
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2024, Vol. 165, No. 5, рр. 680–692

680

ORDER, DISORDER, AND PHASE TRANSITION IN  CONDENSED MEDIA

INFLUENCE OF A UNIFORM ELECTRIC FIELD  
ON VORTEX-LIKE MAGNETIC STRUCTURES  

IN PERFORATED FILMS
© 2024   E. B. Magadeev*, R. M. Vakhitov**

Ufa University of Science and Technology, 450076, Ufa, Russia
* е-mail: magadeeveb@gmail.com

** е-mail: VakhitovRM@yahoo.com
Received October 26, 2023 
Revised December 27, 2023 

Accepted December 28, 2023

Abstract. The manifestations of the flexomagnetoelectric effect in thin ferromagnetic films with 
uniaxial easy-plane anisotropy and artificially created perforations in the presence of an external 
electric field normal to the film plane are investigated. It is shown that the influence of inhomogeneous 
magnetoelectric interaction in this case leads to the transformation of magnetic structures, which is 
necessarily accompanied by the deviation of the magnetization vector from the sample plane. For cases 
where the deviation angles are small, explicit expressions describing the magnetization distribution are 
obtained. It is proven that the impact of an electric field of certain strength can lead to changes in the 
topology of the ground state of the system. A simplified model is considered, explaining the features of 
changes in structures of this type, as well as allowing to establish conditions for their implementation.

DOI: 10.31857/S004445102405e079

1. INTRODUCTION

Despite the fact that in recent years semiconductor 
electronics has practically displaced devices 
operating on magnetic principles, research in the 
field of magnetic materials design has not lost its 
relevance at all. Interest in this topic is due, in 
particular, to deep and comprehensive study of 
vortex-like objects (skyrmions, bimerons, cylindrical 
magnetic domains, etc. [1-5]), which are considered 
promising for creating new generation micro- and 
nanoelectronic devices [6-8] due to their nanoscale 
dimensions, topological protection, high mobility, 
etc. [3, 5, 6]. Nevertheless, a number of issues 
important for the practical application of such 
objects remain unresolved, not least concerning the 
stability and controllability of vortexlike structures 
[9], especially at room temperatures. Thus, in most 
works devoted to this subject (see, for example, 
[1]), the Dzyaloshinskii-Moriya interaction, which 
becomes significant only at low temperatures [10,11], 
is considered as the key factor ensuring the stability 
of the studied nano-objects. At the same time, in 
nanostructured films, it manifests itself already at 
room temperatures, however at such small scales  

( 1  nm), f luctuations will arise that disturb the 
delicate balance of interactions responsible for 
the stability of vortex-like inhomogeneities [9]. 
Moreover, the Dzyaloshinskii-Moriya interaction 
parameter is essentially a fixed characteristic 
of the material, which significantly limits the 
possibilities of controlling structures formed under 
the influence of this interaction. In this sense, a 
more attractive alternative is the inhomogeneous 
magnetoelectric interaction (IMEI) [12, 13], which 
at the phenomenological level of description is 
similar to the Dzyaloshinskii-Moriya interaction 
[1], but directly depends on the magnitude of the 
applied electric field and completely disappears in 
the absence of the field. The relatively low interest 
in IMEI until recently is apparently explained by the 
fact that the associated flexomagnetoelectric effect 
is observed in a rather narrow class of magnetic 
materials [14-16]; moreover, the nature of this 
phenomenon still remains a subject of discussion 
[17, 18]. Nevertheless, the possibility of effective 
domain structure control through IMEI has already 
received several experimental confirmations [14, 19], 
and theoretical studies indicate the applicability 
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of this approach also to the control of vortex-like 
nano-objects [20]. In this case, control efficiency 
should primarily be understood as energy efficiency, 
associated with lower energy costs for creating 
electric fields compared to magnetic fields [19].

In works [21-23], perforated ferromagnetic 
films with strong uniaxial "easy-plane" anisotropy 
were studied, and it was shown that in the region 
of two or more closely spaced holes in such a film, 
localization of topologically protected vortex-like 
objects is possible, which can be used for recording 
and storing information in a ternary number system 
(later in [24], an alternative method of recording 
information on multiply connected samples with 
easy-plane anisotropy was also proposed, however 
only in a binary system). To switch between 
inequivalent states of these objects, pulses of both 
magnetic [25] and, apparently, electric field can 
be used. The latter is indicated by the results of 
study [20] (as well as similar reasoning in work [26] 
regarding multiferroics, where the role of IMEI 
was played by "conventional" magnetoelectric 
interaction), which examined the influence of IMEI 
on magnetization distribution in a sample with one 
hole (obviously, such a model is also suitable for 
describing a sample with several holes whose sizes 
are small compared to the distance between them 
[23]), where the easy-plane anisotropy constant 
was assumed to be infinitely large, so that the 
magnetization vector could not leave the film plane. 
For this case, it was shown that the effect of the 
field of a charged filament passed through the hole 
leads to the formation of stable structures of various 
topologies, while a uniform electric field does not 
affect the magnetization distribution at all. It is clear, 
however, that the latter statement may prove invalid 
at finite values of the anisotropy constant, since 
the appearance of non-circular trajectories of the 
magnetization vector significantly complicates the 
nature of IMEI. This work is devoted to the study of 
phenomena associated with this.

