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Abstract. Fractal properties in the formation of the branching structure of deciduous trees have been
studied by numerical Fourier analysis. It is shown that the lower levels of branching of adult trees are
formed obeying the law of the logarithmic fractal in two-dimensional space, according to which the sur-
face area of the lower branch is equal to the sum of the surface areas of the branches after its branching,
i.e. the law of conservation of area when scaling is fulfilled. The structure of branches at the upper levels
of branching obeys the law of the logarithmic fractal in three-dimensional space, i.e. the law of volume
conservation during scaling, which is natural, since living tissue occupies completely an young branch,
and not only its surface. A mathematical model is proposed that generalizes the concepts of a logarithmic
fractal on the surface for adult branches and a logarithmic fractal in volume for young branches. Thus,

an integral fractal concept of the growth and branching structure of deciduous trees is constructed.
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1. INTRODUCTION

The word “fractal” was introduced into scientific
terminology in the second half of the twentieth cen-
tury by Benoit B. Mandelbrot [1] and very quickly
the concept of fractal description of objects was de-
veloped and applied in various fields of science and
technology [2, 3]. The concept of “fractal” in its
meaning is very close to the expression “self-similar
fragmented system”. Fractals are found everywhere,
both in living and inanimate nature: mountain
massifs, the coastline of the sea, riverbeds [3], moles
[4], turbulence processes [5], vascular pattern in the
lungs [6]. In itself, the study of fractals is of great
interest, since the fractal concept can be used
in various fields of science and technology, for ex-
ample, in medicine when modeling various processes
in humans and animals [6-9].

Biological systems in the course of their life of-
ten develop according to the laws of self-similarity
and can be attributed to fractals [10-12]. One of the
most striking manifestations of fractality in nature

is trees. Leonardo da Vinci was the first to notice
and formulate a pattern in the growth and branch-
ing of trees. He deduced the empirical law of tree
branching, which refers us to the universal cyclic-
ity of nature. Leonardo’s law says: at each level
of branching of a tree, the total cross—sectional area
of all branches is the same and equal to the trunk
cross-sectional area: a’l.2 = kdi2+1 where d — is the di-
ameter of the branches, k is the number of branch-
es after branching [13]. This formulation serves
as the basis for describing structural properties in all
known tree models [14-21] and is a real foundation
in computer modeling of a tree of similar objects
[22, 23]. And although the pattern noted by Leonar-
do is widely used in theoretical models and allome-
tric studies [16-20], only a few works can be found
that confirm the validity of this pattern with good
statistics. Moreover, the authors of a broad and in-
depth review [21], analyzing existing experimental
studies [24-26], came to the conclusion that “Leon-
ardo da Vinci’s rule is not fulfilled in all cases.” And
indeed, as noted in numerous studies, experimental
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confirmation of this irregularity requires the ex-
perimenter to exert considerable physical effort
and dexterity if he decides to measure the diameter
of each branch of a tree without causing any harm
to it. The fractal structure, as the dominant feature
of coniferous trees, is considered in detail in [12, 27,
28] using the example of spruce.

In [29], it was proposed to use numerical Fourier
analysis of tree images as a non-destructive method
for studying the properties of self-similarity in their
structure. It was shown [29] that the image photo-
graph of the crown of some species of leafy trees,
which is a two-dimensional projection of a tree onto
a plane, belongs to a special class of fractals — log-
arithmic fractals in two-dimensional space. It can
be concluded that the law of conservation of the
lateral surface area at different branching levels
is fulfilled for them, which is apparently explained
by the concentration of conducting cells in the phlo-
em (bark) and in the upper layers of xylem (wood).
Experimental evidence in support of this hypothesis
was obtained using the method of numerical Fourier
analysis in the study of many images of various de-
ciduous trees (such as oak, birch, linden, etc.), im-
ages of trees were taken in the cold season, after leaf
fall. The study is carried out by numerical meth-
ods, the Fourier square of the object image is ob-
tained — an isotropic Fourier intensity distribution,
which, after azimuthal averaging of a two-dimen-
sional map, gives the so-called scattering curve —
the dependence of the Fourier intensity on the in-
verse coordinate. When examining images of trees,
a crossover was switched to another scattering mode
in the region of large momentum transfer, past the
section of the scattering curve corresponding to the
logarithmic fractal structure. In all images, a sharp
slowdown in the decrease in Fourier intensity was
detected at large momentum transfer (small scales
in the real image).

In this article, we explore the nature of this
crossover. An assumption has been made, which
is confirmed by experiment, that the region of the
large momentum transfer on the scattering curve
corresponds to such areas of small scales in images
of trees where young branches are depicted. Since
young branches consist entirely of living tissue, life
in them is distributed over the entire volume, un-
like adult branches, in which living cells are con-
centrated only on the surface. The article shows
that the part of the tree consisting of adult branches
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is a logarithmic fractal characterizing the surface
of the tree, i.e. it obeys the law of a logarithmic frac-
tal in two-dimensional space. At the same time,
a part of the tree with young branches corresponds
to a logarithmic fractal in three-dimensional space,
which in the image of the tree (its projection onto
the plane) turns into an object described as a massive
two-dimensional fractal with dimension D, =1.5—
1.7. A branching model is proposed that generalizes
the concepts of a logarithmic fractal on the surface
for adult branches and a logarithmic fractal in vol-
ume for young branches. Thus, a holistic concept
of the growth and branching of deciduous trees has
been built.

