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Abstract. This paper focuses on describing energy transfer by coherent thermal excitations in dielectrics, 
metamaterials, and nanoscale systems. Using the second quantization technique, a general formalism 
of thermal conductivity is proposed, considering both the model of free phonons in heat transfer and the 
formation of coherent Schrödinger states of the oscillator system. A general form of the time-dependent 
problem solution with arbitrary initial conditions is obtained. An exact solution is analytically derived 
for the heat flux carried by coherent phonons created by an electronic wave packet produced by a laser 
pulse effecting a nanomaterial. The obtained exact form of solution in quadratures provides a basis 
for quantitative description of coherent phonons with various initial conditions, as well as taking into 
account thermal distributions, which allows for evaluation of thermal properties of nanocrystals. It is 
shown that under certain ratios of constants characterizing the interaction of phonons with the electronic 
subsystem, a time-independent heat flux can be established in the crystal.
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1. INTRODUCTION

Theoretical and experimental studies of recent 
years have shown that the transfer of thermal 
energy in dielectrics and metamaterials at nano- 
and microscale often has a quantummechanical 
nature of coherence. The quantum nature of energy 
transfer leads to new physical effects, such as phonon 
coherence, thermal superconductivity [1], thermal 
echo, ballistic resonance, and others.

In the classical approach to describing thermal 
processes, based on phenomenologically introduced 
relatios that define transport coefficients, thermal 
conductivity in solids is determined by Fourier's 
law. Within this hypothesis, a linear dependence of 
heat flows on thermodynamic parameters is usually 
postulated [2, 3]. In kinetic theory, it is assumed 
that an set of moving quasiparticles (Bose or Fermi 
type) [4] carries heat. The motion of quasiparticles 
(evolution of their distribution function) is described 
both by the Boltzmann transport equation in the 
quasi-classical case and by a more rigorous apparatus 
of temperature Green's functions. Free quasi-
classical motion of quasiparticles corresponds to the 

ballistic mode of heat transfer, which is realized in 
harmonic crystals. The influence of nonlinearity 
and lattice defects, interatomic interactions on heat 
exchange is modeled by interactions (collisions) of 
quasiparticles; in particular, such effects arise in 
systems like planar semiconductor nanostructures 
during the interaction of optically excited excitons 
with acoustic phonons [5]. As a result of collisions, 
quasiparticles can perform Brownian motion or 
Lévy walks. The former corresponds to the classical 
Fourier mode of heat exchange, while the latter 
corresponds to anomalous heat exchange [6-8]. In [9], 
it is shown that the quasiparticle distribution function 
is a Wigner function rather than a Planck function, 
as for free phonons. The equation describing the 
evolution of the Wigner function for harmonic crystals  
was obtained by Milke [10], and generalization to 
the weakly anharmonic case was made in [11].

Coherent heat transfer, including minimal 
thermal conductivity and Anderson localization, has 
been intensively observed in various nanophononic 
crystals. Nanophononic crystals are artificial 
materials in which the wave nature of lattice 
vibrations is explicitly manifested in the thermal 
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properties of these materials [12-14]. Phonon 
coherence has been established as the main source 
of various unique thermal transport phenomena 
[12-14], such as coherent heat transfer and phonon 
confinement effect. Recent studies have found 
that phonon coherence has a significant impact 
on phonon-phonon scattering, phonon modal 
correlations, and interfacial phonon propagation, 
which differ from the picture of "pure" particles 
[15-17].

In paper [18], as well as in [5], the connection 
between Bloch oscillations and longitudinal optical 
phonons is investigated, for example, in a narrow-
well superlattice In0,53Ga0,47As/In0,52Al0,48As, where 
a strong increase in the amplitudes of coherent 
phonons was observed when Bloch oscillations were 
subsequently tuned into resonance with various 
optical phonon modes [18]. Most manifestations of 
thermal phonon coherence in experimental studies 
are based on measuring thermal conductivity and 
its characteristic changes [13, 14]. For instance, 
the existence of coherent phonons is indirectly 
evidenced by the experimental observation of non-
monotonic dependence of thermal conductivity 
on the superlattice period [15, 16, 17, 19, 20]. 
In study [14], phonon excitation coherence is 
investigated by calculating thermal conductivity 
κ  based on the Green-Kubo approach as a heat 
flux autocorrelation function ( )S t , assuming that 
the expression for specific heat capacity per mode 
reduces to classical classC , if the correlation term 
(phonon number autocorrelation), accounting for 
the number of phonons in a given mode, simply 
equals λ λN T= / ω , where T   — is temperature 
in the energy scale. In the case of predominant 

"particle-like" behavior, the correlation factor C ( )or t  
follows an exponential decay law with lifetime ( )pτ  
(particle), in accordance with the usual single-mode 
relaxation time approximation 

λ
- ( )/Cor =  .

pte τ

As the coherence effect increases in describing 
phonon decay, a correction is considered here that 
includes the modal coherence time c

λτ  (coherent) as 
follows: 

	 λ
λ

é ùé ù ê úê ú -ê úê ú ê úë û ë û

2

( ) 2
Cor = exp exp 4 ln(2)  .