2. BASIC EQUATIONS

Let us consider a thin ferromagnetic film h,  
containing a circular hole with radiusR , and 
introduce a cylindrical coordinate system, (r, φ, z)  
as shown in Fig. 1 (axis z  is normal to the film 
plane). We will describe the direction of the unit 
magnetization vector m  using angles α and θ, the 
first of which determines the vector's m  emergence 

from the film plane, and the second – the orientation 
of its projection on the plane, so that 

φ- - -= ( sin( )cos ,cos( )cos ,sin ) .m θ α θ φ α α   (1)

Let the sample be in a uniform electric field with 
intensity zE  . Then, taking into account IMEI and 
uniaxial anisotropy of the "easy plane" type, whose 
axis is parallel to axis z, the total energy of the 
magnet can be represented as 

π

Φ
¥

ò ò
2

0

= ,
R

W hrdrdφ                     (2)

where the energy density Φ is determined as follows 
[13, 23]: 

Φ α α αé ùÑ + Ñ + +ê úë û
2 22 2= ( ) ( )cos sinA Kθ

+ + ´2
1 2(  div rot ) .sM b bE m m m m      (3)

Here A  — is the exchange parameter, K  — is the 
absolute value of the anisotropy constant, sM  — is 
the saturation magnetization, and  1b  and  2b  — are 
IMEI constants. Note that expressions (2) and (3) 
do not explicitly include terms corresponding to the 
contribution of demagnetizing fields. This is because 
in thin films their influence is mostly reduced to 
the appearance of shape anisotropy [27], which, if 
necessary, can be accounted for by replacing the 
constant with its effective value 22 sK Mπ+ . The 
in-plane components of demagnetizing fields only 
slightly distort the magnetization distribution 
[22], which does not change the pattern of observed 
phenomena even in cases where crystalline anisotropy 
is practically absent, and the presence of an easy 
plane is provided exclusively by shape anisotropy 
[28]. Substituting (1) into (3) and equating to zero the 
variational derivatives of functional (2) with respect 
to functions α and θ, we obtain the following Euler-
Lagrange equations, which the energy minima of 
the system must satisfy [27]: 

∆α α αé ù+ Ñ - +ê úë û
22 sin 2 ( ) sin 2A Kθ

α
é ù¶ ¶ê ú+ - + -
ê ú¶ ¶ë û
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Fig. 1. Problem geometry

+ 2 2
1 2 1 1 2 2= , = , =  .s sb M E b M Eβ β β β β

This system of equations must be supplemented 
with boundary conditions. First, at the hole 
boundary, the derivatives of energy density (3) with 
respect to / rα¶ ¶  and  ¶ ¶/ rθ , must vanish, i.e., at 

=r R we have 

α
α α

¶
+ + -

¶
2 2

1 22 ( )sin( ) = 0,sin cosA
r

β β θ φ  (5a)

α
¶

- -
¶ 12  tg cos( ) = 0 .A

r
θ β θ φ            (5b)

Second, we will assume that at a large distance 
from the hole, the emergence of the magnetization 
vector from the film plane disappears, so that 

( ) = 0rα ® ¥ . This condition allows excluding from 
consideration non-localized structures with quasi-
periodic magnetization distribution [15], which, by 
analogy with chiral magnetics, could also form in 
samples of the studied type under the influence of 
fields E of sufficient magnitude.

Let's assume initially that there is no external 
field. Then β = 0, and the system of equations (4a), 
(4b) has a formal solution

α +0 0= 0, = =  ,kθ θ φ φ               (6)

where k  — is an integer, and φ0 — is an arbitrary 
constant. In [23], it was shown that solutions of 
type (6) correspond to energy minima (2) under the 
condition

| | 2> ( ) ,kc
K A

R
                         (7)

where 0 = 0c , 1 = 0 .320c , 2 = 1 .066c , 3 = 1 .902c  
and so on. At the same time, the value k numbers 
topologically non-equivalent states of the magnet 
[21], which thus prove to be longlived even at  

0k ¹ , despite the fact that the global minimum 
of the system's energy is definitely achieved with a 
uniform magnetization distribution = 0k .

As a result of field activation E the magnetization 
distribution will no longer be described by 
relationships of type (6). Nevertheless, in cases 
where the angle α does not reach values / 2π±  at 
any point of the sample, the magnetic states can 
still be characterized by the value k, understanding 
it as the number of rotations made by the projection 
of vector m  on the film plane during a complete 
clockwise circuit around the hole. However, it 
is certainly no longer correct to speak about 
topological non-equivalence of states with different 
values of k, and the stability conditions (7) become 
insufficient. Moreover, localized structures with a 
predetermined k may not exist at all at certain field 
strength values E . It is clear, however, that in most 
processes involving minor field changes E, the value 
k will be preserved, which makes it convenient to 
use in further analysis.