The work is organized as follows. In the section
2 the classification of fractal objects based on the
methods of scattering of penetrating radiation
(three-dimensional case) or light (two-dimensional
case) is described. In the section 3 the study of im-
ages of trees of different ages by numerical Fourier
analysis is presented. Images of mature trees and
their individual sections with young branches are
considered. In the section 4 a two-stage mathemat-
ical model is proposed that describes the law of for-
mation of the branching structure of an adult tree.
Section 5 presents remarkable consequences of the
concept of self-similarity of branches. In particu-
lar, it is shown that experimental data for an adult
tree, together with the hypothesis of self-similarity
of branches, guarantee the fulfillment of Leonar-
do da Vinci’s law on the structure of a tree. At the
same time, Leonardo’s law is not fulfilled for young
branches. Section 6 presents the conclusions of the
work.

2. CLASSIFICATION OF FRACTAL
OBJECTS

The main characteristic of fractal objects is their
fractal dimension D, (Hausdorff-Bezikovich dimen-
sion). In contrast to the topological dimension of the
object D;, the Hausdorff-Bezikovich dimension
D, can be both an integer and a fractional one. And
DTgD ngE, this means that the fractal dimension
of the object, due to its fragmentation, exceeds its
topological dimension, but is less than the dimen-
sion of Euclidean space.

To obtain information about the fractal
dimensionality of an object in a three-dimensional
space, the method of small-angle neutron scattering
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Fig. 1. The image of an old tree (an oak) is on the right. The scattering curve is on the left, as a result of Fourier analysis of the image:
intensity as a function of momentum on a double logarithmic scale. In the momentum range from 102 to 5 cm™, the curve is described

by the dependence Q" with v=1.99 &+ 0.01

0,1 T T T

0,01 4
= 1.98(5)

0001 \”l

1E-4 4

1E-5 <

1E-6 +

I(arb. units)

1E-7 A

1E-8 <

1E-9 4

1E-10 T T T

n = 1.60(2)

i

q(em™)

Fig. 2. The image of a young tree (an apple tree) is on the right. The scattering curve is on the left, as a result of Fourier analysis of the
image: intensity as a function of momentum on a double logarithmic scale. In the momentum range from 2 » 10~ to 2 cm *!, the curve

is described by the dependence of Q¥ with v=1.60 + 0.02

and X-ray radiation is widely used [30-32]. Using
this method, fractals in three-dimensional space
were divided into three classes: mass (fragmentation
is distributed over the volume inside the object), sur-
face (fragmentation is concentrated at the boundary
of the object) and logarithmic, when the surface
fractal extends deep into the substance, forming
an intermediate object between the surface and vol-
ume fractals [33].

When describing fractal objects, the topolog-
ical dimension of a single self-similar element
of a fractal, the fractal dimension of the entire object
and the Euclidean dimension of space should be dis-
tinguished and correlated. For example, flat objects
in three—dimensional space (D, = 3) and flat ob-
jects in two-dimensional space (D, = 2) are phys-
ically different objects. Experimental measurement

of the fractal dimension of “flat” fractals (in two—
dimensional space) can be carried out by scattering
light on them, registering the square of the Fourier
image of the scattering object on the detector [34-
38]. Such an experiment can be modeled using nu-
merical Fourier analysis, examining images of vari-
ous fractal and non-fractal objects in this way. Using
this method, fractals in the two-dimensional case
can be divided (by analogy with three-dimensional
space) into mass, boundary and logarithmic [39, 40].

Logarithmic fractals are of particular interest.
Unlike mass and surface (boundary) fractals, log-
arithmic fractals, although self-similar, are hetero-
geneous, and, as a result, are described by an ad-
ditive scaling law and a hierarchical structure.
At the same time, for logarithmic fractals, the law
of equality of the amount of matter at each level
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of their hierarchy is fulfilled. An example of a tree
constructed according to the principle of Leonar-
do da Vinci as a logarithmic fractal was proposed
in work [39].

3. INVESTIGATION
OF TREE IMAGES BY NUMERICAL
FOURIER ANALYSIS METHODS

When studying images of fractal and non-frac-
tal objects using Fourier analysis methods, the so-
called scattering curve is obtained in the inverse, i.e.
in Fourier space. This dependence of the scattering
intensity on the momentum is a probability function
and characterizes the amount of matter depending
on the size. A detailed description of the numerical
simulation of the scattering process on fractal ob-
jects using Fourier analysis in two-dimensional
space is presented in [40-42].