( )p c
t t

τ τ

It was expected that coherence would have a 
decisive effect on phonon decay and its propagation, 

phonon decay should follow a generalized law, as 
shown in [14] for the thermal conductivity coefficient 
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However, experimentally obtained dependencies 
of accumulative classical and quantum thermal 
conductivity for Tl3VSe4 at temperatures of 50 and 
300 K show good agreement between molecular 
dynamics (MD) calculations and experiment for 
high temperature, when the classical limit "works," 
while for temperature 50 K, when the expected 
quadratic (Gaussian-type) decay in calculations 
shows significant divergence from experiment. The 
evaluation of this generalized thermal conductivity 
was implemented by introducing wavelet 
transformation of MD values, which provides 
phonon excitation coherence time as well as their 
lifetime.

Coherent effects in heat transfer also manifest 
themselves in a recently emerged direction –
semiconductor optomechanics based on the use of 
exciton polaritons [21, 22]. Polaritons are a mixture 
of photons and material excitations [5]. In study 
[5], the interaction of optically excited excitons 
with acoustic waves in planar semiconductor 
nanostructures was theoretically investigated. This 
interaction leads to strong nonlinearity in sound 
propagation in quantum well arrays, or in planar 
semiconductor Bragg microresonators supporting 
exciton-polariton modes.

Taking into account the constant of nonlinear 
optomechanical interaction between optically 
pumped excitons and propagating acoustic waves, 
calculated in study [5], we will show that coherent 
states during thermal transport indeed form into 
a wave packet. In the coordinate representation, 
these states are nothing but an oscillator with 
a displaced center. These coherent states with 
Poisson distribution by the number of phonons in 
a given mode play an important role and lead to 
characteristic time dependencies of heat flows. At 
certain phonon decay times in the frequency band 
associated with this constant, a non-decaying heat 
flux (spectral flux density in the frequency band) 
can be formed over time. Such behavior of heat flux 
resembles superthermal conductivity considered 
in works [22-27], for which the term "thermal 
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superconductivity" is sometimes used in literature. 
Semiconductors, cubic crystals of boron arsenide 
(BAs), as recently discovered [22-25], possess 
ultrahigh thermal conductivity compared to most 
conventional materials and show great promise for 
thermal management in electronics [25-27].

2. HAMILTONIAN DESCRIBING 
COHERENT STATES OF PHONONS

As is known, elastic vibrations of a crystal lattice 
in the classical limit can be considered as a set of 
plane waves with wave vector k  and corresponding 
frequency

π π= k / 2 = / 2cν ω

(where ω — angular frequency) and polarizations, 
for example linear, λ ( = 0,1,2,λ ). In quantum 
description, assuming wave amplitude quantization 

kn λ   — it is a set of kn λ phonons with momenta 
p = k  and energies k k=ε ω  with corresponding 

distribution function of phonon numbers in  
a given mode λk : 

λ
-

Tk
n

e
k h /

1= ,
1ω

where T  is temperature in energy scale: 

= ,BT k T 

Bk   — Boltzmann constant, T    — temperature 
in degrees. The corresponding creation and 
annihilation operators, †ˆ

kb λ, ˆ
kb λ, of a phonon in a 

given state kn λ  are defined through generalized 
coordinate operators ˆ

kQ λ and momenta k̂P λ as 

λ
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where m  is the mass of crystal lattice ion. The 
corresponding commutation relations for them, 

λ λ λλ δ δ¢ ¢
é ù
ê úë û
b b†

k'kk' k
ˆ ˆ = , are determined by known 

commutation conditions for coordinate and 
momentum operators (see Appendix for details). 
Thus, the displacement vector operator of the nth 
lattice ion ξn tˆ (r, )  is defined as 

	 ξn tˆ (r, ) =

	
( )λ λ λλ

λ
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k k
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Here 

λ λ
×i

k k
1(r) =A e e
N

k r

— a coordinate part of the harmonic (mode)  
amplitude λk , 

λ λ
-i tk

k kb t b eˆ ˆ( ) = ,ω

λ λ
i tk

k kb t b e† †ˆ ˆ( ) =  .ω

The corresponding Hamiltonian describing free 
oscillations of the crystal lattice has the form 
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Here γ   — is the lattice "stiffness coefficient" 
which is determined by the interaction potential of 
neighboring ions: 

2

2
= ( ) .U x

x
γ

¶

¶

In an isotropic medium, the deformation potential 

ˆ= SpdW γ ξ-

determines the energy interaction operator of an 
atom (ion, or any defect having electronic structure) 
with acoustic phonons [28]: 

	
λ

γ
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å
k,
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m ω
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Here operators †ˆ îfc c σσ¢   — are creation and 
annihilation operators of electrons in specified, for 
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example excitonic, states ,i fσ ση η ¢  are operators 
of fermion type. Here vector | iση ñ denotes the 
initial state of an electron in excitonic state, 
which includes electron spin with projection σ .  
Phonons, whose number in a given mode λk  is 
denoted as λ

in( )
k , interact with the electron in the 

specified state. Then the initial state of the system 
"exciton + phonon" will be described as σλ

i
iki n( )= η .  

