= atoms, molecules, optics =

MOLECULES OF REPELLING ATOMS ADSORBED ON SURFACES AND THREADS

© 2024 A. V. Maksimychev^{a*}, L. I. Menshikov^{a, b**}, P. L. Menshikov^{a, b***}

^aNational Research University MPTI 141701, Dolgoprudny, Moscow region, Russia
^b National Research Centre Kurchatov institute 123182, Moscow, Russia
*e-mail: maksimychev.av@mipt.ru

** e-mail: mleonid1954@mail.ru

*** e-mail: menshikov2005@mail.ru

Received February 02, 2024 Revised February 02, 2024 Accepted February 08, 2024

Abstract. The interaction of two slow atoms adsorbed on a surface or thread is considered. It is shown that, for any sign of the scattering length, this system has a bound state. In particular, such a state exists for two atoms with interaction in the form of a spherical potential with an infinitely high wall.

Keywords: zero radius potential, bound states of atoms, quasimolecule, adsorption, scattering length, Efimov effect

DOI: 10.31857/S004445102406e04X

1. INTRODUCTION

One of the unexpected results of quantum mechanics is the Efimov effect — the presence of bound states in a system of three repulsive particles [1] (see also works [2–5]). In this article, which is a further development of work [6], a similar phenomenon is indicated: the possibility of the existence of a bound state (van der Waals molecule) of repulsive atoms adsorbed on a surface or filament, acting as a third body.

In work [6], a pair of such atoms with mass m, interacting with the surface through an oscillator potential

$$u(z) = m\omega^2 z^2 / 2$$

was considered (z-axis is directed perpendicular to the surface).

It is known [7] that the scattering length a is the only parameter that determines the interaction of two atoms at low energy. Based on this, to describe the motion of atoms, the authors applied in [6] the method of zero radius potentials [8], i.e., imposed a

boundary condition on the wave function (WF) of the atom pair

$$\lim_{r \to 0} \left(\frac{1}{\varphi} \frac{\partial \varphi}{\partial r} \right) = \gamma. \tag{1}$$

Here

$$\varphi = r\psi$$
, $\gamma = -1/a$,

$$r = |\mathbf{r}|, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2 = (z, \rho),$$

 $z = z_1 - z_2$, $\rho = (x_1 - x_2, y_1 - y_2)$ is a two-dimensional vector characterizing the relative motion of atoms along the surface. According to [6], the dissociation energy of the adsorbed molecule equals

$$D = \kappa^2$$
.

where κ is determined from the equation

$$f(\kappa) = \gamma. \tag{2}$$

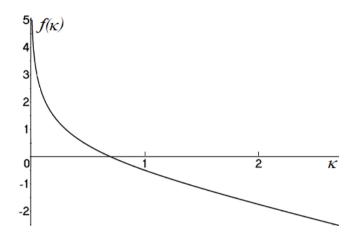


Fig. 1. Graph of function $f(\kappa)$ from (2)

The graph of function $f(\kappa)$ is shown in Fig. 1 (here and further we use units $\hbar = m = \omega = 1$).

From formula (2) and Fig. 1, it is evident that the bound state exists for any sign of γ , despite the fact that for $\gamma > 0$ (in paper [6] this case is called repulsion) such states do not exist for a pair of atoms in free space. Paper [9] considers attractive interaction between atoms in the form of a spherical well

$$V(r) = -u_0 \theta(r_0 - r),$$

where $u_0 > 0$, θ — is the Heaviside function. It is indicated that depending on the parameter values u_0 and r_0 , both cases $\gamma > 0$, and $\gamma < 0$. are possible. Hence, it is clear that the case $\gamma > 0$ does not always correspond to repulsion. It is clear, however, that $\gamma > 0$ can also correspond to explicit repulsion of atoms. Let's demonstrate this using an example of a definitely repulsive interaction

$$V(r) = +u_0 \theta(r_0 - r). (3)$$

2. HARD SPHERE APPROXIMATION FOR ADSORPTION ON A PLANE

For a pair of free slow atoms, it is sufficient to consider s-wave. In their center of mass system

$$\varphi(r) = \operatorname{Ash}(qr), \quad r < r_0,$$

$$\varphi(r) = \sin[k(r - r_0) + \eta], \quad r > r_0.$$

Here k^2 is the kinetic energy of relative motion of atoms, $q = \sqrt{u_0 - k^2}$. Wave function matching at the boundary gives

$$\eta = \frac{q}{k} \operatorname{cth}(qr_0). \tag{4}$$

At $r > r_0$ we get

$$\frac{\varphi'}{\varphi} = k[k(r - r_0) + \eta].$$

Condition $r \to 0$ in (1) should now be understood as $r \ll 1/k$. From (1) and (4) we obtain

$$\lim_{r \to 0} \frac{\varphi'}{\varphi} = k \cdot (-kr_0 + \eta). \tag{5}$$

Statements [6] are valid if

$$\gamma(\kappa) = \text{const.}$$
 (6)

This is satisfied at

$$kr_0 \ll 1, k \ll q_0, \tag{7}$$

where $q_0 = \sqrt{u_0}$. In this case

$$\gamma = q_0 \operatorname{cth}(q_0 r_0). \tag{8}$$

Thus, if (6) is satisfied, which is true under conditions (7), then according to the conclusions of paper [6], even in case (3) there exists a bound state of the adsorbed quasi-molecule.

