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Abstract. In this paper, using the example of the Lamy metric, the polarization properties of black 
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1. INTRODUCTION

The Event Horizon Telescope (EHT) obtained 
an image of hot magnetized plasma emitting 
synchrotron radiation around supermassive black 
holes in the elliptical galaxy M87 [1] and in our 
Milky Way galaxy [2]. The images form a ring-like 
morphology and were obtained in the millimeter 
range at 230 GHz. However, intensity maps carry 
significantly less information than polarization 
maps. Because of this, it is not possible to constrain 
numerical models and determine plasma and black 
hole parameters from observations [3]. In 2021, 
based on EHT data, a linear polarization map of 
the supermassive black hole in M87* was published, 
revealing a spiral structure of the electric vector 
position angle in hot magnetized plasma [4]. The 
polarization map of M87* strongly constrained 
numerical models; in particular, it was found that 
the accretion flow structure is better described by the 
magnetically arrested disk (MAD) regime than by 
the standard and normal evolution (SANE) disk [5]. 
Therefore, polarimetric observations are a critically 
important step towards understanding physical 
processes in strong gravitational fields.

Another question that arises here is whether the 
image obtained in the EHT observations is actually 
an image of a black hole or an image of another 
object, such as a wormhole? To answer this question, 
a criterion for distinguishing between a black 
hole and a wormhole is needed. In this work, it is 
assumed that a black hole can be distinguished from 
a wormhole by linear polarization of radiation.

To construct polarization maps, it is necessary 
to calculate the polarization change along the 
photon trajectory. As known, radiation polarization 
can change for two reasons. The first is due to the 
rotation of the electric vector along the geodesic 
in strongly curved spacetime. The second is due to 
photon propagation in magnetized plasma. Here we 
will investigate the first reason. The strongly curved 
spacetime will be created either by a black hole or a 
wormhole.

In this article, using the Lamy metric as an 
example, the change in the linear polarization vector 
during photon motion in a strong gravitational field 
is calculated for both a black hole and a wormhole. 
For this purpose, a metric is chosen that describes 
both black holes and wormholes and in the limiting 
case coincides with the Kerr rotating black hole 
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metric. Maps of linear polarization and electric 
vector angle position depending on the magnetic field 
direction in a thin disk are constructed. Toroidal 
and radial magnetic field distributions in thin disks 
are considered. The decomposition coefficient β2 of 
linear polarization depending on metric parameters 
is calculated and a criterion for distinguishing a 
black hole from a wormhole is given.

The paper uses a system of units in which the 
speed of light and gravitational constant are equal to 
unity, c = G = 1. The dimension of length is Gm / c2, 
the dimension of time is Gm / c3, where m is the mass 
parameter.

2. PHOTON EQUATIONS OF MOTION 

In this section, we briefly describe the basic 
equations for light ray propagation in curved 
spacetime using the Lamy metric as an example.

The Lamy metric in Boyer-Lindquist coordinates 
(t, r, θ, φ) has the form [6]

Sæ ö= - - + +ç ÷S Dè ø
2 2 22 ( )1 rM r

ds dt dr

	
( )q+S q + + - D q f -

S

2
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24 ( )sin ,raM r
dtd  (1)

where standard notations are introduced

S = + q2 2 2 ,cosr a

D = - +2 22 ( ) ,r rM r a

a — rotation parameter, spin. This metric differs 
from the Kerr rotating black hole metric in that the 
mass parameter M is not a constant value but is a 
function of the radial coordinate of the form [6]

	 =
+

3

3 2
| |( ) .

| | 2
r

M r m
r mb
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In this case, the parameter m is a constant 
value and we will call it the mass parameter, and 
the parameter b, as shown in work [7], is the 
magnetic charge. In the case when the magnetic 
charge is zero, b = 0, this metric coincides with 
the Kerr rotating black hole metric. Without 

loss of generality, we will assume that the mass 
parameter equals one, one, m  = 1. Also in this 
work, we will consider the case when the magnetic 
charge takes values from zero to two, 0 ≤ b ≤ 2. 
As shown in work [6], this manifold is geodesically 
complete and non-singular in all spacetime  
−∞ < r < ∞. This means that two asymptotically 
flat spacetimes are connected at the point  
r = 0. From expression (2), one can see that the value 
M (r) ≥ 0 is always greater than or equal to zero for 
any radius, −∞ < r < ∞.

