Pr

Pr
e

e
q q q
t x z z x 	

 	
¶q+ + w =
¶

cos 0,q t
z 	

with boundary conditions 
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To find solutions of the system of equations (5) 
satisfying boundary conditions (6), the Galerkin 
method [4] is applied with approximation of fields 

, y q and q by a minimal set of basis functions [9]: 

+y = ´
22(1 )k
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 = p + p p +( 2 ( )cos 2 2 ( )cos 2 )cosq S t z T t z kx

	 + p( )cos 2 .U t z

Here k   is the wave number characterizing the 
periodicity of solutions horizontally, and coefficients 

, , , , , , , X V Y W Z S T U   are amplitudes showing the 
contribution of spatial modes to the solution.
Expansions (7) contain terms of different parity in  
z, which is related to the presence of derivatives of 
different orders in in system (5). Amplitudes X U- 	
are determined using conditions expressing the 
orthogonality of the residual of system equations (5) 
with respect to each of the basis functions [4]. After 
time rescaling

	 ®
p +2 2

Pr
(1 )

t t
k

	

we obtain a system of eight ordinary differential 
equations for the amplitudes of spatial harmonics 
(dot above variable denotes time derivative) [9,22]: 
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 In system (8), the following notations are introduced: 
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where , r e — are normalized thermal and electrical 
Rayleigh numbers, 0Ra  — is the critical Rayleigh 
number at which thermogravitational convection 
begins, 0Ras  is the system parameter.

4. LINEAR STABILITY ANALYSIS

 The case of moderate heating from above is 
studied, where the normalized thermal Rayleigh 
number r  takes a negative value of −1 [23]. As 
seen from relations (9), with heating from 
above, the normalized electric Rayleigh number 
is e  also negative, but the study considered its 
absolute value. Other fluid parameters have values 

= 400, = 30ePr Pr . They correspond to weakly 
conducting fluids, electrical conductivity of which 
depends on temperature, for example, corn or 
transformer oil [24–26]. Real physical characteristics 
of the system correspond to a layer thickness of 1 cm, 
voltage difference of 1 kV, temperature difference: 

~10˚C.
As seen from system (8) with a set of dimensionless 

parameters (9), the wave number k, corresponding to 
the spatial horizontal scale of perturbations, remains 
undetermined. The standard approach for finding 

Fig. 1. Family of neutral curves in coordinates wave number 
k − modulus of electrical parameter |e| at different periods T ′ of 
external electric field variation. Solid lines correspond to quasi-
periodic regimes, dashed lines to synchronous ones [23]
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the value of this parameter is the analysis of linear 
perturbations of the system.

After linearization, system (8) can be represented 
in matrix form

	
��( ) = ( ) ( )t A t tx x 	

with a linear matrix dependent on time with period 
= 2 /T p w¢ . Then for analysis of its linear stability, 

Floquet theory can be applied [27], which was used 
to obtain neutral curves of linear stability of the 
system for different periods of external electric field 
(Fig. 1) [23].

By determining the extremum point of the neutral 
curve, one can calculate the minimum modulus 
value of the dimensionless electric parameter at 
which convective fluid motion begins, as well as the 
corresponding critical wave number, for example, 
| | ( = 2.22) = 91.7mine T ¢  and ( = 2.22) = 1.45ck T ¢ . 
Linear stability analysis of the system predicts the 
emergence of quasi-periodic oscillations in areas of 
global minimum of neutral curves Fig. 1. In areas of 
local minima of curves, oscillations are synchronous, 
corresponding areas are constructed with dashed 
lines.

5. NONLINEAR CONVECTION MODES 

To describe the intensity of convective processes, 
the Nusselt number (Nu) was calculated, a 
parameter equal to the time-averaged heat flux per 
unit of horizontal boundary of the condenser [9]. 
The Nusselt number can be expressed through the 
amplitude Z of system (8):

	 = - ò
0

21 ( ) ,
tend

end
Nu Z t dt

t 	 (10)

where endt  is chosen in such a way that it 
accommodates more than a hundred periods of 
system oscillations.

Wave numbers k were taken from the results 
of linear theory application ( = ck k , where ck  
corresponds to the global minimum of the neutral 
curve for the selected period of external field). 
Geometric parameters , b g  and d  were determined 
based on the selected wave number. Values of other 
dimensionless parameters are given at the beginning 
of Section 4.