During interaction with phonons, described by 
the electron-phonon interaction operator êphV ,  
the atomic system, or "electronic medium", 
transitions to the final state f  (or σλ ¢

f
ff n( )

k= η ).  
In this case, we denote the set of all quantum 
numbers characterizing the electronic system as σ¢fη  
a coordinate part their spin state ¢σ , and the state of 
the phonon system with the number of phonons in a 
given mode λk  as λ

fn( )
k .

As a result of this interaction, one or more 
phonons in a specific polarization state and 
with specific momenta are emitted or absorbed 
by the "electronic medium." The difference in 
momentum and polarization of the "electronic 
medium," initiated by the emission or absorption 
of phonons, essentially determines the polarization 
characteristics of the emitted or absorbed phonons. 
This process is described by the differential 
transition probability, ( )a

fidw  (for absorption) and 
( )e
fidw  (for emission). It should be emphasized that, 

generally speaking, the initial and final excited 
states of the "electronic medium" are not stationary. 
They are not only proportional to the corresponding 
time-oscillating factors, 
	

µ - µ - i i f fiE t iE texp( / ), exp( / ),η η

but also are relaxing to their corresponding ground 
states with relaxation frequencies iγ  and  fγ  or so-
called relaxation probabilities per unit time: 

γñ µ - -| exp( / ),i i iiE t tη

γñ µ - -| exp( / ),f f fiE t tη

which determine the spectral line width. Taking 
into account the relative smallness of the interaction 
constant between the electronic system and lattice 
vibrations, this interaction can be consistently 
described using perturbation theory methods. 
According to the general formulas of non-stationary 
perturbation theory with explicitly time-dependent 
perturbation, the probability ( )fiP t  of transition 

from the initial state i  of the phonon system + 
"electronic medium" to the final state f  under the 
influence of perturbation acting in the time interval 
[0, ]t , can be represented as an expansion in terms 
of contributions accounting for single-, two-, three-
phonon, etc. transitions.

For a single-phonon transition accompanied 
by emission (e), or absorption (a) of one phonon 
characterized by a set of quantum numbers

{ }π λº kk, ,ρ ω , the probability of this process is 
determined by the following formula: 

π π
¢ ¢-¢ +

i t i te ak k
p pV t V e V e( ) ( )ˆ ˆ ˆ( ) = ( ) ( ) ,ω ω      (4)
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The description of the interaction process between 
phonons and the electronic system with polarization 
due to the deformation potential is carried out 
taking into account both the contribution of free 
thermal oscillations of the crystal, see formula (2), 
and the electronphonon interaction itself: 

λλ
λ
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The matrix elements á ñf eph iV̂| |η η , calculated 
for the initial and final states of the electronic 
system, can also include effects due to interaction 
with exciton polarization and described in detail 
in [5]. Here, the elastic interaction constant γ  
should be replaced by the constant Ξ, which, in 
addition to the deformation potential constant γ ,  
approximately equal to 10 eV, also contains 
the contribution of the polarization potential 

P 2| |ε , where πΞ E2= 4 /ε ω , P  — is the exciton 
polarization amplitude, E  — is Young's modulus. 
Calculation of matrix elements f eph iV̂η η  leads 
to a Hamiltonian describing lattice vibrations taking 
into account the influence of the electronic system 
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on the phonon system, for example, considering 
excitonphonon interaction: 

{ }}

λ λλ
λ λ

λ λλ

λ λ

Λ

Λ Ξ

πγ
Ξ γ

ì æ öïï ÷ç + -÷í ç ÷÷çï è øïî
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E

ω

ω

ω

 

  (7)

In its form, the description of the phonon 
system using Hamiltonian (7) coincides with the 
description of optical fields interacting with matter 
(electronic system). For the latter, it is shown that 
the most acceptable basis is not the basis of "Fock" 
states with a definite number of photons in a given 
mode and undefined phase, but the basis of coherent 
states, which, unlike "Fock" states, has a variable 
number of particles (photons in the optical sense) 
but a definite phase [29]. (See Appendix for more 
details.)

3. COHERENT STATES OF PHONONS

Let's consider in more detail the obtained 
Hamiltonian (7), or rather its component 
corresponding to the mode λ(k ): 

{ }λ λ λ λλ λΛ
æ ö÷ç + - +÷ç ÷÷çè ø



† †
k k k kk k

1ˆ ˆ ˆ ˆˆ =  .
2k b b b bω 	 (8)

For its diagonalization, we will perform a unitary 
transformation – one that connects the original 
(old) creation/annihilation operators of a particle in 
the oscillator state with new operators of creation 
and annihilation as follows: 

λλ λ

λ λ λ

*+

+

b B u

b B u

† †
kk k

k k k

ˆ = ,
ˆ =  .