The Lamy metric has coordinate singularities 
that correspond to event horizons in the case of the 
Kerr metric. These conditions are determined by the 
expression of the form

 D = - + =2 22 ( ) 0.r rM r a

In the case when both parameters a and b are not 
equal to zero, equation Δ = 0 is solved numerically. 
Figure 4 of article [6] shows cases when this equation 
either has no roots, or has one (extreme case) or 
two roots. These roots of equation Δ = 0 will be 
called event horizons by analogy with the roots of 
the equation in the Kerr metric. If the Lamy metric 
has two or one event horizon, then this metric 
corresponds to a black hole metric, otherwise it 
corresponds to a wormhole.

Photons propagate in the Lamy metric, moving 
along geodesics described by equations of the form 

	

a
a

a
a b g
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=
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	 (3)

 where a
bgG  are Christoffel symbols, pa  is the photon 

momentum, t  is the affine parameter. Paper [8] 
presents metric coefficients and Christoffel symbols 
for the Lamy metric (1) with function form (2). Below 
we will show images of black holes and wormholes 
obtained through numerical solution of eight 
equations (3). Qualitatively, photon propagation in 
the Lamy metric, by analogy with the Kerr metric, 
can be described using radial and angular potentials 
of the form [3]

	 ( )= + - - D + -2 2 2 2( ) ( ) ( ) ,R r r a aL Q L a 	 (4)
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where L   is the angular momentum of the photon, 
Q  is Carter's constant. In the Kerr metric (b = 0) dial 
potential is a fourth-order polynomial with respect 
to the radial coordinate. In the Lamy metric, this 
potential is a seventh-order polynomial [6] and, as 
shown in work [6], some photon trajectories can have 
more than one radial turning point.

To determine the position of the image on the 
observer's screen, Cartesian coordinates (α, β) 
are introduced, first presented in work [9]. These 
coordinates connect the conserved photon parameters  
(L, Q) with the position on the observer's screen:

 	 a = - b = ± Q q
q

, ( ),
sin o

o

L
	 (6)

where θ0 is the observer's inclination angle to the 
rotation axis of the black hole or wormhole. Thus, 
knowing the photon's position on the observer's 
screen, one can determine the photon parameters 
(L, Q), and consequently, the position of the photon 
source in the disk.

To construct polarization maps, we will primarily 
be interested in photon polarization. To calculate 
the polarization change of a photon moving in a 
strong gravitational field, we will use the Walker-
Penrose constants [10]. For this, we need to show 
that the Lami metric belongs to type D according 
to Petrov classification [10]. To demonstrate this, 
we will use the Newman-Penrose formalism. 
This formalism is a tetrad formalism in an 
isotropic basis consisting of four isotropic vectors  
(l, n, m, m*) [10]. The Appendix defines a quartet of 
isotropic vectors satisfying orthogonality conditions, 
isotropy, and normalization condition. The Ricci 
rotation coefficients in the Lami metric, which in 
this formalism are called spin coefficients [10], are 
also written out. Since the spin coefficients in the 
Lami metric

	 k = s = l = n = e = 0 	 (7)

are equal to zero (see Appendix), from the 
corollary of the Goldberg-Sachs theorem, it follows 
that the Lami metric belongs to type D according to 
Petrov classification [10]. The Appendix also lists the 

non-zero Weyl scalar 2Y . All these quantities will be 
needed to calculate the Walker-Penrose constants. 