As shown in [29] and can be seen from the exam-
ple of Fig. 1 and Fig. 2, when studying photographs
of trees using Fourier analysis methods, the scatter-
ing curves can be divided into three sections, each
of which demonstrates its own character of decreas-
ing intensity with increasing momentum. In the
region of small momenta a slope of the scattering
curve on a double logarithmic scale is close to 2,
which corresponds to the structure of a logarithmic
fractal. The next section is characterized by a slow-
down in the decrease in intensity and the slope
of the scattering curve on a double logarithmic scale
turns out to be less than 2. And in the area of large
momentum transfer, there is again a rapid decrease
in intensity with a slope, close to 3. This area cor-
responds to the scattering on the minimal element
of the image and does not represent much interest.
The transition point from the second section to the
third corresponds to the size of the minimal element
of the image.

If we take into account that the first and second
sections of the scattering curve in the inverse space
correspond to two different ranges of linear sizes
of scattering objects, then we can assume that the
scattering curve at large sizes (the range of small
momenta of the inverse space) is due to the pres-
ence of large, i.e. old, tree branches, and at small
sizes — the presence of young branches. To experi-
mentally test the hypothesis of the existence of two
different types of branching structure of a deciduous
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tree, it is necessary to study two-dimensional images
(photographs) old, mature and young trees. It is nec-
essary to select images, develop a research method-
ology, obtain scattering curves by numerical Fourier
analysis and, approximating them by a power law,
find the parameters of scale invariance in accordance
with the classification of fractal objects [40, 42]. For
these studies, we used the fractal program [43].

The criteria for selecting images of trees suit-
able for this kind of research seem quite simple,
but impose some restrictions on the tree under
study. To achieve the best contrast in the image
between the presence of a branch and its absence,
it is necessary to take a picture of a tree without
leaves against a light sky. Then the picture turns into
black and white with maximum contrast, so that the
background turns white and the tree turns black.
The image is taken from a distance of several tens
of meters, so that the characteristic distances inside
the object would be much less than the distance from
the object to the shooting location. This ensures that
the proportions in the size of the individual branches
of the tree in the picture are preserved. With such
criteria, it is natural that only free-standing trees are
involved in the study, and not trees growing in the
middle of the forest.

Information about a three-dimensional object
(tree) is obtained by direct photographing, i.e. an act
during which a three-dimensional object is projected
onto a two-dimensional plane. With this projection,
most branches and the trunk of the tree are clear-
ly distinguishable, i.e. the branches overlap only
slightly with each other and with the trunk. Thus,
when photographing/projecting a tree onto a plane,
information about the structure of branches is not
lost and the proportions between the branches (their
size and number) are preserved when zooming in.
The registered object is a black spot of a certain size
(in pixels) on a white background.

Branches or parts of them growing along the line
of mapping (along the projection axis) are not visi-
ble in the image, are not recorded, and therefore are
not taken into account in the analysis. At the same
time, their number obeys the general law of corre-
spondence of the number of objects with a change
in scale, so the photo correctly conveys the law
of scaling, based on only one image (one projec-
tion). Note that by changing the angle of photogra-
phy, it is possible to obtain and analyze information
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about another projection of the tree. Taking into
account the fact that the tree has axial symmetry,
the azimuthally averaged square of the Fourier im-
age of photographs of the tree from different lateral
angles gives the same scattering curves, and this was
confirmed experimentally.

The research methodology of this work is aimed
at differentiating old branches and young branches.
First, we will select an image of an adult tree with
a large number of old branches. We assume that
it is the old branches that form a two-dimensional
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logarithmic fractal in the image, which corresponds
to a section with a slope close to 2 on the scatter-
ing curve. It is expected that a large number of old
branches makes this area the most pronounced. Sec-
ondly, we look at an adult tree in the stage of active
growth, i.e. with a large number of both old branch-
es and young branches, in order to understand how
the scattering curve will change if young branch-
es become more numerous. Thirdly, to make sure
that it is the young branches of an adult tree that
cause a deviation from the characteristic scatter-
ing law with an slope close to 2, we will highlight
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Fig. 3. The image of an adult (actively growing) tree (a linden) is on the right. The scattering curve is on the left, as a result of Fourier anal-
ysis of the image: intensity depending on the momentum in a double logarithmic scale. In the pulse range from 5 * 102to 3 * 10 cm !,
the curve is described by the Q" dependence with v = 2.05 £ 0.09, and in the range from 4 = 10! to 4 cm™! by the Q" dependence with

y=1.58+0.09

0,1 —
0,014
0,001 +
1E-4 4
1E-5

1E-6 4

I(arb. units)

1E-7 4

1E-8 4

1E-9 4

1E-10 T T T

0,01 0,1 1 10
-1
q(em™)

Fig. 4. A fragment of an image of an adult (actively growing) tree (a linden) containing a small number of «old» branches is on the right.
The scattering curve is on the left: intensity depending on the momentum on a double logarithmic scale. In the momentum range from
10" to 6 « 10" cm ', the curve is described by the QO dependence with v = 2.08 £ 0.07, and in the range from 6 * 10-' to 6 cm ! by the

Q7 dependence with v=1.69 £ 0.02.
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fragments of the image of an adult tree, which will
include mainly young branches and only a few old
branches, or not include old branches at all. Fourth,
we will consider an image of a young tree in which
old branches are missing, and consequently, there
should be no area on the scattering curve with
a slope close to 2.