                     (9)

where λuk  is some generally complex function. They 
also satisfy the bosonic commutation relation: 

λ λ λλ δ δ¢ ¢
é ù
ê úë û
B B†

k'kk' k =  .

Substituting expression (9) into Hamiltonian (8) 
and performing diagonalization, we have 
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For this, the function λuk  must be purely real: 

λ
λ

Λ


u k
k

k
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It is known that such a linear transformation of 
creation/annihilation operators (11) is carried out 
by a unitary transformation operator 

ˆˆ = DU e  (where 
†ˆ ˆ=D D  — is a Hermitian operator): 

λΛ- +


D D

k
B e be b

ˆ ˆ kˆ ˆ= = ,
ω

                 (12)

where indices λ(k ) for operators †b̂  and  b̂ are 
omitted for now. Since states with different ( λk ) are 
independent, orthogonal, we can, without loss of 
generality, omit these indices to avoid cumbersome 
notation. We seek the operator D̂ in the form 

†ˆ ˆˆ = ( ),D b bα -

with real function 
λΛ

α
 k

k=  .
ω

The unitary transformation operator in general 
has the form 
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ˆ( ) =  .

b b
U e

α α
α
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It transforms the "old" vacuum function = 0kn λ  
into the corresponding "new" vacuum: 

λ λν α αU nk k
ˆ= 0 = = ( ) = 0 =

	 α α
λ

-b be n
†ˆ ˆ( * )

k= = 0  .        (13)

Taking into account the Baker-Campbell-
Hausdorff equality, we obtain 
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We also assumed that ˆ = 0 0b n º . The obtained 
superposition of oscillator states with different 
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numbers of phonons in a given mode represents a 
coherent state, similar to Glauber photon states. 
The concept of coherent states was introduced by 
Schrödinger in 1926. They are eigenstates of the 
obtained Hamiltonian (13) and correspond to energy 
taking into account interaction with the electronic 
subsystem: 

	
( )λ

λ λ
Λ

ε α
æ ö÷ç + -÷ç ÷÷çè ø





k
k

2
k

k k
21=  .

2
ω

ω 	 (15)

The following expressions are valid for them (see 
[29] for details): 
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which correspond to the eigenvalue of energy (15), 
where the average number of phonons in the coherent 
state corresponding to the given mode equals 

	
λ λ λ
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and the distribution function for the number of 
phonons in the given mode corresponds to the 
Poisson distribution (see Appendix) 
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λ

-
n
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W n e

n
kk

k ( ) =  .
!                (18)

Taking into account (16), (17), and that the 
interaction constant itself for the given mode λΛk  
is still a complex function of frequency (7), the 
obtained coherent states have a specific character 
and depend on the frequency of the propagating 
oscillation mode. Here 

λ λ
α µ

k

n 2
k k 3

1=  .
ω

4. EXACT SOLUTION  
OF THE TIME-DEPENDENT PROBLEM 

OF PHONON INTERACTION WITH 
ELECTRONIC SUBSYSTEM. ENERGY 

FLOW

Let's  consider the situation when the 
optomechanical interaction between optically 
pumped excitons and propagating acoustic waves 

contains an explicit time dependence due to 
polariton generation of excitons under laser pulse 
impact on the nanostructure. Then 

	

λ λΛ Ξ
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k
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 The Hamiltonian of such a system will be 
rewritten accordingly as 

	
{ }λ λ λ λλ λΛ
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We consider the solution for each oscillation 
mode independently. In this case, we need to solve 
the time-dependent Schrödinger equation: 
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As in [30], we will seek the general form of the 
solution as 
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where λΨ -¥k ( )  — is the wave vector of the system 
in the initial state before the electronic perturbation 
affects it, ( )tα , t( )β , ( )tγ   — are the sought-after 
time functions. Substituting (21) into (20) and 
taking into account the following commutation  
relations [30]: 
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we arrive at the equation (for each mode λk, )  
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Arranging the coefficients for combinations of 
creation/annihilation operators in the given mode, 
we get 

	
λ

λ λ λ λ λ
λ

α γα
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Equating the coefficients for corresponding 
combinations of creation/annihilation operators in 
the given mode on the left and right, we arrive at 
a system of equations for determining the sought 
functions ( )tα , t( )β , ( )tγ , which is general for various 
initial conditions:

1) for coefficients at operator λλb b†
kk

ˆ ˆ , we have the 
equation

λγ i tk k( ) = ;ω

2) for coefficients at operator λbk̂ , we have the 
equation
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3) for coefficients at operator λb†
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ˆ , we have the 
equation 
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4) for free terms we have the equation 
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Thus, we arrive at a system of equations that 
determines the general form of the solution to the 
time-dependent problem: 

	

λ

λ
λ λ λ

λ
λ λ

λ
λ λ λ

λ

γ
Λ

Λ
α α

α

-

-

+

- - -















t i
i t

t i t

i t
t i t

C t it t t i
C t

k k

k
k k k

k
k k k

k
k k k k k

k

( ) = ,
( )

( ) ( ) = ,

( )
( ) ( ) = ,

( )
( )( ( ) ( ) ) =  .