Note that solutions of type (6) at 0k ¹  correspond 
to magnetic structures that, generally speaking, are 
not isolated inhomogeneities. Nevertheless, in the 
presence of a second hole in the film, where the 
magnetic structure in the vicinity is characterized 
by the value k- , the magnetization distribution at 
a distance from both holes turns out to be uniform 
(more precisely, the values of the angle θ approach 
some limit according to the law 1r- , and the energy 
density Φ decreases according to the law 4r-  [21]). 
The same is true for an arbitrary number of holes 
with a zero total value of k [22]. In this regard, the 
structures described by the system of equations (4a), 
(4b) should also be perceived as components of a 
larger isolated inhomogeneity, although for each 
of them separately, the limit ® ¥ ( )rθ  may not 
exist. This, in particular, explains the absence of a 
condition for the angle θ similar to ( ) = 0rα ® ¥ .
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3. STRONG ANISOTROPY 
APPROXIMATION

From the form of the system of equations (4a), 
(4b), it is clear that at K ® ¥ its solutions are 
expressed by relations (6) even in the presence 
of an external field ( ¹ 0β ). Let the value K  
be finite but large, so that at least 2/K A R ,  
and condition (7) is satisfied with a significant 
margin. It is reasonable to assume that in this 
case the magnetization distribution in a nonzero 
field will be described by expressions close to 
(6), making it possible to use perturbation theory, 
representing angles α  and  θ as series in powers 
of a small parameter 1K-  (since this parameter 
is not dimensionless, the exact meaning of its 
smallness requirement will be established later). 
Let +0 1=θ θ θ , where α -

 

1
1 Kθ . Then, 

keeping only non-small terms in equation (4a), we 
immediately obtain

α
- + 0sin[( 1) ]

=  .
2

k k
Kr

β φ φ
             (8)

Note that this result seems to contradict the 
boundary condition (5a). In reality, its fulfillment 
will be ensured by rapid change of angle α  in a 
small vicinity of the hole boundary, which has a 
width of order /A K  and, accordingly, completely 
disappears within the framework of the studied 
approximation. For the same reason, based on 
formula (8), it would be incorrect to conclude about 
the absence of magnetization vector exit from the 
film plane at = 0k : it is easy to see that a uniform 
distribution of the form = 0α , = constθ  actually 
cannot satisfy condition (5a) at ¹2 0β . Nevertheless, 
in the presence of strong anisotropy, the scales 
of the forming inhomogeneity turn out to be  
vanishingly small.

The expression for energy density (3) up to terms 
of order 1K- , generally speaking, contains a term 
dependent on  θ1. Being proportional to 1 /θ φ¶ ¶ ,  
this term, however, gives zero contribution to 
integral (2), therefore it is expedient to introduce 
the quantity Φ, averaged over angles φ from 0 to 
2π. Taking into account formula (8), this quantity, 
regardless of the function form θ1 equals 

	
Φ

ì æ öï ÷ï ç ÷ï ç - ¹÷çï ÷çï ÷è øïïá ñ í æ öï ÷ï ç ÷ï ç - ÷ï ç ÷ï ç ÷çï è øïî

22

2

2 2
0

2

1  , 1,
8

=
sin1  , = 1 .

4

k A k
AKr

A k
AKr

β

β φ 	 (9)

From this relation it follows that at = 1k  the 
degeneracy with respect to angle φ0 is removed by 
fields of arbitrarily small magnitude E . In this case, 
structures with  π±0 = / 2φ , become stable, which 
corresponds to the radial direction of the m  vector 
projection onto the sample plane (see Fig.2). At the 
same time, the distribution α = 0, = ,θ φ  which at 
arbitrary values of parameters K  and  β formally 
satisfies both equations (4a), (4b), and conditions 
(5a), (5b), is not realized at ¹ 0β , since 0 = 0φ  
does not minimize the energy density (9), but  
maximizes it.

Substituting (8) into equation (4b), accurate to 
terms of order 1K-  we have    

∆
- - +2

0
1 2

( 2) sin 2[( 1) ]
=  .

8

k k k

AKr

β φ φ
θ      (10)

In the same approximation, condition (5b) at the 
boundary  =r R takes the form 

θ - +¶
¶

1 01 sin 2[( 1) ]
=  .

8  
k k

r AK R
ββ φ φ         (11)

At = 1k  the right-hand sides of expressions (10) and 
(11), considering π±0 = / 2φ  become zero, due to 

Fig. 2. Schematic representation of magnetization vector 
directions at different points of the sample in case of = 1k   

in non-zero external field
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which 1 = 0θ . From here, summarizing formulas (6), 
(8), and (9), we obtain 

π
α Φ

æ ö÷ç ÷ç± ± á ñ - ÷ç ÷ç ÷è ø

2

2
= , = , = 1   .

2 2 4
A

Kr AKr

β βθ φ  (12)

At 1k ¹  the bounded solution of equation (10), 
satisfying condition (11), looks as follows: 

- +
- ´

-
0

1 2

sin 2[( 1) ]
=

32( 1)

k k

k AK

β φ φ
θ

	
-é ùæ öê ú÷ç´ - + - ÷çê ú÷÷çè øê úë û

2| 1|

1( 2) 2 | 1 |   .
kRk k

r
β β   (13)

From formulas (8) and (13), it follows that 
switching on the field E does not change the 
symmetry of the magnetic structure of type (6), 
which consists in the existence of a rotational axis of 
order | 1 |k -  (see Fig. 3). However, the magnetization 
distribution turns out to be different from (6) even 
at a large distance r R  from the hole. Indeed, 
correction (13), unlike angle (8), has at r ® ¥ a 
non-zero limit, meaning that in the entire volume of 
the sample, except for a small neighborhood of the 
hole, the magnetization vector will rotate by some 
angle while practically remaining in the plane. The 
exception is the structure corresponding to = 2k ,  
in which case correction (13) with increasing still 

decreases to zero according to the law 2r- . This 
circumstance is a particular consequence of the 
fact that the limit 1| |θ  at r ® ¥, as can be easily 
verified, is determined by the value | 1 |k - . Thus, 
for = 2k  this limit must be exactly the same  
as for = 0k .