Figure 1 shows an image of an old tree (oak) with
a small current growth, in which the bulk of the
branches are old. In this case of the old tree, the scat-
tering curve is described by the dependence Q™ with
v =199 = 0.01 in the momentum range from
4 + 10?2 to 3 cm’!. Such a power dependence cor-
responds to a logarithmic fractal structure in a very
large (about two orders) momentum range [29]. This
range of momentum transfer can be converted into
a range of average distances in direct space from
2 to 150 cm, which, taking into account the cylin-
drical shape of the branch, approximately corre-
sponds to a range of diameters from 0.7 to 50 cm and
a range of lengths from 7 to 500 cm. Here and fur-
ther, we assume that the element of self-similarity
in the image is a rectangle with sides d (thickness
of the branch) and / (Ilength of the branch). For
certainty, we assume that the ratio //d = 9, and the
average linear size r of the rectangle is equal to the

square root of its area: r = \/E = x/ﬁ =3d =1/3.
In the case of a very young tree (apple sapling),
a section with a slope close to 2 is practically absent,

and the section corresponding to the young branches
occupies almost the entire scattering curve, which
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in the area from 2 * 10°' to 2 cm™! has a slope v =
1.60 £ 0.02 on a double logarithmic scale (Fig. 2).
This range is converted into a range of average siz-
es from 3 to 30 cm, which, for example, in terms
of branch lengths corresponds to sizes from 10 to 100
cm.

In the case of an adult (actively growing) tree
with a large number of young branches (Fig. 3),
the area corresponding to a two-dimensional log-
arithmic fractal occupies a significantly smaller
part on the scattering curve with a slope v =2.05 £
0.09 (one order) in the range from 5 « 102to 3 -
10-' ecm™!. The part of the scattering curve corre-
sponding to the young branches has a slope in the
double logarithmic scale v = 1.58 = 0.09 in the
range from 4 « 107! to 4 cm™. The inflection point
in the g-dependence corresponds to an average
distance of 15 cm, which in terms of branch thick-
ness is converted to 5 cm, and in terms of branch
length — to 50 cm.

The study of fragments of the image of a mature
tree (a linden from Fig. 3) showed that the fewer
branches of the tree remain in the fragment, the
shorter becomes the length of the scattering curve
section corresponding to a two-dimensional log-
arithmic fractal structure with a slope close to 2.
In case the “old” branches of the tree are present
in the image (Fig. 4, right), we observe a small sec-
tion of the curve with an inclination v = 2.08 *
0.07, corresponding to a two-dimensional logarith-
mic fractal in the range from 10! to 6 « 10" cm™.
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Fig. 5. A fragment of an image of an adult (actively growing) tree (linden) that does not contain «old» branches is on the right. The scat-
tering curve is on the left: intensity depending on the pulse in a double logarithmic scale. In the pulse range from 2 * 10-' to 4 cm™!, the

curve is described by the dependence Q" with v=1.46 = 0.03

JETP, Vol. 165, No. 3, 2024



446

And at the same time, a long section with a slope
v =1.69 £ 0.02 is observed on the curve on a double
logarithmic scale, corresponding to young branches
in the range from 6 * 10! to 6 cm™ (Fig. 4, left).
If only young branches are present in the image
(Fig. 5, right), then there is no section correspond-
ing to the logarithmic fractal on the scattering
curve, and a section with a slope v=1.46 + 0.03 cor-
responding to the structure of young branches is vis-
ible in the range from 2 « 10-' to 4 cm™! (Fig. 5).

Thus, we can conclude that it is the old branches
in the image of the tree that are described by the
law of the logarithmic fractal with Q-2 — dependence
of the scattering intensity in the Fourier analysis of
their image. At the same time, as shown in [29],
their organization obeys the law of conservation of
the lateral surface area, while young branches obey
a different law, which, when analyzing two-dimen-
sional images, gives a dependence of intensity on
momentum in the form of O with v = 1.60-1.70.
It is also important to note that the power depen-
dence itself implies the realization of the hypothesis
of self—similarity of scalable elements — in this case,
branches of a tree. The question arises: is it possible
to combine into a single model the two stages of tree
growth that differ so clearly in the Fourier analysis
conducted above, and what are the similarities and
differences between the two different stages? We will
formulate the answer to this question in section 4.

4. TWO-STAGE MODEL OF THE TREE
BRANCHING STRUCTURE

In botany, trees are defined as “the life form
of woody plants with a single, distinct, perennial,
to varying degrees woody, persisting throughout life,
branched main axis — the trunk” [44].