( ) 2

ω

β ω β

ω

β β ω ω

	 (25)
 

From here, we obtain the general form of solutions 
for the desired coefficients that completely define the 
wave function (wave vector) at any moment in time: 
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Next, we consider a possible solution to the 
problem that corresponds to experiments of type 
[18], where coherent superposition of electronic 
states is obtained as a result of ultrashort laser 
pulse impact on the electronic system. Before the 
laser field impact, the system was initially in a 
vacuum state for all modes λ λ

Ψ -¥k k( ) = 0  . Initial 
conditions can be taken in the form

λ
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α -¥
-¥
-¥C
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β                         (27)

Let us consider, for example, the evolution of 
a phonon "wave packet" appearance of which is 
due to interaction with an electronic wave packet 
generated by the exciton component of the polariton, 
and described by the matrix element in (19) 

f i ift c c t†ˆ ˆ( ) ( )η η , which is a temporal signal ( )tΛ  of 
"electron-phonon interaction" in the form of function 
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k k 0
( ) = ,

t
t e                      (28)

Then, using the obtained general expressions (28) 
for coefficients λC tk ( ) , λα tk ( ) , λ tk ( )β , λγ tk ( ) , we get 
explicit time dependencies: 
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Taking into account the initial conditions (27), 
(28), the wave function can be written as
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It is easy to show that the wave vector 
normalization condition with the obtained 
coefficient values (29), (30) is fully satisfied 
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Then the thermal energy flux carried by phonons 
in coherent states is defined as: 
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where cs is the speed of sound in the crystal (phase 
velocity for the given mode): 

k
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ω

Considering the normalization condition (32), 
the spectral density of thermal energy flux will be  
equal to 
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Fig. 1. Total energy flux as a function of time t t= / τ  and inverse 
decay time Dx = ω τ . At 2x   maximum flux is observed and 

there is no flux decay over time

For the time interval π   =  2 /       <  T tω τ  the 
flux density will have the form
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For the interval ® ¥t<τ  we have 
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Then the total quantum-mechanical energy flux 
carried by coherent phonons, without considering 
the thermal factor, is determined as the integral 
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Taking into account the expression for sound 
velocity, 
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the complete expression for the energy flux will have 
the form 
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The indicated dependence of the total energy flux 
on the combination of internal crystal characteristics, 
such as the Debye frequency Dω  and coherence 
time τ, are shown in Fig. 1. It is clearly visible that 
at certain ratios of these parameters, specifically 

Dx = 2τω , the magnitude of the total energy 
flux does not decay with time. Taking into account 
those indicated in work [1] for boron arsenide 
(BAs) Debye frequencies of acoustic phonons  

D 12 .8ω  THz and characteristic coherence times  
-



1310τ  s, we see that they fit into the specified 
estimate, which can be associated with the 
establishment of superthermal conductivity regime 
[1,24-27,31,32]. In paper [32], the dynamics of 
coherent optical phonons in tellurium after intense 
femtosecond laser pulse exposure is studied. 
The main mechanism of anomalous thermal 
phenomena in the material, up to "nontemperature" 
phase transition, is considered to be the so-called  
DECP (Displacive Excitation of Coherent 
Phonons). It is shown that the time required for 
a carrier to diffuse over one absorption length  
(50 nm) is about 600 fs -× 13= 6 10  s, characteristic 
frequencies at which resonant thermal conductivity 
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Fig. 2. Spectral density of flow taking into account the equilibrium 
Planck distribution. Here t t= / τ , x = ωτ . At a given phonon 
relaxation time, there is a resonant frequency *

 3 / 2ω τ , when 
the spectral density of flow does not decay with time (superthermal 

conductivity)

effects are observed are 3-3.6 THz. Our estimate 
of the parameter x = τω  for this system is  
x = = 1 .8τω –2.16, which corresponds to the 
nondecaying energy flux shown in Fig. 1.

Moreover, to avoid using reference values of 
the speed of sound in crystals or Debye frequency 
obtained for macroscopic materials when evaluating 
the behavior of nanoscale objects, one can use the 
microscopic value of the Debye frequency as the 
maximum possible frequency of harmonic excitation 
propagation, corresponding to the minimum 
wavelength equal to two lattice constants a of the 
specific nanocrystal: 
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in our case, the interaction constant instead of γ   
will be Ξ.