Note that fulf i l l ing the above condition 
2/K A R  does not yet guarantee the correctness 

of the considered approximation, since this 
condition establishes a relationship only between 
anisotropy and exchange interaction, but does not 
affect IMEI. As a result, the value β (for simplicity, 
we will consider β1 and β to be of the same order) 
may turn out to be so large that corrections (8) 
and (13) will no longer have the character of 
perturbations. Their smallness is ensured by the 
additional condition 

2 /K Aβ , which should 
be checked along with  2/K A R . Note that at 

»| | /A Rβ  these conditions become equivalent.

4. WEAK FIELD APPROXIMATION

Within the framework of the strong anisotropy 
approximation considered above, the possibility 
of applying perturbation theory was ensured by 
the fact that vector m  cannot significantly deviate 
from the pronounced easy plane even at substantial 
values of the applied field E. However, if we limit 

Fig. 3. Schematic representation of magnetization distribution depending on the angle φ при двух at two different values of k .  
The blue color shows the circle = constr , at whose points the magnetization directions are considered. The green color shows the 
positions of the magnetization vector ends when there is no electric field and the magnetization vector does not leave the film plane, 
while red shows the case when the field is on. Green and red arrows illustrate the direction of the magnetization vector at individual  

points of the circle for both cases



	 INFLUENCE OF A UNIFORM ELECTRIC FIELD	 685

JETP, Vol. 165, No. 5  2024

ourselves to considering weak fields, then the 
resulting magnetization distribution under their 
influence should be close to distribution (6) even at 
moderate values of constant K , satisfying condition 
(7). In this case, the quantities β and β2 (quantitative 
conditions of their smallness will be established 
later), proportional to the intensity E  play the role 
of small parameters. Assuming   1 2θ α β β ,  
instead of equation (4a) with accuracy up to terms 
of order β we have 

∆α α
æ ö - +÷ç ÷ç+ - -÷ç ÷ç ÷è ø

2
0

2

sin[( 1) ]
=  ,

2
k kk K

A Arr

β φ φ   (14)

and instead of the boundary condition (5a) at  =r R 

α - +¶
-

¶
2 0sin[( 1) ]

=   .
2

k
r A

β φ φ
           (15)

With the same accuracy from (4b) we obtain the 
Laplace equation ∆ 1 = 0θ , and from (5b) – the 
condition for the derivative / rθ¶ ¶  to be zero at 
the hole boundary. Thus, within the framework 
of the considered approximation º1 0θ , i.e., the 
correction θ1, as in the case of relation (13), is 
proportional to β2.

From the form of expressions (14) and (15), it 
follows that 

α α - + 0= ( )sin[( 1) ],r k φ φ

where ( )a r  thus describes the radial dependence of 
the angle α( , )r φ  and represents a bounded solution 
at r ® ¥ of the equation 

α α α

α

æ ö- ÷ç¢¢ ¢+ + - -÷ç ÷ç ÷è ø

¢ -

  



2

2

1 2 1 = ,
2

( ) =  .
2

kk K
r A Arr

R
A

β

β
  (16)

Obviously, at 1k ¹  the value φ0 can be arbitrary. 
At = 1k  expression (2), accurate to terms of order β2 
can be represented as 

+(0) (1)2
0= ,sinW W Wφ

where (0)W  depends neither on  φ0, nor on  ( )rα ,  
and  (1)W  is a functional of the function ( )rα .  
Meanwhile, the functional (1)W  becomes zero 
at 0α º , but this function does not satisfy the 
condition of its extremum. Consequently, (1)W  can 
certainly take negative values, and the minimum 

energy W , as in the case of strong anisotropy 
approximation, is achieved at π±0 = / 2φ , when 

= ( )rα α±  (see Fig. 2).
Let's introduce the following function, which is a 

solution to equation (16) at = 0β , 2 = AKβ : 

( ) =F r

1 2

1 1 2 1 1 2

= ,
k

k k

KQ r
A

K KQ R Q R
A A

-

- + - + -

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
æ ö æ ö÷ ÷ç ç÷ ÷ç ç+÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

  (17)

where Q  — is the modified Bessel function of the 
second kind (the more conventional notation K  for 
this function is not used here to avoid confusion 
with the previously introduced notation for the 
anisotropy constant). Then, due to the linearity of 
equation (16), its solution in the general case has the 
following form: 

α +

2( ) = ( )r F r
AK

β

α α
é ù
ê ú¢+ +ê ú
ê úë û
 0 0( ) 2 ( ) ( )  ,Ar R F r

KAK
β    (18)

where 0( )rα   — is a particular solution of (16) at
= AKβ  and arbitrary value β2.
The first term on the right side of expression 

(18) is due to the inf luence of IMEI at the hole 
boundary and rapidly decreases with increasing r .  
Nevertheless, its contribution becomes dominant 
if -1 2= 0 ( = )b bβ  or = 0k  (resulting in 0α º ). 
Moreover, due to the presence of this term at ¹2 0β  
the magnetization vector's emergence from the 
film plane will be observed at arbitrary values of k, 
including = 0k , i.e., even a uniform magnetization 
distribution will be distorted as a result of the E 
field inclusion. Notably, this edge effect does not 
disappear even when the strong anisotropy condition 
is met 2/K A R . Indeed, in this case, the value 
of ( )F R , according to (17), tends to the limit 1 / 2,  
meaning that the angle α  should reach the value 

2 / 2 AKβ , at the hole boundary, which generally 
significantly exceeds the angles of deviation from 
the plane determined by formula (8). Nevertheless, 
the exponential decay nature of function (17) leads 
to the fact that already at a distance of several 

/A K R  from the hole boundary, the influence 
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of the edge effect becomes imperceptible, and the 
values of angle α sharply decrease.

