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With the help of Newman-Janis method new spinning black hole (BH) solution for a non-local gravity model
was obtained. We show how to account the quantum gravitational correction part in BH shadows modelling
using spinning BH metrics with a model independent approach. It is confirmed that in the future to follow the
increasing of the experimental accuracy and therefore to reproduce new results theoretically one could take into
account different field correction terms instead of introducing of new fields and/or curvature expansions.

1. INTRODUCTION

The idea to use non-local actions in extended
gravity models is discussed for a long time [1]. Using
this approach gives hope to model the dark energy in a
more natural way. Non-local constructions were used,
for example, in Randall-Sundrum models [2]. Further
considering of non-local additions allowed to set new
constrains on gravity models using high energy physics
data [3]. So non-local operators also appear in the
unique effective action for quantum gravity

L = R+ c1R
2 + c2RµνR

µν + c3RµναβR
µναβ

+ αR log
�
µ2

R+ βRµν log
�
µ2

Rµν

+ γRµναβ log
�
µ2

Rµναβ , (1)

where R, Rµν and Rµναβ are the Ricci scalar, Ricci
and Riemann tensors correspondingly, ci, α, β and
γ are numerical coefficients [4]. The BH solution for
the action (1) was obtained and has the form (in
(−,+,+,+) signature):

ds2 = −ftdt
2 + frdr

2 + r2dΩ2, (2)

where

fr �
(
1− 2GnM

r

)−1

− β̂�G2
nM

r3
+O(G3

n),

ft �
(
1− 2GnM

r

)
− α̂�G2

nM

r3
+O(G3

n).

The values α̂ and β̂ are the linear combinations of gauge
coefficients from Table 1 in [4], M is the BH mass and
Gn is the effective gravitational constant.

Here it is necessary to emphasis few important
items. The first one is that the structure of non-
local actions in different theories could have the same
structure. Therefore their BH solutions will also have
the same structure. The most developed BH solution
is Eq (2) where one can see the combinations like
GnM . This means that the BH mass M is followed
by the quantum coefficient Gn. Taking into account
the real mass of Sgr A* it means the difference of
1044 between these two values therefore the influence
of non-local part is negligible. Anyway we suppose
that to proceed the shadow modelling till the finish
is interesting from 2 items. One of them is to show
the model-independent approach for quantum gravity
effects accounting. The other one is to demonstrate
that if the non-local action would have the same form
(but with coefficients not from the Planckian range)
one could apply the suggested scheme to make the
theoretical predictions for BH shadows more accurate
without adding new fields and/or curvature expansions.

So as one can see from Eq. (2) the obtained
solution is the spherically-symmetric BH. Following the
widely discussed idea that the study of BH shadows
image could give an additional information of the
extended gravity structure [5, 6] it seems interesting
to use the last results of the Event Horizon Telescope
(EHT) [7]. Here it is necessary to note that the
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simple estimation of the discussed method application
to describe the Universe accelerated expansion (to
calculate the turnaround radius [8]) gives the negative
result by the same reason discussed above.

Further both objects studied by the EHT represent
the spinning BHs. Meanwhile the BH solution
established in [4] is non-rotating BH. So to increase
the accuracy of theoretical predictions one has
to generate a Kerr-like solution from the existing
Schwarschild one. At the next step one has to use the
Kerr-like metrics for the theoretical modeling.

To fulfill the suggested program the paper structure
is as follows. The Section 2 is devoted to the Kerr-
like BH solution generation, in Section 3 we discuss
the generic items on spinning BH images and the
corresponding modelling ideas, The Section 4 contains
the results of our BH shadows modelling in the
hypothetical case Gn ≈ M , Section 5 is devoted to
the comparing of our results with EHT ones and the
Section 6 contains the discussion and our conclusions.

2. ADDING ROTATION

2.1. Newman-Janis method application

To obtain a rotating solution the Newman-Janis
algorithm could be applied [6,9]. This algorithm treats
a rotating solution as the generation of non-rotating
one [10]. According to the algorithm at the first step
one has to establish the initial non-rotating metrics in
Eddington-Finkelstein coordinates (u, r, θ, φ) using the
transformation rule:

dt =

√
fr
ft

du+ dr. (3)

Therefore the metrics (2) takes the form:

ds2 = −ftdu
2 − 2

√
frftdudr + r2dΩ2. (4)

Further we introduce the complex veirbein
ea = (lµ, nµ,mµ,m∗µ) with the conditions:

ηab =




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0




, (5)

and therefore:

lµ = δµr ,

nµ =

√
1

frft
δµu − 1

2fr
δµr

mµ =

√
1

2r2

(
δµθ +

i

sin θ
δµφ

)

m∗µ =

√
1

2r2

(
δµθ − i

sin θ
δµφ

)