5. COHERENT HEAT FLOW  
AT FINITE TEMPERATURE

Let us now consider the problem for finite 
temperatures. Here it is necessary to take into 
account the entire continuum of modes across 
the spectrum of allowed frequencies. The spectral 
density of heat flow at finite temperature should 
account for the thermal distribution of phonon 
numbers in a given mode (Planck distribution 
function) 
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The dependencies of the spectral density (41) on 
frequency are shown in Fig. 2.

To evaluate the parameters, let's take expression 
(41) in the form 
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Let's consider the total flow taking into account 
temperature in the low-temperature limit, 0T Λ£  
(here temperature is written in the energy scale 

= BT k T ). It is necessary to consider the orders 
of magnitude: coherence time τ is determined by 
characteristic relaxation times of the electronic system 
in solid state, i.e. -



1310τ  s. The characteristic 
parameter included in the Planck distribution 
function, 
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Then it is necessary to take into account the fact 
that 





Bk T
> ,ωτω

i.e., we are dealing with quasi-adiabatic interaction, 
where the system can be described by the equilibrium 
Planck distribution function. The condition of 
small gradient means that the inequality sc lτ , is 
satisfied, where l — is the spatial scale of temperature 
change. In other words, the temperature change 
itself occurs over relatively long times, / sl c τ,  
thus, the integration of spectral f lux density 
over frequency considering temperature can be 
performed as at constant temperature:  
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5.1. High-temperature limit

In case of phonon relaxation time, D > 1τω , 
 D T/ 1ω , we have 
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(see Appendix for calculation details). In fact, we 
arrive at the classical linear temperature dependence 
that emerges in the high-temperature limit in 
a macroscopic crystal. However, there is still a 

contribution directly related to the coherence time τ, 
which decays exponentially with time, which is quite 
consistent with the conclusions in works [14, 32, 33] 
for the high-temperature limit taking into account 
phonon coherence.

5.2. Low-temperature limit

1. In case of phonon relaxation time, < 1Dτω , 
/ 1D Tω  , we have 
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90R
π

ζ

Here, expression (39) for sound velocity is taken 
into account. The result turns out to be the same 
as for ordinary thermal phonons in the absence of 
coherence if the coherence factor ( )Λ ®0 / 1τ .

2. In the case of large coherence time, D > 1ω τ , 
 D T/ 1ω , we have 
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Here, the stationary LTIJ  and temporal ( )LTIIJ t  
parts of the heat flux in the low-temperature limit 
have the form
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The total f lux, taking into account time 
dependence, then has the form
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Let's consider the corresponding contributions 
to internal energy and heat capacity. For this, we 
calculate the quantum-mechanical average energy 
value for one mode with frequency ω:
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The specific internal energy (no temperature 
considered) per unit volume equals
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Taking into account finite temperature, we have 
an expression for internal energy in the form
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5.3. High-temperature limit
In the case of large coherence time (phonon 

relaxation time), D > 1τω ,  D T/ 1ω , we have 
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It is clearly seen that the heat capacity in the high-
temperature limit does not depend on temperature, 
as in the case of "free" phonons in the same limit, 
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while maintaining a specific contribution due to the 
interaction constant with the electronic subsystem, 
and the characteristic coherence time parameter.

5.4. Low-temperature limit
1. In the case of small coherence time, D < 1τω , 

 D T/ 1ω , we have 
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Here, expression (39) for sound velocity is taken 
into account. For comparison, let's present the 
expression for crystal heat capacity in the phonon 
model at low-temperature limit:
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Hence, it follows that the characteristic 
temperature dependence ( 3T   Debye's law) is 
preserved, but additional factors appear, including 
dependence on excitation pulse duration τ 
(coherence time) and polariton-phonon interaction 
constant. Being a measurable quantity, heat capacity 
will allow to "see" the presence of phonon coherence.

2. In the case of a long coherence time, D > 1ω τ , 
 D T/ 1ω , we have 
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In the case of a long pulse duration (coherence 
time), coherent phonon states give special distinctive 
features to the temperature dependence, namely, the 
lattice heat capacity acquires an uncharacteristic 
linear dependence on temperature, similar to the 
contribution to the heat capacity of free electrons in 
metal – degenerate electron gas: 