The asymptotic behavior of solution (18) at r ® ¥ 
is determined by the form of the particular solution 

0( )rα . At the same time, from equation (14), it can 
be concluded that even at moderate values of K  the 
asymptotic behavior of angle α at a large distance 
from the hole is described by relation (8). This 
allows us to set 

0 ,
2
k A
r K

α »

from which instead of (18) we have the following 
approximate solution of equation (16): 

α + -

2
2 3

( ) = ( ) ( ) .
2
k k Ar F r F r
KrAK R K

β β β    (19)

Figure 4 shows the graphs of dependence ( )rα ,  
obtained as a result of numerical solution of 
equation (16) at ±1 2= , = 1kβ β  and various values 
of K , as well as graphs of function (19) at the 
same parameter values. It is easy to see that the 
approximate expression (19) reflects the behavioral 
features of function ( )rα  quite correctly, and the 
accuracy of approximation, as expected, increases 
with the growth of value K . In particular, in the 
case of = 1k  the maximum relative error, which 
is achieved at 1 .4r R» , is 13% at 2 / = 5KR A ,  
but already at 2 / = 20KR A  becomes less than 4%. 
It should be noted that at values of ratio 2 / 20KR A  
not only formula (19) but also relation 4% has 
accuracy no worse than ( ) 1 / 2F R » . This allows 
us to write the following approximate expression for 
the values of angle α, reached at the hole boundary: 

α α + -

2
2 3

= ( ) =  .
22 2

m
k k AR
KRAK R K

β β β    (20)

Despite the fact that relation (20), which represents 
the sum of the first three terms of expansion mα  in 
powers of 1/2K- , becomes valid at rather large values 
of K , it, of course, could not have been obtained 
within the strong anisotropy approximation. We 
should also emphasize that the value mα  cannot be 
identified with the maximum angle of magnetization 
vector exit from the sample plane: for example, 
from Fig. 4 it follows that in the case of = 1k - ,  

2 / = 5KR A  (solid blue curve in the lower graph) 
the values of | |α  at 2r R»  exceed mα  by more 

than  50% (in particular, directly at = 2r R we 
have| | 1 .55 mα α» , since α » 2( ) 0 .049 /R R Aβ ,  
α » - 2(2 ) 0 .076 /R R Aβ ). Nevertheless, due to 
its simplicity, relation (20) may prove to be very 
convenient both for estimating the degree of 
distortion of structures like (6) under the influence 
of an electric field and for experimental verification 
of the theory developed here.. 

From formula (18), it follows that the weak 
field approximation is applicable only under the 
condition | |  .AKβ  The fulfillment of this 
condition together with inequality (7) ensures the 
smallness of each of the three terms in the right-
hand side of formula (20), which eliminates the 
need to impose any additional restrictions. In 
particular, the condition 

| | /A Rβ , which could 
correspond to the smallness of the DMI influence 
compared to the exchange interaction, is actually 
redundant; furthermore, it was not used in any 
way when transitioning from (4a) to equation (14). 
Thus, the applicability domain of the weak field 

Fig. 4. Graphs of the radial part ( )rα  dependence α( , )r φ  of 
the magnetization vector deviation angle from the film plane at 

1 2=β β  (or, equivalently, when the NMMI constants b1 and b2, 
which are proportional to the values β1 and β2, are equal), = 1k ±  
and different values of the absolute magnitude of the anisotropy 
constant K. Values α  are given in units of the dimensionless 
quantity 2 /R Aβ . Solid lines – values α , obtained numerically; 

dashed lines – result of using the approximate expression
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approximation completely contains the applicability 
domain of the strong anisotropy approximation 

 

2 2( / , / )K A K A Rβ , which could serve as 
an argument for abandoning the use of the latter. 
It is clear, however, that within the weak field 
approximation, relations like (9) and (13) can no 
longer be obtained in a transparent form due to the 
more complex dependence of α on r  compared to 
(8). This explains the importance of both considered 
approximations.

5. CASE k = 1

From formulas (9) and (12), valid for large values 
of K , it follows that the inclusion of an external 
electric field leads to a decrease in energy by the 
same factor for all states of the system, except for 

= 1k . At 
 AKβ  the only consequence of this 

effect is the removal of degeneracy by the sign of 
the value k at = 1k ± , while the rest of the energy 
spectrum of the system remains unchanged. With 
increasing value of β the angle values θ at 1k ¹ ,  
according to formula (13), begin to change 
significantly throughout the sample volume, due 
to which  relation (9) can no longer be used for 
quantitative estimates. Nevertheless, it allows to 
qualitatively trace the following important trend: if 
the value of β is large enough that at some 1k ¹  the 
system energy becomes negative, then states with 
k ® ±¥. formally become energetically favorable. 
Physically, this corresponds to the stabilization of 
non-localized quasiperiodic structures [15]), which 
are not considered in this work. Thus, isolated 
inhomogeneities with  1k ¹  cannot represent the 
ground state of the system. However, we will show 
that regarding the case of = 1k  this statement is 
incorrect.