We proceed to calculate the change in the photon 
polarization vector when moving in curved spacetime 
[10]. Let f m – 4-vector be the photon polarization, 
which is orthogonal to the photon 4-momentum  
pm, i.e.,

= 0,f pm
m

 
and is parallel transported along the photon 
trajectory, i.e.,

m n
mÑ = 0.p f

Then the quantity

	 -= - - - + Y* * 1/3
2( )i j

s i j j i i j i jK p f l n l n m m m m 	(8)

remains constant along the geodesic [10]. The 
quantity 

2 1=sK K iK+

is a constant complex value called the Walker-
Penrose constant. The existence of this constant 
allows us to calculate the change in the 4-vector 
of polarization along the photon trajectory and 
compare polarization values for black hole and 
wormhole metric cases. For this, we need to relate 
the quantities f and p near the observer and the 
source. We introduce the notations

	 f f= - + q -2 ( ),sint r r t r rA p f p f a p f p f 	 (9)

 f q q f= q - + -2 2sin [( )( )B p f p f r a 	

q q- -( )].t ta p f p f (10)

Then expression (8) can be rewritten as 

	 -+ = - - Y 1/3
2 1 2( ) .K iK A iB 	 (11)

 
The values of 4-momentum at any point in spacetime 
are given in the Appendix by formulas (38). By 
setting the initial magnetic field at the emission point 
and calculating the constants 1K  and 2K , one can 
determine the values of the polarization 4-vector at 
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the observation point, and consequently, the Stokes 
parameters (see (53) and (54)).
Another important quantity is the linear polarization 
decomposition coefficient βm, introduced in [11]:

r p

r

b = r f f r r f =ò ò
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1 ( , ) ( )m m
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P P d d
I
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where 
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( , ) ,annI I d d 	 (13)

	 r f = r f + r f( , ) ( , ) ( , ).P Q iU 	 (14)

Here Q and U are the Stokes parameters of linear 
polarization, ( , )r f    are polar coordinates on the 
observer's screen, the asterisk "*" denotes complex 
conjugation, is the radiation intensity. Without loss 
of generality, we set the value annI    equal to one, 

= 1annI . Let us denote the total linear polarization 
as 

	 2 2= ,LP Q U+ 	

and the electric vector angle positions as 

	 = 1 .
2

U
EVPA arctg

Q 	 (15)

In the next section, we will present maps of total 
linear polarization and electric vector angle positions 
for radial and toroidal magnetic fields in a thin disk 
located in the equatorial plane of a black hole or 
wormhole, and compare the obtained results. 

3. RESULTS

In this section, we will discuss the difference in 
maps of linear polarization and electric vector angle 
positions for a black hole and wormhole using the 
Lamy metric as an example.

We will assume that the source of photon radiation 
is a thin disk located in the equatorial plane of the 
black hole (wormhole), which radiates isotropically 
in all directions. The thin disk is penetrated by a 
radial or toroidal magnetic field. The inner radius of 
the disk was set to = 8inr .. The rotation parameter in 
the Lamy metric was set to = 0.9a , and the magnetic 
charge to = 0,0.3,0.5,0.7,0.9,2.0b . The case when 

0.245b Š  corresponds to a black hole, and the case 
when 0.245b ‹  to a wormhole (see Fig. 4 from [6]). 
The value 0.245 is determined numerically from 
the equation = 0D  for spin = 0.9a . The observer is 
located at a distance from the black hole (wormhole) 

= 50or  at an angle = 17 ,45 ,80i o o o to the rotation 
axis of the black hole (wormhole). To construct 
polarization maps, the ray-tracing method was used. 
The geodesic equations (3) were solved numerically 
using the fourth-order Runge-Kutta method. All 
polarization maps are shown on a scale from −10 
to 10 in units of 2/Gm c  and with a resolution of 
2500×2500 pixels. The intensity images for the same 
metric parameters are shown in Fig. 3 of paper [8].

Figure 1 and 2 show linear polarization maps 
for the initial distribution of radial and toroidal 
magnetic fields, respectively. The color indicates the 
magnitude of linear polarization, LP value. Green 
arrows show the direction of the electric vector of 
linear polarization. The arrow length is proportional 
to the magnitude of linear polarization. The top 
three figures correspond to a black hole, the rest 
to a wormhole. The figures from left to right are 
for different inclination angles of the observer 
relative to the rotation axis of the black hole 
(wormhole), i = 17◦, 45◦, 80◦. The figures from top 
to bottom are for different magnetic charge values, 