2=  .
2V

F

N TC π
ε

æ ö÷ç ÷ç ÷ç ÷÷çè ø

6. Results and conclusions

In conclusion, it should be noted that the 
considered model of coherent phonon formation 
in a three-dimensional crystal, where polaritonic 
generation of the medium by a laser pulse is 
preliminarily assumed, is abstract in nature and 
not tied to a specific experiment. A fixed fact in 
the analytical calculation was the dimensionality of 
the system (crystal) – 3D, i.e., both electrons and 
phonons can freely propagate along three orthogonal 
axes. Expression (35) for the spectral flux "silently" 
implies a recalculation from 
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Consideration of systems with reduced 
dimensionality (quasi-two-dimensional or quasi-
onedimensional crystal) will naturally lead to 
changes in expressions for both spectral flux density  
and expressions for total fluxes, as it is associated 
with changes in the density of microstates per 
energy interval. A more detailed examination of how 
changes in system dimensionality affect the nature 
of coherent phonon state formation is certainly an 
independent problem.
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As for the considered three-dimensional model 
of coherent phonon formation, despite the abstract 
formulation, it has its independent experimental 
confirmation. Thus, pulsed excitation and phase-
sensitive detection of coherent phonons and 
phonon-polaritons provide detailed understanding 
of the dynamic properties of matter. Experiments 
[33], based on optical pumping methods with 
femtosecond time resolution, allow simultaneous 
determination of the amplitude and phase of 
coherent lattice motion. Frequencies in the terahertz 
range and dephasing times in the picosecond range 
are obtained with high accuracy, particularly in 
semiconductors and semiconductor heterostructures, 
where coherent phonon mode and free carriers 
are excited simultaneously, providing important 
information about carrier-phonon interaction far 
from equilibrium.

The article [33] presents an overview of recent 
achievements in this field of condensed matter 
physics. The excitation of coherent LO phonons is 
achieved through the field screening mechanism. 
Two consecutive pump pulses affect the sample. 
Their intensity and time delay are adjusted so that 
the second pulse provides driving force for coherent 
amplitude equivalent to the amplitude preserved 
from the first pulse. Additionally, the initial surface 
field is regulated through a transparent Schottky 
contact to avoid complete screening of the surface 
field with the first pulse already. By carefully 
adjusting the pulse separation, the driving force 
is either in phase or in antiphase with the initially 
generated coherent mode.

Thus, complete destruction or resonant 
enhancement of coherent LO phonons is observed. 
This method allows generating coherent LO phonons 
during a clearly defined time interval shorter than 
the inherent LO phonon dephasing time

Similar experiments are conducted in Sb, where 
the A mode is manipulated in a similar way. In 
mixed BiSb crystals, oscillations Bi–Bi, Bi–Sb 
and Sb–Sb can be enhanced and suppressed using 
sequences of femtosecond pulses. It is important to 
note that in all mentioned experiments, there is a 
common pattern discovered in our work, namely the 
effect of LO phonon enhancement with undamped 
thermal conductivity occurs in various materials 
when meeting the criterion *

x = 2τω , where 
τ — is coherence time *ω  — frequency at which the 
spectral energy density reaches its maximum.

In the mentioned work Ps -× 12= 0 .25 = 0 .25 10τ  s, 
THz* × 12= 8 .8 = 8 .8 10ω Hz, * = 2 .2τω .

For bulk GaAs GaAs = 0 .25τ  Ps, *
 9ω  THz, 

*x = = 2 .25τω .
For GaAs/A 0 .3l Ga0 .7As-superlattice   = 0 .2τ  Ps, 
* = 8 .5ω  THz, *x = = 1 .7τω .
For isotropic crystal Te  * = 3 .5ω  THz, = 0 .6τ  Ps, 

*x = = 2 .1τω ,
For anisotropic crystal Te  * = 4 .2ω  THz,  

= 0 .5τ  Ps, *x = = 2 .1τω .
In the terahertz emission experiment for crystal 

InP a broad peak is observed at * = 1ω  THz,  
= 2τ  Ps, *x = = 2τω .
In the study of coherent phonon dynamics in a Te 

single crystal excited by amplified CPM laser pulses 
with photon energy of 2 eV, the following values were 
obtained: * = 3 .6ω  THz, = 0 .75τ  Ps, *x = = 2 .7τω .

For HTSC material (YBa2Cu3O7 x-   — thin 
film) for the Ba mode in plane CuO2 the following 
values were obtained: * = 3 .6ω  THz, = 0 .7τ  Ps, 

*x = = 2 .52τω , and for mode Cu  (2) in plane  
CuO2 we have * = 4 .2ω  THz, = 0 .7τ  Ps, 

*x = = 2 .8τω .
Generalized results are presented in the table.
Comparing all three models of heat f low 

description, one can notice similarities in the nature 
of time dependence, namely exponential decay in 
the classical model and the coherent phonon model 
in the high-temperature limit. However, in the 
case of coherent contributions, this decay occurs 
faster due to the coefficient 2 in the exponent of 
time. Meanwhile, the temperature dependence in 
the high-temperature limit is identical in all three 
models, specifically linear with temperature.