The value k corresponds to distances between atoms $r \sim 1/k$. For motion along the axis $x \sim 1$, therefore from (7) we obtain the conditions for validity of this work's conclusions:

$$r_0 \ll 1, q_0 \gg 1,$$
 (9)

or, in conventional units,

$$r_0 \ll \sqrt{\frac{\hbar}{m\omega}}, u_0 \gg \hbar\omega$$
 (10)

From (8) and (9) we conclude

$$\gamma > q_0 \gg 1. \tag{11}$$

According to [6], in this limiting case

$$k \sim \exp\left(-\gamma\sqrt{\frac{\pi}{2}}\right),$$
 (12)

therefore, considering (11), we come to the conclusion that the quasi-molecule size, determining the characteristic distance for longitudinal motion, is large and equals

$$r \sim \frac{1}{k} \sim \exp\left(\gamma \sqrt{\frac{\pi}{2}}\right) \gg 1.$$

Thus, for longitudinal motion, the conditions for satisfying (7) are less stringent compared to (10):

$$r_0 \ll \sqrt{\frac{\hbar}{m\omega}} \cdot \exp \left(\gamma \sqrt{\frac{\pi \hbar}{2m\omega}} \right),$$

$$u_0 \gg \hbar \omega \exp \left(\gamma \sqrt{\frac{\pi \hbar}{2m\omega}} \right),$$

The second condition (10) is typically satisfied under typical conditions, and the first one is the most stringent. Based on the known stability of bound states in two-dimensional and one-dimensional systems, it can be stated that such states can exist in case (3).

3. ADSORPTION ON A FILAMENT

Now let's direct the axis z along the filament, and for the adsorption potential, we'll again adopt the oscillator approximation

$$u(\rho) = \rho^2 / 2$$
, $\rho^2 = x^2 + y^2$.

According to formula (8) from work [6], the WF of relative motion of atoms is given by the expression

$$\psi(\mathbf{r}) \propto G(\mathbf{r}),$$

where $G(\mathbf{r})$ is found from the equation

$$\left(-\Delta_r + \frac{1}{4}\rho^2 - 1 + \kappa^2\right)G(r) = \delta(x)\delta(y).$$

Now we need to perform a Fourier transform over z, after which, similar to [6], we obtain, omitting constant factors

$$\psi = \int_{0}^{\infty} \frac{d\tau}{\sqrt{\tau}(1 - e^{-2\tau})} \exp\left(-\kappa^2 \tau - \frac{1}{4} \rho^2 cth\tau - \frac{z^2}{4\tau}\right).$$

When substituting into (1) here we can set $\rho = 0$, so that r = |z|, and also apply the identity

$$\frac{1}{1 - e^{-2\tau}} = \frac{1}{2\tau} + \left(\frac{1}{1 - e^{-2\tau}} - \frac{1}{2\tau}\right).$$

The integral of the first term is solved analytically and equals

$$\frac{\sqrt{\pi}}{r}e^{-kr} \approx \sqrt{\pi}\left(\frac{1}{r} - \kappa\right).$$

The second term is non-singular, and we can set z = 0. in it. This gives for the filament equation (2), in which

$$f(\kappa) = -\kappa + \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{d\tau}{\sqrt{\tau}} e^{-k^2 \tau} \left(\frac{1}{1 - e^{-2\tau}} - \frac{1}{2\tau} \right).$$

The graph of this function is similar to that shown in Fig. 1, i.e., again the solution (2) exists for any sign of γ . For large γ instead of exponential smallness (12), characteristic for the two-dimensional case, we obtain power-law smallness of binding energy $\kappa \approx 1/\gamma$.

4. CONCLUSIONS

From the above, we conclude that restricting the motion of atoms in one or two directions can lead to the appearance of a bound state absent in a pair of free atoms or to an increase in the binding energy of the quasi-molecule they already form.

Let's apply our model to describe experiments [10–12] with a two-dimensional gas of spin-polarized hydrogen atoms adsorbed on the surface of liquid helium.