= 0,0.3,0.5,0.7,0.9,2.0b .
Comparing linear polarization for black holes and 

wormholes, the following conclusions can be drawn. 
Linear polarization in photon rings for wormholes 
has higher values than in the disk. This is because 
for some photons, circular orbits are located closer 
to the center and, consequently, the gravitational 
field will much more strongly curve the trajectory 
of motion, and hence the magnitude of linear 
polarization. This statement is true for both radial 
and toroidal distributions of the magnetic field in the 
disk. The directions of linear polarization (shown by 
green arrows in the figures) in photon rings will be 
approximately perpendicular to each other for radial 
and toroidal magnetic fields when the observer is 
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Fig. 1. Map of total linear polarization (shown in color) LP for the initial radial distribution of magnetic field around a black hole and 
wormhole. From left to right, inclination angles are i = 17 ,̊ 45 ,̊ 80 .̊ From top to bottom, magnetic charge is b = 0, 0.3, 0.5, 0.7, 0.9, 2.0. 
Map scale to −10Gm/c3 to 10Gm/c3
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Fig. 2. Map of total linear polarization (shown in color) LP for the initial toroidal distribution of magnetic field around a black hole and 
wormhole. From left to right, inclination angles are i = 17 ,̊ 45 ,̊ 80 .̊ From top to bottom, magnetic charge is b = 0, 0.3, 0.5, 0.7, 0.9, 2.0. 
Map scale to −10Gm/c3 to 10Gm/c3
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Fig. 3. Map of electric vector position angle (shown in color) for the initial radial distribution of magnetic field around a black hole or 
wormhole. From left to right, inclination angles are i = 17 ,̊ 45 ,̊ 80 .̊ From top to bottom, magnetic charge is b = 0, 0.3, 0.5, 0.7, 0.9, 2.0. 
Map scale to −10Gm/c3 to 10Gm/c3
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Fig. 4. Map of electric vector position angle (shown in color) for the initial toroidal distribution of magnetic field around a black hole or 
wormhole. From left to right, inclination angles are i = 17 ,̊ 45 ,̊ 80 .̊ From top to bottom, magnetic charge is b = 0, 0.3, 0.5, 0.7, 0.9, 2.0. 
Map scale to −10Gm/c3 to 10Gm/c3
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positioned at an angle i = 17˚ to the rotation axis of 
the black hole or wormhole. When the observer is 
positioned at an angle i = 45˚ or i = 80 ,̊ the angle 
between the directions of linear polarization for 
the initial radial and toroidal magnetic fields will 
increase.

Figures 3 and 4 show maps of the electric vector 
position angle for the initial distribution of radial 
and toroidal magnetic fields, respectively. The color 
indicates the magnitude of the electric vector position 
angle. The angle varies from −90° to 90°. Comparing 
the maps of the electric vector position angle, the 
following conclusions can be drawn. The magnitude 
of the electric vector position angle for the radial 
magnetic field in the disk differs by approximately 
90° from the corresponding magnitude for the 
toroidal magnetic field in the disk. Thus, using 
the maps of electric vector position angle, one can 
determine the directions of magnetic field in the 
disk, i.e., reconstruct the magnetic field topology.

Figures 5 and 6 show the dependencies of the 
absolute value of parameter on the magnetic charge 
value at different observer inclination angles to the 
rotation axis of the black hole or wormhole for cases 
of radial (Fig. 5) and toroidal (Fig. 6) magnetic fields 
in the disk. The black solid curve corresponds to the 
case when the observer is positioned at an angle  
i = 17° to the rotation axis of the black hole or 
wormhole, the blue dash-dotted curve corresponds 
to the case when i = 45°, and the green dashed 
curve corresponds to the case when i = 80°. The red 
vertical line defines the boundary between the black 
hole (left) and wormhole (right). Figures 5 and 6 
show that β2 remains constant for black holes and 
changes abruptly at the boundary between the black 
hole and wormhole. For the radial magnetic field 
in the disk, the absolute value of | β2 | for the black 
hole will be less than for the wormhole. For the 
toroidal distribution of the magnetic field in the disk, 
the situation depends on the observer's inclination 
to the rotation axis of the black hole (wormhole). 
For inclinations i = 17° and i = 45°, the absolute 
value of | β2 | for the black hole will be less than 
for the wormhole, while for inclination i = 80° – 
the situation is reversed. Knowing the observer's 
inclination angle to the source's rotation axis (black 
hole or wormhole), the magnetic field distribution 
in the disk, and measuring the absolute value of | β2 | 
linear polarization, one can conclude whether the 
source is a black hole or a wormhole.