Note that the system of equations (4a), (4b) with 
boundary conditions (5a), (5b) can have two classes 
of solutions for which + 0=θ φ φ . First, α = 0, =θ φ ,  
which, as mentioned above, generally does not 
correspond to the minimum energy (2). Second, 

π±= / 2θ φ  (see Fig. 2), while the angle α, which 
in this case depends only on the distance r  to 
the center of the hole, must be determined from 
equation (4a), which takes the form 

2
2

1 1 sin cos =  .cos2
K

r A Arr

β
α α α α α

æ ö÷ç¢¢ ¢ ÷+ + -ç ÷ç ÷çè ø


 
(21)

Also, due to (5a), we obtain the following 
boundary condition at =r R: 

α α
α

+
¢



2 2
1 2sin cos=  .

2A
β β

              (22)

Since at a large distance from the hole 
boundaries, the relation | | 1α  , must hold, from 
(21) we conclude that the asymptotic behavior of 
the function ( )rα  at r ® ¥ is described by formula 
(12). Obviously, in this case, the averaged energy 
density Φá ñ far from the hole must also be described 
by formula (12). The integral (2) turns out to be 
divergent, therefore, the region of large r  will give 
the determining contribution to the system energy 
W , and the sign of the energy will depend on the 
sign of the coefficient in expression (12) for Φá ñ: if 

| |> 2 ,AKβ                          (23)

then  W ® -¥, so that the state with  = 1k  
becomes energetically favorable compared to  = 0k  
(we emphasize that at = 0k  the finite value W  is 
also negative due to the influence of edge effects). 

Fig. 5. Values of angle αm of magnetization vector deviation 
from the film plane at the hole boundary depending on the 
value of β2, proportional to external field strength, in case = 1k  
(typical magnetization distribution for this case is shown in Fig. 
2) at different values of absolute anisotropy constant K. Upper 
and lower graphs differ in the ratio between values β1 and  β2  
(or, equivalently, between the values of NMIE constants b1 and b2, 

to which the values β1 and β2 are proportional)
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However, the question of the very existence of a 
solution to equation (21) under boundary condition 
(22) remains open.

Fig. 5 shows the graphs of angle = ( )m Rα α  
dependency at the hole boundary on the value of 
β2 at different values of K  for cases 1 2=β β  and 

-1 2= 1 .01β β . These dependencies were obtained 
through numerical minimization of energy (2) 
with respect to function ( )rα  considering equality 

π+= / 2θ φ , although numerical solution of 
equation (21) under condition (22) leads to the 
same results (in practice, the choice in favor of 
minimization algorithm was determined by its 
ability to obtain magnetization distribution even 
in cases when solutions of corresponding Euler-
Lagrange equations formally do not exist). The 
presented graphs show that under condition 

-1 2= 1 .01β β  structures of the studied type are 
observed at arbitrary values of β2, and at ® ¥2β  
the values of mα  reach some limit less than / 2π .  
Thus, for any predefined value of constant K  such 
a large electric field strength E , can be selected 
that condition 2| |= 0 .01 > 2 AKβ β  wi l l be 
satisfied, and the state with  = 1k  will become 
fundamental for the system (it was to demonstrate 
this circumstance that example -1 2= 1 .01β β  was 
considered instead of the similar example -1 2=β β , 
where dependencies in Fig. 5 remain practically the 
same, but º 0β ). Conversely, in case 1 2=β β  angle 

mα  approaches  / 2π  at some finite values of 2mβ  of 
value β2, depending on constant K  (for example, 
at 2 / = 2 .5KR A  we have »2 / 3 .1m R Aβ ), and at 

2 2> mβ β  the forming magnetization distribution 
no longer has the character of an isolated 
inhomogeneity. Calculations for values 2 /KR A in 
the range from 0 .25 to 10 with a step of 0 .25 allow 
obtaining the following empirical relation, which is 
satisfied with accuracy not worse than 5%:

2 = 2  .m AKβ                        (24)

Accordingly, the state with  = 1k  becomes 
fundamental for the system if condition 

2< < 2 ,AK AKβ

is met, i.e., field strength E  must take values from a 
known interval.

A significant part of the observations described 
above, including relation (24), is difficult to explain 

based on the analysis of expressions (21) and (22) 
without additional assumptions. Nevertheless, they 
receive a clear interpretation within the framework 
of a simplified model, which is discussed below.

6. MODEL OF A STRAIGHT BOUNDARY

From the analysis conducted above, it is clear 
that the possibility of existence of structures 
corresponding to the value = 1k , is determined 
mainly by the feasibility of boundary conditions 
of type (22). To study this question in more detail, 
note that in the vicinity of the hole boundary, the 
presence of curvature of this boundary should 
practically not affect the magnetization distribution. 
Therefore, instead of a sample containing a circular 
hole (see Fig. 1), we can consider an approximate 
model in which the hole boundary is straight, i.e., 
the magnet fills a half-plane. Mathematically, this 
corresponds to the limiting transition R ® ¥,  
where the finite value =x r R-  plays the role of a 
Cartesian coordinate in this case. Thus, instead of 
(21), we obtain the following equation: 

= sin cos  .K
A

α α α¢¢                  (25)

While the form of the boundary condition (22), 
which must be satisfied at = 0x , remains unchanged.