For the applicability of the zero-radius potential approximation (1), it is required that the characteristic size of r_0 pair interaction u(r) between hydrogen atoms in the triplet state should be small compared to both the amplitude of z_{ads} atomic oscillations in the adsorption potential $(r_0 / z_{ads} = 1)$, and the characteristic de Broglie wave length of hydrogen atoms under experimental conditions [10–12], that is $kr_0 \ll 1$, where $k \sim \sqrt{2mT} / \hbar$ is the characteristic wave vector of hydrogen atoms with mass m. The experiments were conducted at temperature $T \sim 0.15$ K, therefore $k \sim 6 \cdot 10^6$ cm⁻¹. According to [13], at

$$r_0 = 7.85a_0, (13)$$

where a_0 is the Bohr radius, the potential energy u(r) has a minimum $u(r_0) = -\mathbf{u}_0$, where $u_0 = 6.2$ K. In this adsorption potential, hydrogen atoms have only one bound state with binding energy $E_q = 1.14$ K [14]. From this, we conclude that

$$z_{ads} \sim z_{in} + z_{out} \sim 20a_0$$

where $z_{\rm in} \sim 10a_0$ is the characteristic oscillation amplitude in the classically accessible region of hydrogen atoms motion in the adsorption state and $z_{out} \sim \hbar / \sqrt{2mE_a} \sim 10a_0$ is the characteristic depth of their penetration under the potential barrier in the classically inaccessible region of motion. Thus,

$$r_0 / z_{ads} \sim 0.3$$
 (14)

Taking (13) as the characteristic size of pair interaction between hydrogen atoms in the triplet state, we obtain

$$kr_0 \sim 0.2$$
 (15)

We should add that condition (15) also allows us to neglect the correction terms $\sim kr_0$ to formula (1) (see [15], as well as formulas 133.9, 133.10, and 133.14 from work [16]).

Within our adopted oscillator approximation for the adsorption potential, the distance from the adsorption level to the bottom of the well should be equal to $\hbar\omega/2$. According to the data provided above, it amounts to $u_0 - E_a \approx 5$ K, which corresponds to $\omega \approx 1.3 \cdot 10^{12} \text{ s}^{-1}$. From this, we find the unit of length used in calculations:

$$L = \sqrt{\frac{\mathsf{h}}{m\omega}} \approx 4a_0.$$

The scattering length of hydrogen atoms in the state with total spin S = 1 equals $a \approx 1.2a_0$ [17]. In our units, this equals $a \approx 0.3$, which corresponds to

$$\gamma = -\frac{1}{a} \approx -3.3.$$

From Fig. 1, we conclude that $k \approx 2.5$, therefore the binding energy of the adsorbed quasi- molecule equals

$$D = \hbar\omega \cdot k^2 \approx 60 K$$

As noted in work [6], this conclusion may indicate the instability of Bogoliubov two-dimensional Bose-condensates obtained in experiments [10–12], formed by hydrogen atoms adsorbed on the surface of liquid helium

FUNDING

The work was carried out within the framework of the scientific assignment of the National Research Center "Kurchatov Institute".

REFERENCES

- 1. V. I. Efimov, Physics of Atomic Nuclei 12, 1080 (1970).
- 2. S. P. Merkuryev, L. D. Faddeev, Quantum scattering theory for systems of several particles (Moscow.: Nauka, 1985).
- **3.** V. B. Belyaev, Lectures on the theory of small-particle systems (Moscow: Energoatomizdat, 1986).
- **4.** F. M. Penkov, JETP 106, 1046 (1994.)
- 5. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, Few-Body Systems 51, 249 (2011).
- **6.** A. V. Maksimychev, L. I. Menshikov, P. L. Menshikov, JETP Lett. 113, 523 (2021).
- 7. P. V. Elyutin, V. D. Krivchenkov, Quantum mechanics (Moscow: Nauka, 1976).
- **8.** Yu N. Demkov, V. N. Ostrovsky, Method of zeroradius potentials in atomic physics (Leningrad: Leningrad University Publishing House, 1975).
- 9. A. S. Ioselevich, JETP Letters 113, 854 (2021).
- **10.** A. I. Safonov, S. A. Vasiliev, I. S. Yasnikov, I. I. Lukashevich, S. Yaakkola, JETP Lett. 61, 998 (1995).
- A. I. Safonov, S. A. Vasiliev, I. S. Yasnikov, E. Tjukanov, I. I. Lukashevich, S. Yaakkola, Czech. J. Phys. 46 539 (1996)
- **12.** A. I. Safonov, S. A. Vasiliev, I. S. Yasnikov, I. I. Lukashevich, S. Yaakkola, Phys. Rev. Lett. 81, 4545 (1998)
- **13.** W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
- **14.** A.I. Safonov, S.A. Vasilyev, A.A. Kharitonov, S.T. Boldarev, I.I. Lukashevich, and S. Jaakkola, Phys. Rev. Lett. 86, 3356 (2001).
- **15.** L.D. Landau, Ya.A. Smorodinsky, JETP 14, 269 (1944).
- **16.** L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Nauka, Moscow (1974).
- 17. E. Tiesinga, Phys. Rev. A 48, 4801 (1993).