To generate a rotation one has to include a complex
veirbein transformation in the form:

r → r
′
= r − ia cos θ,

u → u
′
= u+ ia cos θ,

where a is angular acceleration. After the
transformation the functions ft, fr and the squared
radial coordinate r2 take the form:

fr → F̃r(r, θ, a), (6)

lim
a→0

F̃r(r, θ, a) = fr, (7)

ft → F̃t(r, θ, a), (8)

lim
a→0

F̃t(r, θ, a) = ft, (9)

r2 → ρ2 = r2 + a2 cos2 θ. (10)

Following [11] it is necessary to note that the
transformations (6 - 9) are not unique and additional
conditions are required. The most convenient choice is
grt = grφ = 0. Therefore the renewed veirbein takes
the form:

lµ′ = δµr′ , (11)

nµ′ =

√
1

F̃rF̃t

δµu′ −
1

2fr
δµr′ , (12)

mµ′ =

√
1

2ρ2

(
δµθ + ia sin θ(δµu′ − δµr′) +

i

sin θ
δµφ

)
. (13)

Using equations (5) and (11)-(13) one obtains the BH
metrics where the rotation is now included:

ds2 = − F̃tdu
2 − 2

√
F̃rF̃tdudr + ρ2dθ2

− 2a sin2 θ(

√
F̃rF̃t − F̃t)dudφ

+ 2a sin2 θ(

√
F̃rF̃tdrdφ

+ sin2 θ

(
ρ2 + a2 sin2 θ(2

√
F̃rF̃t − F̃t)

)
dφ2.(14)

Finally the transverse transformation in the form

du = dt+ χ1(r)dr,

dφ = dϕ+ χ2(r)dr (15)
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is applied. Following [11] we take χ1(r) and χ2(r) as:

χ1 = −fr(ω + a2)

r2 + a2fr
, (16)

χ2 = − fra

r2 + a2fr
, (17)

ω = r2
√

1

frft
. (18)

So the final form of Kerr-like metrics for the discussed
model is:

gtt = − 1

ρ2

[
(ω + a2)2

(f−1
r r2 + a2)

− a2 sin2 θ

]
,

gtφ = − 1

ρ2

[
(ω + a2)a

(f−1
r r2 + a2)

− a

]
,

gφφ = − 1

ρ2

[
a2

(f−1
r r2 + a2)

− 1

sin2 θ

]
,

gθθ =
1

ρ2
, grr =

f−1
r r2 + a2

ρ2
. (19)

Here

ρ2 = r2 + a2 cos2 θ,

fs = 1− 2MGn

r
,

fex =
�G2

nM

r3
,

ω = r2

(
1 +

(α̂+ β̂)fex
2

)
.

2.2. The Hamilton-Jacobi equation

To be able to derive the photons trajectories
around the spinning BH the form of Sr(r) and Sθ(θ)

from Hamilton-Jacobi equation is required. For null
geodesics:

gµν
∂S

∂xµ

∂S

∂xν
= 0. (20)

As the obtained metric has no dependence upon t and
φ therefore 2 conserved quantities occur. They are:
E = −pt and Lz = pφ (photon’s energy and angular
momentum respect symmetry axis). Therefore to divide
the variables one has to look for the solution of equation
(20) in the form:

S = −Et+ Lzφ+ Sr(r) + Sθ(θ). (21)

Next it is necessary to conclude that the variables in
eq. (20) for pr and pθ can be divided as:

ρ4(ṙ)2

E2
= R(r), (22)

ρ4(θ̇)2

E2
= Θ(θ), (23)

where

R(r) =
(
ω + a2 − aλ

)2 − (f−1
r r2 + a2)

[
η + (a− λ)

2
]
,

Θ(θ) = η + cos2 θ

(
a2 − λ

sin2 θ

)
. (24)

Here η = Q
E2 , λ = Lz

E and Q is Carter’s constant.
To calculate the equation for the circular photon

orbit (only such photons could reach an remote
observer)

R = 0, (25)
dR
dr

= 0. (26)

Substituting eq. (24) to (25) and (26) one finds the
solutions for λ and η in the form:

λ =
ω + a2

a
− 2ω′

a

(f−1
r r2 + a2)

(f−1
r r2)′

, (27)

η =
4(f−1

r r2 + a2)

(f−1
r r2)′

2 ω′2 − 1

a2

[
ω − 2(f−1

r r2 + a2)

(f−1
r r2)′

ω′
]2

,

where strokes denote the derivatives respect to r.
Considering the plane normal to the direction to the
remote observer the shadow coordinates cab be written
as follows

x′ = − λ

sin θ0
, (28)

y′ = ±

√
η + a2 cos2 θ0 −

λ2

tan2 θ0
, (29)

where θ0 is solid angle between the BH rotation plane
and the axis to observer.