Equation (25) has the following integral: 

2 2 = const .sin
K
A

α α¢ -               (26)

For a positive value of the constant in the right-
hand side of relation (26), the value | |α  will grow 
indefinitely at x ® ¥, which corresponds to 
the formation of a non-localized structure with 
a quasi-periodic distribution of magnetization. 
For a negative value of the constant, relation (26) 
describes oscillations of the angle α  around the 
position / 2π , which in the presence of "easy-plane" 
type anisotropy cannot correspond to the energy 
minimum. Therefore, in the case of an isolated 
magnetic inhomogeneity, the discussed constant 
must be equal to zero, from which, taking into 
account condition (22), we have (the "minus" sign 
before the second term does not affect further 
reasoning and is chosen here for definiteness): 

α α- - +2
1 2 2( ) 2 sin = 0 .sin m mAKβ β β    (27)
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Equation (27) is generally quadratic with respect 
to sin mα , and the existence of at least one root not 
exceeding 1 in absolute value is a condition for the 
existence of a magnetic structure with  = 1k . In 
particular, in the degenerate case 1 2=β β  the single 
root of equation (27) is determined by the relation 

α 2sin = / (2 ) .m AKβ

Consequently, 2| |< 2 AKβ , which fully agrees 
with the empirical formula (24). Moreover, when 
the value β2 reaches its critical value, the angle mα  
becomes equal to / 2π± , which also corresponds to 
the pattern observed in Fig. 5. 

The diagram in Fig. 6 shows combinations of 
values β1 and β2 (recall that 2

1 1= sb M Eβ , 2
2 2= sb M Eβ ),  

at which the above requirements for equation (27) 
are met (these combinations correspond to all 
points lying between the two red curves). It is easy 
to see that depending on the relationship between 
the NMEE constants b1 and b2 there are three 
different scenarios for the modification of magnetic 
inhomogeneity with increasing intensity E  of the 
electric field (which causes proportional growth 

of β1 and β2). First, if these constants are values of 
different signs b1 /b2 < 0), then even at E ® ¥ the 
magnetic inhomogeneity remains solitary. In this 
case, the value of angle α at the sample boundary, 
according to (27), tends to the limit 

α - 1 2| | = arcctg /  .m b b

In the case of 1 2b b» -  we have| | / 4mα π» , 
which agrees well with the position of the asymptote 
of the corresponding graphs in Fig. 5. Second, if 

1 20 < / < 2b b , then when the value 1| |β  reaches 
2 AK  the angle mα  becomes equal to / 2π±  and 
further increase in intensityE  while maintaining 
the inhomogeneity structure becomes impossible. 
Third, if 1 2/ > 2b b , then the maximum value  
of E , at which a solitary inhomogeneity can still 
exist, is  determined by the relation 

+1 2 2= /  .AKβ β β

At this value of E  both roots of the quadratic 
equation (27) become equal to 

α 2sin = / ,m AKβ

while with further intensity increase, these roots 
become complex.

Summarizing the above, we note that the value 
of angle mα , which is achieved at the maximum 
allowable intensity E , in all cases can be expressed 
only through the ratio of NMEW constants b1 /b2: 

	α π

ìï -ïïïïíïïï -ïïî

1 2 1 2

1 2

1 2 1 2

arcctg / ,        / < 0,  
| |= / 2,                               0 < / < 2,

arcctg / 2,   / > 2 .
m

b b b b
b b

b b b b
	 (28)

We also present an explicit expression for the 
values E , at which structures of the studied type  
can exist: 

     

ì ¥ïïïïïïïïíïïïïïïï -ïî

1 2

1 22
1

1 22
2 1 2

, / < 0,

2 , 0 < / < 2,
| |

| |< = , / > 2 .
( )

s

max
s

b b

AK b b
M b

AKE E b b
M b b b

                     

     

                

(29)

Fig. 6. Diagram of parameter values β1 and β2 (proportional to 
NMEE constants b1 and b1 respectively, as well as electric field 
intensity E ), at which magnetic structures corresponding to 

= 1k , exist (dark gray area), or exist and represent the ground 
state of the system (light gray areas). Red and blue lines show 
the boundaries of the regions. The dashed line corresponds  

to equality 1 2= 2β β
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A similar condition (23), under which the state 
with  = 1k  becomes energetically favorable, can be 
written as follows: 

2
1 2

2| |< =  .
| |min

s

AKE E
M b b+

           (30)

Thus, if the material parameters of the magnet 
are known, formulas (29) and (30) allow calculating 
the range of intensity values E , at which the ground 
state of the system corresponds to the magnetization 
distribution similar to that shown in Fig. 2. These 
values correspond to points belonging to the light 
gray areas in Fig. 6 (blue lines on the diagram 
show the boundaries | |= minE E , and red lines show 
| |= maxE E ). From this, it can be seen that the 
discussed ranges exist at arbitrary values of the ratio 
1 2/ 1b b ¹ - , however, at 1 2/ 2b b »  they become 

quite narrow.
It is necessary to separately address the fact 

that the radius of the hole R  does not explicitly 
appear in either formula (29) or (30). From this, 
one might incorrectly conclude that the obtained 
results remain fully valid even at = 0R , i.e., in 
the absence of a hole. It is clear, however, that at