Conventionally, the trunk and branches of a tree
can be radially divided into three main parts (lay-
ers): bast (floema, the living part of the bark), cam-
bium, wood (xylem). The bast is the outermost part
of the trunk, adjacent to the outer (deadened) bark
and consists of living cells, the bast is involved in the
transport of photosynthesis products from the leaves
to all organs of the tree. Cambium is the main pro-
ducing tissue of a tree, cambium consists of liv-
ing cells, while the outer part of the cells becomes
a bast, and the inner part becomes wood. It is due
to cambium that the tree and its branches grow
in thickness here. It is important to note that the
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bast and cambium are quite thin compared to the
trunk of the tree and have a fixed thickness. Wood
is formed from internal cambium cells and consists
of stiffened cells that are not capable of action, it oc-
cupies up to 90% of the volume of the tree. The outer
part of the wood (sapwood) is involved in the trans-
port of water and minerals from the roots upwards,
while the inner part (core) formed in many tree spe-
cies is physiologically inactive and performs only
a mechanical function. In addition to the trunk,
the tree is characterized by multiple branching, the
multiplicity of which increases every year. The ma-
ture branches have the same structure as the trunk
in thickness and consist of wood, cambium and bast.
Thus, the trunk of a tree, like any of its branches,
can be divided into an inner, partially “deadened”
part — wood and an outer layer consisting of living
cells.

As shown in [29], the images of the branching
structure of trees belong to the class of logarithmic
fractals on the plane and the law of conserva-
tion of the area of the lateral surface as branching
is performed for them. This conclusion fits well into
the description of a tree whose life is concentrated
on its surface, i.e. in the bast and cambium, as well
as in the outer layer of the xylem. The law of con-
servation of the lateral surface area at different
branching levels, being undoubtedly a simplified
mathematical model of a tree, nevertheless con-
nects the dimensional parameters of a branch of the
i branching level and k branches of the (i + 1) level
emanating from it [29]:

dl. =kd._ I @

i'i i+1%+1"

Here d, l.and d,,,, [, are the diameter of the cross

section and the length of the i and (i + 1) branches,
respectively.

Developing this model, we take into account that
the “living” layer of the branch has a finite thickness
x, the same (in the first approximation) at different
levels of the tree branching. Then not only the area
is preserved, but also the volume of the surface layer,
and the conservation law is written as

xdil; = kxd; - @

Such a transformation of the “conservation
law” during scaling does not change anything
from the point of view of the mathematical model,
but it is of great importance for the essence of the
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Fig. 6. The model of branching a Leonardo da Vinci tree into four branches with the condition of preserving the area (A). A model
of branching a tree into four branches with the condition of reducing the area (B). A model of branching a tree into four branches with

the condition of increasing the area (C)

matter, since it changes the very concept in which
the volume of living matter is now preserved at each
level of the branching tree.

Taking into account the thickness of the surface
layer makes it possible to introduce into a mathe-
matical model and describe the structural transition
from old branches to young branches. To do this,
note that the concept of a surface “living” layer
of a branch works as long as the condition is met
that the thickness of this layer is less than the radius
of the cross-section of the branch (x < d,,,/2). This
condition is violated when the thickness of the “liv-
ing” layer becomes equal to the radius of the cross
section of the branch, i.e. when the entire branch
consists only of living cells. This corresponds to the
definition of a single branch, inside which a spring
has not yet appeared. Thus, we can consider, as two
separate cases, the structure of the old branches,
for which x < d/2, and the structure of the young
branches, for which x,;, = d, /2.

JETP, Vol. 165, No. 3, 2024

In the first case, x in the right and left parts (2)
are reduced, we obtain (1) and, therefore, the law
of conservation of area is fulfilled. In the second
case, expression (2) takes on a new form and ac-
quires a new meaning;:

xdily = k- x; di s

or

2 g2
di li - kdi+lli+1’ ©)

that is, the volume of branches is preserved, and not
their surface area. The expression (3), provided that
the shape of the branch is self-similar at different
branching levels, is a mathematical definition for
a logarithmic fractal in three-dimensional space.

Thus, the system of young branches of the tree
forms a three-dimensional logarithmic fractal,
since the volume of branches at each branching
level is preserved, and the system of adult branches
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is a two-dimensional logarithmic fractal, since their
surface area is stored. This can explain the presence
of a transition point from the first to the second
section on the scattering curve, as well as the fact
that the length of the section of the scattering curve
corresponding to the two-dimensional logarithmic
fractal varies depending on the age of the tree and
the number of mature branches in the image. The
mature branches, in which the main part is occu-
pied by wood, form a logarithmic fractal structure
on the photo of the tree or on its surface, and the
young branches form a logarithmic fractal structure
in volume. The transition point itself is determined
by the condition when the thickness of the living
layer becomes equal to the radius of the branch x; =
d; /2. It is interesting to note that such a two-stage
model of the branching structure of a tree never-
theless obeys a single law of conservation of the
volume of living material at each level of branch-
ing, regardless of whether we consider old branch-
es or young branches. In other words, the number
of living cells at each level of branching remains
constant, although on old branches it is distrib-
uted over the surface of the branch, and on young
branches — over their entire volume.