3. THE MODELLING OF BH SHADOW: HOW
TO INCLUDE THE ROTATION

With help of Python coding language we proceed
the numerical modelling of the BH shadow from
the metrics (19). Using expressions (28) and (29)
coordinates on the picture plane X and Y на were
calculated. The metrics (19) was applied with the
different values of rotation characteristics a and the
coefficients α and β.

As it was demonstrated earlier [12] the shadow from
spinning BH has some particular properties:

1. Horizontal shift The shadow shift along x

axis could be calculated with the help of the
expression:

D =
xmin + xmax

2
, (30)

3
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where xmin and xmax are the minimal and
maximal x values respectively.

2. Asymmetry When the values of spinning
parameter a increase and become rather large
the shadow asymmetry appears [6] so that the
horizontal radius value becomes less than the
vertical one which does not change. Therefore
the horizontal shadow size becomes a measure of
asymmetry:

∆x = xmax − xmin. (31)

3. Diameters Let’s treat the horizontal diameter
as:

∆x = xmax − xmin = xR − xL, (32)

where L and R are left and right shadow shape
points. One can define the vertical diameter in
the same manner as:

∆y = ymax − ymin = yT − yB = 2yT , (33)

where B and T are the bottom and top points
of the shadow edge. Due to the symmetry of
the shadow: yB = yT , and Fig. 1(a) shows the
relationship between ∆y, ∆x and points R,L, T

and B.

4. Circular approximation As the shadow has
the quasi-circular form it is convenient to treat
the points T , R and B lying on the circular [13].
Hence the shadow radius rs becomes the first
observational value. As the second observational
value one can use the distortion parameter:

δcs = ∆cs/rs, (34)

where ∆cs is the distance from the circular to the
point L on the shadow (See Fig. 1(b)).

4. THE MODELLING OF BH SHADOW FOR
THE SPACE-TIME (19)

After few preliminary notes one can start to
calculate the shadow dependence upon α and β.
Applying gravitational corrections to the stable
star metric satisfying Tolmen-Oppenheimer-Volkov
equation [14] we introduce new variables α = α̂ и
β = β̂ that are model-independent.

Here it is necessary to point out that we use the
coefficient values from [4] as examples. So we establish
the shadow shapes for M = 11) and different a values

1) Because in the real case M = 1044 the effect is vanishing as
it was pointed out in the Introduction

for Kerr metric and its extensions defined at [14] (in
the scalar field ξ = 1/3) on Fig. 2. The angle of
plane of rotation is equal to θ0 = π

2 . Note the 2 main
particularities. Firstly the shadow shape shifts from
rotation axis with the increasing of a. Secondary the
shadow becomes asymmetric along x axis for big values
of a. Both particularities vanish at a → 0 when the
circular shadow corresponding to Schwarzchield case
reduces. Also note that when θ0 = π/2 the shadow size
does not change depending upon rotation (because the
vertical diameter remains the same).

For different field types we obtained the following
effective shadow sizes rs:

Solution type α β rs

Kerr 0 0 5.196
Example 1 0.0318 0.0318 5.193
Example 2 0.0849 -0.1273 5.228
Example 3 0.1698 -0.2546 5.259
Example 4 4.52 -1.846 5.813

As EHT constrained the shadow size as
(4.3M < rs < 5.3M) [15] one conditionally could
neglect the last line in the table 4.

Now we concentrate on BH images study. We are
interesting in the shift D and and distortion parameter
δ. On Fig. 3(a) we show the dependence of D against
rotation parameter a in all discussed case. While α

and β increase the shift becomes smaller. The only
exception is the case of near extreme rotation with
a = 0.98 and the value for the Example 1. We suppose
that the reason is that in the discussed case β > 0 and
in other ones it is negative. In the case of big α and
β values the shift has the linear dependence against a.
Unfortunately, in practice it is difficult to extract the
value of this parameter as there is no information on the
coordinate origin. The distortion parameter δ is shown
on the Fig. 3(b)). The most difference from spherical
form occurs in Example 1. At Example 4 case in α and
β have rather big absolute values the shadow remains
spherically-symmetric even in the big a case.