/R A K  the limiting transition R ® ¥ ,  
which underlies the derivation of relation (29), 
loses its meaning. Nevertheless, the formation of 
structures corresponding to = 1k , is fundamentally 
possible in films without perforations. Indeed, in 
the case of a sample with such geometry, equation 
(21) can also have a non-trivial solution, which 
instead of (22) will satisfy a condition of the form 

( = 0) = / 2rα π± . The asymptotic behavior of this 
solution at r ® ¥, as in the presence of a hole, 
will be determined by relations (12), and therefore, 
condition (30) remains valid, under which the 
inhomogeneity becomes energetically favorable. 
This essentially implies that the appearance of 
vortex-like inhomogeneities is not directly related 
to the presence of perforations: when a field of 
sufficient strength is applied, similar structures can 
equally arise both in the hole region and far from 
it (the similarity of structures of these two types 
is further enhanced by the fact that, according 
to formula (28), the value of angle α  at the hole 
boundary can also in some cases approach / 2π± ).  
Note, however, that in the absence of a hole (or 
far from it), the nucleation of inhomogeneous 
structures is always associated with spontaneous 

breaking of the system's translational symmetry, 
therefore the localization of a vortex-like structure 
in the hole region is generally much more likely. 
In this sense, perforations should be considered 
as distinctive crystallization centers artificially 
introduced into the system; it is reasonable to expect 
that in their presence, f luctuation mechanisms 
of inhomogeneous structure formation outside 
the holes should be either significantly weakened 
or completely suppressed. Another significant 
disadvantage of vortexlike inhomogeneities forming 
outside the holes is that during slow removal of 
the external field, they do not transition to a state 
of type (6) while preserving the value of = 1k , but 
simply collapse. This explains the low interest 
in structures of this type within the framework  
of the present study.

7. CONCLUSION

Despite the purely theoretical nature of this 
work, the results obtained allow for potentially 
solving a number of important practical tasks 
related to the control of inhomogeneous magnetic 
structures. First, the fact that under the influence 
of a uniform electric field, the magnetization vector 
begins to deviate from the film plane can be used 
to identify the current state of the system. Indeed, 
the calculations show that the spatial distribution of 
the normal component of the magnetization vector, 
which appears when the field is switched on, depends 
not only on the value of k, which determines the 
topology of the vortex-like structure, but also on the 
orientation of the structure in the plane. Moreover, 
the value of k  be determined by the maximum 
angle mα  of the magnetization vector deviation at 
the hole boundary: the relationship between these 
quantities is practically linear. Since the influence 
of NMEE does not change the symmetry of 
magnetic structures, after the electric field pulse 
ends, they will relax into a state that completely 
coincides with the initial one, which ensures high 
reliability of the described approach to identifying  
the system state.

Secondly, the provided estimates of magnetic 
structure distortion by the electric field allow us to 
judge the characteristic magnitude of field strength 
at which the flexomagnetoelectric effect becomes 
noticeable. Thanks to this, in particular, it becomes 
possible to select such materials in which the control 
of vortex-like structures by means of an electric field 
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is not associated with excessive energy consumption, 
while sensitivity to parasitic external f ields  
remains low.

Third, the change in the topology of the ground 
state of the magnetic structure in fields of certain 
magnitude opens up possibilities for implementing 
the following scenario. Let's assume that initially 
the magnetization distribution is close to uniform, 
corresponding to the value = 0k . As a result of 
rapid field application, the system will transition 
to a new ground state with  = 1k . If after this the 
field strength is gradually reduced to zero, the 
system may remain in a state with  = 1k , which 
will already be metastable, but long-lived due 
to topological reasons [21]. Such possibility of 
switching the system state through pulse exposure 
indicates the prospects of using perforated films as 
a basis for creating rewritable memory. Note that 
in practice, pairs of closely spaced holes should be 
used to solve this problem [21]: only in this case the 
forming magnetic inhomogeneities become well 
localized in space. Moreover, there is no need to 
directly affect both holes in the pair simultaneously: 
as the analysis of a similar scenario for the case of 
magnetic field control shows [25], when one of the 
structures is transferred from a state with  = 0k  to a 
state with  = 1k  the second structure associated with 
it spontaneously transitions to a state with  = 1k -  
under the influence of exchange interaction. This 
becomes particularly important due to the fact that, 
unlike the electric field of a charged filament, which 
allows stabilizing structures with arbitrary value of 
k  [20], a uniform electric field can only stabilize 
the state with  = 1k , but not with  = 1k - . Such 
lack of control flexibility, however, should be fully 
compensated by the relative simplicity of creating 
uniform fields.

Despite the attractiveness of the approaches 
described above, it must be acknowledged that 
their practical implementation may prove quite 
difficult. The localization of vortex-like structures 
of the studied type on nanoscale perforations is 
only possible in materials with exceptionally strong 
easy-plane anisotropy (for example, 5NdCo  [23]), in 
which the flexomagnetoelectric effect is generally not 
observed. A solution to this situation could be either 
artificial creation of the required anisotropy, for 
example in garnet ferrite films, or nanostructuring 
of magnetic uniaxial films to enhance NMEW. 

Either way, this challenge may prove quite serious 
for modern materials science.
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