The model proposed above finds experimental
confirmation in terms of mature and old branches
[29], however, the hypothesis of a three-dimensional
logarithmic fractal to describe the branching struc-
ture of young branches still requires its confirmation.
The experimental data presented above demonstrate
a power dependence with the index v = 1.60-1.70,
which implies the very similarity of branches at dif-
ferent branching levels. Based on the hypothesis
of self-similarity (see (4)) and the law of volume stor-
age at scaling (3), it can be shown at least on a quali-
tative level that the projection of young tree branches
onto a two-dimensional plane is a fractal on a plane
with dimension Df should be in lower case ~1.70.

5. THE HYPOTHESIS OF SELF-
SIMILARITY OF BRANCHES

The hypothesis of self-similarity of the shape
of branches during scaling can be formulated
as follows. A single branch from the point of its
branching from the mother branch to the point
of branching to the daughter is well described
by a cylinder of length / and diameter d. The
self-similarity of a single element (cylinder) within
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the entire structure of the tree means that two con-
ditions are met:

d; =od;, L =0l @

that is, the length and width of the branch at the next
level of branching decreases by the same number
of times a.

If the hypothesis of self-similarity is valid for old
branches and the law of conservation of the lateral
area of branches is fulfilled when scaling (1), then
it is easy to show that from (1) and (4) it follows that
a’ = k, where k is the number of child branches.
From here we get

2 _ .2 2 _ 2
di =kdi,, 7 =k, ©)

The first expression in (5) is a formulation
of Leonardo da Vinci’s law to describe the structure
of a tree [13, 39]. The second expression is a formula
for constructing a Pythagorean tree, for the case k =
2 [29, 45]. As shown in [29, 39], both constructions
are logarithmic fractals in two-dimensional space,
as is the mixed construction expressed by (1). Note
that the old (excluding young branches) part of the
tree in three-dimensional space is not a logarith-
mic fractal, since the volume of the branch of the
lower level is not equal to the sum of the volumes
of the branches of the upper level. On the contrary,

2, _ 13/2 12
di li =k / di+lli+1

_ ,1/2
Vi /K =K 6)
i.e. the volume of the lower-level branch is k 2 times
larger than than the sum of the volumes of the up-

per-level branches.

If the hypothesis of self-similarity is valid for
young branches and the law of conservation of the
volume of branches is fulfilled when scaling (3), then
it is easy to see that equality a® = k follows from (3)
and (4).

It is interesting to note that the primary law
of tree growth is branching, embedded in the
gene, while the proportions of branches are deter-
mined by the factors of branch formation during its
growth and are most likely due to external condi-
tions and the distribution of the resource base. So,
by setting the number & = 2 (which is true for most
branches), we can confidently predict that the length

and thickness of the child branch will be %/E ~1.26
times shorter and thinner than the mother branch.
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If the genetics of the tree forces the branch to be di-
vided into 3 daughter branches, then their length

and thickness will be %/5 ~ 1.44 times less than
the maternal. It would be interesting to find out
experimentally which of the rules “works”.

However, in photographs of trees we see their pro-
jection onto a plane, i.e. the area of the branches, not
their volume. In order to obtain the ratio of the areas
of the i generation of S, and the (i + 1)th generation
of S,,;, it is necessary to multiply the first and second
equations from the system (4):

dil; = o’d; .,y © S; = %/k_ZSHl’ 7

— P

i+17 3
K2

That is, if the total volume of branches of each
generation is preserved, then the surface area of the

(i + 1) (child) generation should be \3/k2 times less
than the surface area of the branch of the i (mother)
generation. Then the surface area of all k£ branches

of the (i + 1) generation will be %/% times larger than
the surface area of the branch of the i generation:

-3
kS, = ks, @®)

That is, at each branching level, the total sur-

face area of the branches will increase by %/E times.
Let’s model this situation using the example of the
logarithmic fractal of the Leonardo da Vinci
in two-dimensional space.

An object in which the total area of the elements
is the same at each level of the hierarchy, when
followed by the Fourier analysis method, gives an in-
tensity curve that decreases according to the g law
[29]. To illustrate how the intensity curve changes
if, instead of the law of conservation of area, we use
the «law of reduction» or «by increasing» the area,
we generated three objects — three analogues of the
Leonardo da Vinci tree. (Fig. 6). The first (Fig. 6 A)
is a model of branching into four branches with the
condition of preserving the area, which is a logarith-
mic fractal. The process of its construction is as fol-
lows: we take a square and add four squares to its
corners from the outside, the length of the sides
of which is two times less than the side of the origi-
nal square. Accordingly, the area of each such square
is four times smaller than the area of the original
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square, and the total area of all four such squares
is equal to the area of the original square. In the next
step, we repeat this process by selecting the squares
added in the previous step as the starting ones. Such
an object obeys the law of equal area when scaled.
A total of 8 such iterations were made. The second
object (Fig. 6 B) is a model of branching a tree into
four branches with the condition of reducing the
area, it differs in that the side of the squares de-
creases not by 2 times, but by 2.5 times, and the total
area of these squares is less than the total area of the
squares of the previous generation. When generating
a third object (Fig. 6 C ) — a model of branching
a tree into four branches with the condition of in-
creasing the area, squares are added at each next
step, the sides of which are only 1.7 times smaller
than the hundred squares added in the previous step,
and the total area of these squares is greater than the
total area of the squares of the previous generation.