4. CONCLUSION

This work numerical ly investigated the 
polarization properties of black holes and wormholes 
using the Lamy metric as an example. This metric 
accurately reproduces the Kerr rotating black hole 
metric for small magnetic charges and a rotating 
wormhole otherwise. Using the ray-tracing method, 
maps of linear polarization and electric vector 
position angle were constructed for both black hole 
and wormhole cases.

Fig. 6. Dependencies of the absolute value of parameter | β2 | on 
magnetic charge for toroidal magnetic field in the disk. The solid 
black curve corresponds to the case when the observer is located at 
an angle i = 17° to the rotation axis of the black hole or wormhole, 
the blue dash- dotted curve corresponds to the case i = 45°, and the 
green dashed curve corresponds to the case i = 80°. The red vertical 
dotted line corresponds to the boundary between the black hole 
(left) and wormhole (right)

Fig. 5. Dependencies of the absolute value of parameter | β2 | on 
magnetic charge for radial magnetic field in the disk. The solid 
black curve corresponds to the case when the observer is located at 
an angle i = 17° to the rotation axis of the black hole or wormhole, 
the blue dash-dotted curve corresponds to the case i = 45°, and the 
green dashed curve corresponds to the case i = 80°. The red vertical 
dotted line corresponds to the boundary between the black hole 
(left) and wormhole (right)
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The photon emission source was set as a thin disk 
with toroidal or radial magnetic field. Maps of linear 
polarization and electric vector position angle were 
constructed. The dependence of the decomposition 
coefficient | β2 | of linear polarization on the magnetic 
charge magnitude was constructed for different values 
of observer inclination angles to the rotation axis of 
the black hole (wormhole ) and initial magnetic field 
distribution. A criterion for distinguishing between a 
black hole and a wormhole using linear polarization 
was proposed. By measuring linear polarization, 
one can reconstruct the magnetic field topology, 
calculate the decomposition coefficient | β2 | and, 
knowing the inclination, determine whether the 
source is a black hole or a wormhole.

The study of alternative space-time geometries 
different from Kerr rotating black hole proves to be 
particularly timely in connection with the recent 
results of the Event Horizon Telescope group. The 
obtained images of galactic centers in M87* and 
SGR A* have opened new tests of general relativity in 
strong gravitational fields. The similarity of images 
of black holes, boson stars, wormholes, and other 
objects encourages researchers to study alternative 
geometries in more detail.

APPENDIX

In the Newman-Penrose formalism, four null 
vectors are introduced l, n, m, m*, which satisfy the 
following conditions [10]: orthogonality condition 

	 × = × = × = × =* * 0,l m l m n m n m 	 (16)

isotropy condition 

	 × = × = × = × =* * 0l l n n m m m m 	 (17)

and normalization condition 

	 × = × = -*1, 1,l n m m 	 (18)

where the asterisk denotes complex conjugation. By 
analogy with the Kerr black hole, it can be shown 
that in the Lamy metric, the following tetrad of 
vectors satisfies the above relations: 

	 a = + D
D
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 For the chosen tetrad of null vectors, the non-
zero λ-symbols (see definition of λ-symbols in [10]) 
are determined by the following relations: 
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 The spin coefficients (see definition of spin 
coefficients in [10]) in the Lamy metric are equal to 

	 k = s = n = l = e = 0, 	 (32)

 

	
D qm = - p =
Sr r* *2
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2 2
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2
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It can be noted that only the spin coefficient ϒ in 
the Lamy metric differs from the spin coefficient ϒ 
in the Kerr metric. 

The Weyl scalar ψ2 in the Lamy metric is non-zero 
and equals

	
+ qY = - +

- q S
'

2 3 2
cos .

( cos )
M r ia

rM
r ia

	 (37)

In the case when b = 0, this expression transitions 
into the Weyl scalar Ψ2 in the Kerr metric.

The equations of photon motion in the spacetime 
of Lamy metric in Boyer-Lindquist coordinates have 
the same form as in the Kerr metric:

	
q

f

+S = + - - q +
D
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qS = + q -
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Let us recall that the quantity Δ includes 
parameter (2).