The study of electroconvection modes was 
conducted as follows: system (8) was numerically 
integrated using the fourth-order Runge-Kutta 
method at different values of dimensionless 
normalized electric Rayleigh number | e | and period 
of electric field variation T′. The | e | parameter 
continuation method was used: when calculating 
the Nusselt number for each value, distributions 
obtained at the previous step for were used as initial 
conditions | e |. This method allows continuous 
change of the control parameter, determining the 
boundaries of hysteresis transitions [28]. Thus, 
dependencies Nu (| e |) were determined for different 
periods of external electric field T′, for each period 
the corresponding critical wave number value was 
taken.

During the study, several types of system evolution 
were identified for different periods of external field T ¢.

5.1. External field period T ′ = 2

The dependence of dimensionless heat flux Nu on 
parameter | e | for the given period of external field is 
presented in Fig. 2.

With increasing parameter | e | from initial 
conditions corresponding to small perturbations 
of mechanical equilibrium, convection emerges 
as quasi-periodic oscillations at point A Fig. 2  

Fig. 2. Dependence of the Nusselt number Nu on the absolute value 
of the dimensionless electric parameter |e| at external field period 
T ′ = 2. Solid line – movement towards increasing |e|, dashed  
line – towards decreasing |e|



JETP, Vol. 165, No. 6, 2024

864	 NEKRASOV, KARTAVYKH	

(|e| = 112.2) (the Fourier spectrum of amplitude 
oscillations contains two or more frequencies 
incommensurable with the external one (ν = 0.5,  
Fig. 3a)) .

With further increase of the parameter | e | 
quasiperiodic oscillations transition at point B Fig. 2 
(|e| = 122.7) into a specific subharmonic oscillation 
regime: the Fourier spectrum contains the external 
frequency, as well as a frequency three times lower 
than the external one, and their linear combinations 
(Fig. 4).

In the BC section, a cascade of period-doubling 
bifurcations occurs (Fig. 4), transitioning into 
chaos at point C Fig. 2 (|e| = 124.7). Chaotic 
oscillations exist in the CD section of Fig. 2 and 
are characterized by a continuous Fourier spectrum 
(Fig. 3b). At point D Fig. 2 (|e| = 126.6) a regime 
emerges again, characterized by a frequency three 
times lower than the external field frequency. 

With fur ther increase of | e | the system 
o s ci l l a te s  i n  t h i s  way  u nt i l  p oi nt  E  
Fig. 2 (| e | = 122.7), where heat flow sharply increases. 
At Nusselt numbers greater than 2.5, synchronous 
disturbances appear in the layer, whose Fourier 
spectra contain only frequencies that are multiples 
of the external one (Fig. 3c).

If, using the parameter continuation method, 
parameter | e | is sequentially decreased from values 
lying to the right of point F Fig. 2, then the system's 
transition from convective flow to mechanical 
equilibrium will occur differently, with a sharp 
decrease in the Nusselt number at point G Fig. 2  
(|e| = 84). Thus, hysteresis is realized in the system 
(loop HAFG in Fig. 2), accompanied by heat flow 
jumps.

5.2 External field period T ′ = 4

The dependence of dimensionless heat flux on 
parameter | e | for the given external field period is 
shown in Fig. 5.

With increasing absolute value of parameter 
|  e  |  convection occurs at  point A Fig.  5  
( |  e |  = 36.9) in the form of quasi-periodic 
oscillations. With further increase of | e | these 
oscillations transition to chaos through quasi-
periodicity at point B Fig. 5 (| e | = 43.5). The 
transition to chaos through quasi-periodicity is 

Fig. 4. Fourier spectra of amplitude oscillations X in logarithmic 
scale at forcing period T ′ = 2. Oscillations correspond to section 
BC of Fig. 2, where subharmonic cascade occurs

Fig. 3. Fourier spectra of amplitude oscillations X at forcing 
period for different values of T ′ = 2. Lower branch of Fig. 2:  
а — |e| = 120, quasiperiodic response; b, |e| = 126 chaotic 
oscillations. Upper branch of Fig. 2: c, |e| = 131 synchronous 
response Fig. 5. Dependence of the Nusselt number Nu on the absolute 

value of the dimensionless electric parameter |e| at the external field 
period T ′ = 4. Solid line - movement towards increasing , dashed 
line – towards decreasing of |e|
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accompanied by the appearance of an increasing 
number of l inear frequency combinations 
incommensurable with the external one, until 
the spectrum becomes continuous. Chaos exists 
in section BC Fig. 5 (at point C (| e | = 43.78)). 
In section CD Fig. 5, a synchronization region 
is realized, where subharmonic oscillations are 
observed. Then, at point D Fig. 5 (| e | = 43.9) 
the heat flux experiences a sharp jump, and the 
system transitions to synchronous oscillations.