The results of the Fourier analysis of the objects
constructed in Fig. 6 are presented in Fig. 7. For
convenience of comparison, a product of the the
Fourier intensity and the square of the coordinate,
I (q)qz, are shown, depending on the coordinate
q — the so—called Kratky representation. This rep-
resentation highlights the dependence of ¢, addi-
tionally highlighting the features of the curve. Thus,
in particular, the production of / (q)q2 in the range
g of interest to us should be a constant, which is very
convenient for detecting a logarithmic fractal in the
object under study. However, the product 7 (q)q2
shows an oscillating character with the growth of the
momentum transfer q. The oscillations are caused
by the regular structure of the objects of study. They
have a quasi-periodic character on a logarithmic
scale, which indicates the fractal properties of the
object under study.

The exponent (the slope of the curves on a dou-
ble logarithmic scale) turns out to be different for
different objects (Fig. 7). If the area of the pre-
-supplied generators does not change (Fig. 6 A),
the slope of the scattering curve is v = 1.99 £ 0.04.
If the total area of the added generation decreas-
es with decreasing scale with a factor (4/6.25) per
generation (Fig. 6 B), then the slope of the scatter-
ing curve is v = 2.24 £ 0.03 (greater than 2), and
if the area of the added generations increases with
a factor (4/2.89) per generation (Fig. 6 C), then the
slope of the scattering curve is v = 1.68 £ 0.06 (less
than 2).
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Fig. 7. Investigation of constructed objects by numerical Fourier analysis

Thus, it is shown that if the total area of the child
branches in the tree image is larger by % , Which
is a consequence of conservation the total volume
of branches at different levels of branching, then the
exponent of the degree of the scattering curve is less
than 2.

That is, the tree branching model with volume
preservation and with the preservation of the shape
of branches during branching gives results similar
to the results of studying photographs of young trees
and photographs of young branches when studying
them using method of numerical Fourier analysis.

It is interesting to discuss the question of convert-
ing portions of a logarithmic fractal in three-dimen-
sional space for young branches into the proportion
of a two-dimensional logarithmic fractal for adult
branches. At a certain stage of branch growth, such
a transformation process should be essential pre-
cisely for branches (or part of a branch) with charac-
teristic dimensions corresponding to the inflection
point at g, in the dependence /(g) in Fig. 8-15 (see
Application). This inflection point g, characterizes
a branches with a diameter from 3 to 6 cm, depend-
ing on the type of tree and, possibly, the conditions
of its growth. Obviously, as the branch passes from

one growth mode to another, it is the proportions
of the branch that change. It can be argued that the
inner part of the branches or trunk should obey the
law of the logarithmic fractal in three-dimension-
al space, but it is much smaller than the outer part
of the trunk, which obeys the law of the logarith-
mic fractal in two-dimensional space. Taking into
account the logarithmic scale laid down along the
g axis (the axis of dimensions), we confidently see
the point of inflection or transition from one mode
to another, although on a linear scale this transition
would look more stretched. Therefore, experimental
curves on a double logarithmic scale demonstrate
a bifractal scattering pattern

6. CONCLUSIONS

Fractal properties in the formation of the branch-
ing structure of deciduous trees are studied by the
method of numerical Fourier analysis. It has been
shown that the intensity curve, depending on the
Fourier space coordinate 1(g) ~ ¢, has two sec-
tions with different exponents of degree v and
an inflection point between them. For old (large)
branches with small ¢, the exponent is 2, which
corresponds to the law of the logarithmic fractal
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Fig. 8. Study of the willow image by numerical Fourier analysis
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Fig. 10. Study of the image of an apple tree by numerical Fourier
analysis

in two-dimensional space: the surface area of the
lower branch is equal to the sum of the surface ar-
eas of the branches after its branching, i.e. the law
of conservation of area when scaling is fulfilled.
It can be concluded that the living tissue of old (large)
branches of adult trees is formed only on their sur-
face. The exponent of the Fourier curve in the region
of large ¢g is v = 1.6-1.7 and is due to the law of the
structure of young branches, which consist entirely
of living biological cells involved in the growth of the
tree. Unlike the old branches, life in them is concen-
trated in the entire volume of the branch, not just
on the surface. It is assumed that the young branch-
es retain not the surface area, but their volume
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Fig. 11. Study of the birch image by numerical Fourier analysis