Physical quantities are defined by introducing 
an or thonormal tetrad. Let us specify an 
orthonormal tetrad of the form (see [10]) 
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where the metric coefficients 32, , , ,e e e e
mmn y w  are 

given in the Appendix of paper [8]. The index in 
parentheses denotes the tetrad index.

We relate quantities in the tetrad basis with 
quantities in Boyer-Lindquist coordinates through 
the relations

	 a a a
a= =( ) ( ) ( )

( ) , .a a a
af e f p e p 	

In expanded form we have 

	 - n n= =( ) ( ), ,t t t tf e f p e p 	 (40)

 

	
- m m= =( ) ( )2 2, ,r r r rf e f p e p 	 (41)

 

	
- m mq q q q= =( ) ( )3 3, ,f e f p e p 	 (42)

 	
f - y f - n f y f y= + w = - w( ) ( ) ( ), .t tf e f e f p e p e p 	

(43)
4-vector of polarization is expressed through the 
magnetic field in tetrad basis by the formulas 

	 =( ) 0,tf 	 (44)

	 f q q fµ -( ) ( ) ( ) ( ) ( ),rf p B p B 	 (45) 

	 q f fµ -( ) ( ) ( ) ( ) ( ),r rf p B p B 	 (46)

	 f q qµ -( ) ( ) ( ) ( ) ( ).r rf p B p B 	 (47)

Radial field corresponds to the case 

(38)
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	 q f= = =( ) ( ) ( )1, 0,rB B B

toroidal field corresponds to the case 

	 f q= = =( ) ( ) ( )1, 0.rB B B

Without loss of generality, we assumed that f(t) = 0. 
By specifying the magnetic field, we can determine 
the 4-vector of polarization in the radiation source 
f(a) and using Walker—Penrose constants find the 
polarization at the observation point. At infinity 
r → ∞ the values of photon 4-momentum are equal to 

	 f l® ® ®
q2 2

1, 1, ,
sin

t rp p p
r

	 (48)

 
	 q

qh + q - l
q®

2
2 22

2

2

coscos
sin ,

a
p

r
	 (49)

and 4-vectors of polarization are expressed through 
Walker—Penrose constants as follows:

	 f +q = -
h + - l

1 1 2 2
0 2

1sin ,
( )

K D K D
f

r a
	 (50)

 

	 q -=
h + - l

1 2 2 1
2

1 ,
( )

K D K D
f

r a
	 (51)

where
 

	

q
= h + q - l

q
l= - q
q

2
2 2 02

1 0 2
0

2 0
0

cos ,cos
sin

sin .
sin

D a

D a

	 (52)

Electric field is expressed through polarization 
4-vectors as follows: 

	 q q= q =0- sin , - .f fE r f E rf 	 (53)

Stokes parameters of linear polarization are defined 
as 

	 f q f q= - = -2 2, 2 .Q E E U E E 	 (54)

To calculate the decomposition coefficient βm, in the 
integral 

	
r p

- fb = r f r r fò ò
2max

0 0

( , ) im
m P e d d 	 (55)

we make a change of variables from polar coordinates 
to Cartesian: 

	 = r f = r fcos , sin ,x y 	

	 r = + f =2 2 2, .y
x y

x 	

The Jacobian of transformation equals 

	 =
+2 2

1 .J
x y

	

As a result, we obtain 

	
-

- -

b = =ò ò
10 10

10 10

( , )
yim
x

m P x y e dxdy

	
- -

= f + f +ò ò
10 10

10 10

[ cos sinQ m U m

	 + f - f( cos sin )] ,i U m Q m dxdy 	 (56)

where integration limits are determined by the sizes 
of polarization maps (see Fig. 1−4). Coefficient β2	
equals

	
- -

b = f + f +ò ò
10 10

2
10 10

[ cos 2 sin 2Q U

	 + f - f( cos 2 sin 2 )] ,i U Q dxdy 	 (57)

 from which we easily obtain 

	
- f -f = =
+ f +

2 2 2

2 2 2
1cos 2 ,
1

x y
x y

	 (58)

 

	
ff = =

+ f +2 2 2
2 2sin 2 .

1
xy

x y
	 (59)
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