Similar to the previous case, hysteresis 
phenomenon is observed (loop ADEFG in Fig. 5): 
simultaneous coexistence of regimes with different 
Nusselt numbers. At Nu > 2.6 synchronous 
oscillations are realized (section EF in Fig. 5). When 
parameter |e| decreases at point F Fig. 5 (| e | = 30.9) 
the system transitions to equilibrium state.

5.3. External field period T′ = 6.2

The dependence of dimensionless heat flux on 
parameter | e | for the given external field period is 
shown in Fig. 6.

Similar to all previous cases, convection occurs 
in the form of quasi-periodic oscillations at point 
A Fig. 6 (|e| = 25.4). With increasing parameter  
 at point B Fig. 6 (|e| = 27.3) a reverse bifurcation 
occurs (Nusselt number sharply increases for a 

certain value |e|), and the system transitions at 
point C Fig. 6 to oscillations characterized by a 
frequency three times lower than the external field 
frequency. Then a period-doubling cascade occurs, 
leading to the appearance of chaos at point D Fig. 6  
(|e| = 28.2) which exists up to point E in Fig. 6  
(|e| = 28.6), where the system transitions to 
synchronous oscillations with a sharp increase in 
the Nusselt number.

At this period of the external field, a hysteresis 
phenomenon is also observed (loop AEFGH in  
Fig. 6). On the upper branch of this loop FG  
Fig. 6, synchronous oscillations occur, and when 
synchronous oscillations occur, and when parameter 
e decreases at point G in Fig. 6 (|e| = 19.6), 
convection sharply disappears in the system

Based on the study of Nusselt number 
dependencies on the dimensionless electric 
parameter for different periods of external electric 
field variation, a map of electroconvection regimes 
was constructed for the period range [2; 10] (Fig. 7).

 For all considered periods of external field variation, 
instability occurs with an increase in the control 
parameter |e| from the equilibrium state through 

Fig. 6. Dependence of the Nusselt number Nu on the absolute 
value of the dimensionless electric parameter |e| at the external 
field period T′ = 6.2. Solid line – movement towards increasing |e|, 
dashed line – towards decreasing |e|

Fig. 7. Map of fluid motion regimes on the plane of external electric 
field period variation T′ – absolute value of electric parameter 
|e|. I – region of no convection; II – region of coexistence of 
synchronous oscillations and no convection; III – region of 
coexistence of synchronous oscillations and various regimes: 
quasi-periodic oscillations, subharmonic oscillations, and chaos; 
IV – region of synchronous oscillations
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quasi-periodic oscillations (dash- dotted line in  
Fig. 7). With further increase in the electric Rayleigh 
number, low-intensity quasi-periodic oscillations 
can transform into subharmonic or chaotic regimes. 
With growth of the electroconvective parameter at 
the boundary marked by a solid line in Fig. 7, high- 
intensity synchronous oscillatory flows emerge. 
When decreasing the control parameter from regions 
of intense convection at the boundary marked by 
a dashed line in Fig. 7, transition to mechanical 
equilibrium of the fluid occurs.

CONCLUSION

The problem of electroconvection in a flat 
horizontal layer of viscous incompressible 
weakly conducting fluid placed in an alternating 
electric field and heated from above has been 
studied within the framework of a low-mode 
approximation. The case of moderate heating 
from above is considered.

As a result of studying linear perturbations 
under variable external influence, neutral curves 
depending on the electric field period were obtained, 
and corresponding critical wave numbers were 
determined.

In the nonlinear case, the evolution of the 
system under changes in amplitude and period of 
external electric field has been studied. Various 
types of system responses were discovered: 
quasi-periodic, subharmonic characterized by 
a frequency three times lower than the external 
forcing frequency, synchronous, and chaos. 
Different scenarios of transition to chaos were 
identified, through quasi-periodicity and through 
subharmonic cascade.

The phenomenon of hysteresis was discovered. 
Depending on initial conditions, oscillatory flows 
of weakly conducting fluid can have high or low 
intensity. The high-intensity regime corresponds 
to synchronous perturbations. For low-intensity 
oscillations, various system response modes are 
observed. Hysteresis transitions are accompanied 
by bifurcations. Linear theory predictions are 
confirmed in the nonlinear case.
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