5. CONSTRAINTS FROM EHT RESULTS ON
SGR A*

Now we have all information necessary to compare
our results with EHT images for Sgr A*. EHT claims
that the most probable values of a are equal to 0.5 and
to 0.94 [15]. This assumption appeared to be possible
as Sgr A* is situated in our Galaxy and the orbits of

4
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surrounding stars were observed. Fig. 4 demonstrates
the profile of BH shadow for Sgr A* from EHT data
(rotation plane inclination is equal to θ0 = π/6, a is
equal to 0.5 и 0.94). For comparison the case a = 0

is also presented. From fig. 4 one can conclude that
for the given angle value the shape distortion is small
but the shadow size changes. We start from the shift
of shadow size (fig. 5). In contrast with the case where
θ0 = π/2 if θ0 = π/6 the shadow size depends against
a. From the plot it is seen that EHT constraint line
passes all the fields (green region) except example 4 one
(reg region). Concerning to the shift D (fig. 6(a)) one
concludes it becomes less than in the previous case from
previous paragraph. As for the distortion parameter δ

(fig. 6(b)): it has a maximum at a = 0.94 about 5-8%
(except neglected example 4). At a = 0.5 the distortion
is equal to 1.5%.

6. DISCUSSION AND CONCLUSIONS

Using the Newman-Janis algorithm we obtained
spinning solution for the quantum gravity model with
the action (1). We proceed the modelling of BH shadow
for the rotating metrics for the pure quasi-Kerr case and
taking into account the additional fields in the limit
Gn ≈ M . For a more visual representation we take
θ0 = 90◦ as at such a case a shadow obtains maximal
distortions during the fast rotation. We show that for
fast rotation (when a tends to 1) for all cases except
example 4 one the BH shadow is deformed. For the
pure Kerr metrics and example 1 this deformation is
equal to 10-11%, for the example 2 and example 3 is
drops to 5-8%. Here it is necessary to point out that
less accuracy is required to fix this deformation than
to fix the shadow size. This occurs because of 2nd and
3rd order corrections as it was shown earlier [5]. In
the discussed approximation Gn ≈ M corrections and
a rotation contribute opposite one to the other and,
therefore, could compensate each other. So in the future
to follow the increasing of the experimental accuracy
and therefore to reproduce new results theoretically one
could take into account non-local terms (if compatible
with BH mass) instead of introducing of new fields
and/or curvature expansions.

EHT results [15] show that the most probable tilt
angle for Sgr A* is θ0 = 30◦ and the most probable
values of a are equal to 0.5 and 0.94. We demonstrated
that in this case (in the hypothetical case Gn ≈ M) the
shadow deformation is not big. At a = 0.94 deformation
appears to be 5-8% (except Example 4), when a = 0.5

deformation drops to 1.5%. Therefore after increasing

the accuracy the rotation characteristics of Sgr A* 
could be extracted better. Next, for a given inclination 
of the rotation plane the shadow size depends upon 
a. This fact could also help to establish BH shadow 
properties in future.

Finally the algorithm of non-local gravitational 
effects accounting in BH shadow modelling was 
suggested. This algorithm is independent on the ultra-
violet structure of complete theory of quantum gravity 
and could be extended to other non-local theories.
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Fig. 1. The shadows limiting values R, L, T and B against shadow diameters ∆x and ∆y (a). The observable rs and ∆cs, obtained 
from the circle passing T , R and B (b).

Field α β γ α̂ β̂

Example 1 5 -2 2 0.031830991 0.031830991
Example 2 -5 8 7 0.08488264 -0.127324316
Example 3 -50 176 -26 0.169765314 -0.254647752
Example 4 250 -244 424 4.520000449 -1.846200376
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Рис. 2. The shadow profile for different rotation parameters a for Kerr-like metric and its generalisations when the inclination
angle of the rotation plane is θ0 = π

2
.

8

Fig. 2.
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Рис. 3. The dependence of the shift D (a) and distortion parameter δ (b) against rotation acceleration a for quasi-Kerr metric
and for different fields added when the inclination angle of the rotation plane is θ0 = π

2
.

9

Fig. 3.
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Рис. 4. The BH shadow profile against rotation acceleration a for example 2 field when the inclination angle of the rotation plane
is θ0 = π

6
(Sgr A*).

10

Fig. 4.
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Рис. 5. The dependence of BH shadow size rs against rotation acceleration a for Kerr-like metric and with the additional fields
added when the inclination angle of the rotation plane is θ0 = π

6
(Sgr A*). The red line (more than 5.3) denotes the region

excluded by EHT results on Sgr A*, the green line (less than 5.3) denotes the region allowed by EHT results on Sgr A*.

11

Fig. 5.



	 NON-LOCAL GRAVITATIONAL CORRECTIONS IN BLACK HOLE	 521

JETP, Vol. 165, No. 4, 2024

S. Alexeyev, A. Baiderin, A. Nemtinova, O. Zenin ЖЭТФ

Рис. 6. The dependence of the shift D (a) and distortion δ (b) against rotation acceleration a for Kerr-like metrics and with the
additional fields added when the inclination angle of the rotation plane is θ0 = π

6
(Sgr A*).

12

Fig. 6.