In the case of low-temperature limit, the 
classical consideration has no meaning, especially 
when dealing with nanocrystals or thin films and 
quantum wires. The phonon model is applicable 
for these quantum limits; moreover, it effectively 
describes cases of sufficiently strong electron-
phonon interaction caused by the polariton 
generation mechanism, but in this case, a system 
of "coupled" nonlinear equations connecting 
electronic and vibrational components is solved 
simultaneously. This solution is not ref lected in 
the table, see [5] for details. The table shows results 
for thermal properties of free phonons. As for the 
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time dependence of the flux in the low-temperature 
limit, the Gaussian-type time dependence suggested 
in [14] does not arise in the coherent phonon 
regime; it maintains an exponential form with 
a doubled reduction coefficient ( -



te 2 /τ ). The 
coherence itself is reflected in the flux expression 
as a factor containing the ratio of the polariton-
phonon interaction constant and the Debye energy 
( ( )Λ D D

22
0( ) /τω ω ), and in the case of short 

coherence time as an additional factor ( )D
2 < 1τω . 

Meanwhile, the dependence of the flux on coherence 
time and interaction constant with the electronic 
subsystem naturally transitions into the expression 
for the thermal flux of free phonons
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i.e., when there is a certain "resonance" of 
parameters in the system, the coherence time and 
polariton-phonon interaction constant are related as 

Λæ ö÷ç ÷ ®ç ÷ç ÷çè ø
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which is essentially the uncertainty relation 
(energy-time) 
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τ

minimized asymptotically precisely as a result of 
the coherence of the vibrational system state. The 
proof of the statement about the minimization of 
the "position-momentum" uncertainty relation by 
coherent states can be found in the book [29].

APPENDIX A. 
PROPERTIES OF SCHRÖDINGER STATES

1. Linear transformation of creation/annihilation 
operators (11) is carried out by the unitary 
transformation operator 

ˆˆ = ,DU e
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Table. Expressions for energy flow magnitude in different models
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which represents a special case of the unitary 
transformation operator 

†ˆ ˆ
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α α
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with a real function 
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It transforms the "old" vacuum function 
= 0kn λ  into the corresponding "new" vacuum, 

corresponding to the state 
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The average number of phonons in a coherent 
state equals 
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Consequently, the probability of finding the 
number of phonons equal to n in a given coherent 
state with an average number of phonons n  follows 
the Poisson distribution: 

=  .
!

n
n

n
n

W e
n

-

3. The unitary operator 

	 ( )
†ˆ ˆ2ˆ = , = ,

n
b bD e e eα αα α α

- * - *

has the following properties: 

	
α α

α α

α α α α

α α

α α

α α

* *-
-

* *- -

-

+ Þ

Þ

D D D D

D D

D D e D

D D e D D

† †

†

2

ˆ ˆ ˆ ˆ1) ( ) ( ) = ( ) ( ) = 1,
ˆ ˆ2) ( ) = ( ),

ˆ ˆ ˆ3) ( ) ( ) = ( ),

ˆ ˆ ˆ ˆ( ) ( ) = ( ) ( ),

β β

β β

β β

β β

( )
†

†

† † †

ˆ ˆ ˆ= ( ),

ˆ ˆ ˆ( ) = ( ),

ˆ ˆˆ ˆ( ) ( ) = ,
ˆ ˆˆ ˆ( ) ( ) =  .

bD D

b D D

D bD b

D b D b

α α α

α α α

α α α

α α α

*

*

é ù
ê úë û
é ù
ê úë û

+

+

4. Let's consider the property of completeness 
and non-orthogonality. It is known that coherent 
states α  and  β , differing in the average number 
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of phonons in a given mode N K¹ , are non-
orthogonal states: 
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Meanwhile, they possess the property of 
completeness, which allows expanding any state 
vector in a series over these states: 
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Thus, the completeness property can be written as 
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5. In work [29], it is shown in detail that coherent 
states minimize the uncertainty relation. In the 
coordinate representation, where 
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the indicated coherent state, taking into account 
the described unitary transformation, corresponds 
to the so-called oscillator with a displaced center:
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Here, the ground state functions of a harmonic 
oscillator with frequency ω are denoted as Q0 ( )ψ , 
and the coherent state – as 

( ) = ( ) .nQ QαΨ Ψ

APPENDIX B. 
INTEGRALS
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2. Let's examine the internal energy and energy 

f lux of the crystal lattice for free phonons. For 
comparison, let's present the known expressions 
for flux density and internal energy for free thermal 
phonons:  
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In the low-temperature limit, Θ DT/ = 1ω , 
we have
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Thus, we obtained Debye's law: 3C Tµ .
In the high-temperature limit, Θ £ DT/ = 1ω ,  

we have
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Thus, we obtained the Dulong-Petit law.

APPENDIX C
Let's consider the classical heat conduction 

problem for a semi-infinite medium with boundary 
conditions of the third kind. For internal energy 

= ,Bu Nk Tα

where =N nV  — total number of particles in the 
system, α  — numerical factor (i.e. Bu k Tµ ), the 
heat conduction equation takes place

= ( , )u u f x tκ ¢¢-
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Here = / pK C nκ   — thermal di f fusivity 
coefficient, pC   — dimensionless heat capacity,  
K  [(cm ⋅ s) 1- ] — thermal conductivity coefficient, n — 
concentration. We obtain
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