at different levels of branching. That is, the structure
of branches at the upper levels of branching obeys the
law of conservation of volume when scaling, which
corresponds to the model of a logarithmic fractal
in three-dimensional space. A mathematical model
is proposed that generalizes the concepts of a loga-
rithmic fractal on the surface for adult branches and
a logarithmic fractal in volume for young branches,
which is equivalent to the statement that the num-
ber of living cells at each level of branching remains
constant, although on old branches it is distribut-
ed along the surface of the branch, and on young
branches — over their entire volume. Numerical
models of two-dimensional images of a tree obeying
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the law of conservation of volume in three-dimen-
sional space (the law of growth of a young tree)
are constructed. Numerical Fourier analysis of the
models demonstrates a coincidence within the error
bars with the results of Fourier analysis obtained for
real trees. Thus, a generalized fractal concept of the
growth and branching structure of free-standing de-
ciduous trees has been built.
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APPENDIX

To demonstrate the generality of the law of scaling
the structure of trees, we present a series of images
of various trees and Fourier analyses of these imag-
es. All of them have the same kind of curves with
an inflection, characterizing the two-stage structure
of the formation of branches of a deciduous tree. For
large scales (adult branches), the exponent for all
the above images is close to or within the error bars
of v, = 2.00, and for small scales (young branches),
the exponent turned out to be less than 2 and approx-
imates v, =1.6-1.8. In all cases, the inflection point
g.~0.3 cm™!, which corresponds to the linear aver-
age size r, = 20 cm. In this case, the average linear
size of the rectangular element r, = /I .d, =20 cm
corresponds to the thickness of the branch d , =
6.6 cm and its length /. = 60 cm. That is, branches
with sizes smaller than d, and /, are described by one
scaling law, and branches with sizes larger than
d, and [, are described by another. The structure
of large branches is described by the law of the loga-
rithmic fractal in the two—dimensional space of the
tree image — the law of conservation of area during
scaling. The structure of small branches is described
by the law of a logarithmic fractal in three-dimen-
sional space, which, when projected onto a two-di-
mensional plane, forms a dependence for a classical
fractal with v,= 1.6-1.8.

Figure 8 shows an image of willow and a Fou-
rier intensity curve depending on the momentum
on a double logarithmic scale with degree values for
large branches v, = 1.92(3) in the range of coordi-
nates of the inverse space from 6-102 to 510! cm!
and for small branches v, = 1.77(1) in the range
from 5 10! to 4 cm™'. The inflection point
g.=5 * 10" cm! corresponds to an average distance
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of 12 c¢cm, which in terms of branch thickness
is 4 cm, and in terms of branch length is 36 cm.
Thus, the structure of branches with a length from
36 to 300 cm (thickness from 4 to 30 cm) is described
by the structure of a logarithmic fractal in two-
dimensional space. And the structure of branches
from 4.5 to 36 cm long (0.5 to 4 cm thick) is de-
scribed by the structure of a logarithmic fractal
in three-dimensional space.

Fig. 9 shows an image of a lime tree and a Fou-
rier intensity curve depending on the momentum
on a double logarithmic scale with degree values for
large branches v, = 2.04 £ 0.07 in the range of coordi-
nates of the inverse space from 6:102to 3:10' cm™ and
for small branches v, = 1.74(1) in the range from 3-10"!
to 3 cm’l. The inflection point ¢,= 3 * 10°! cm’!
corresponds to an average distance of 20 cm, which
in terms of branch thickness is converted to 6.6 cm,
and in terms of branch length — to 60 cm. Thus,
the structure of branches from 60 to 300 cm long
(6.6 to 30 cm thick) is described by the structure
of a logarithmic fractal in two-dimensional space.
And the structure of branches from 6 to 60 cm long
(0.6 to 6 cm thick) is described by the structure
of a logarithmic fractal in three-dimensional space.

Figure 10 shows an image of an apple tree and
a Fourier intensity curve depending on the momen-
tum in a double logarithmic scale with exponents for
large branches v, = 1.99 *+ 0.01 in the range of coordi-
nates of the inverse space from 2-10~% to 1.5-10! cm’!
and for small branches v, = 1.72 £ 0.01 in the range
from 1.5 to 6 cm™. The inflection point g, = 1.5 cm™!
corresponds to an average distance of 4 cm, which
in terms of branch thickness is converted to 1.3 cm,
and in terms of branch length — to 12 cm. Thus,
the structure of a network with a length from 12 to
1000 cm (thickness from 1.3 to 100 cm) is described
by the structure of a logarithmic fractal in two-di-
mensional space. And the structure of branches from
3to 12 cm long (0.3 to 1.3 cm thick) is described
by the structure of a logarithmic fractal in three-di-
mensional space.

Figure 11 shows an image of a birch tree and
a Fourier intensity curve depending on the mo-
mentum in a double logarithmic scale with ex-
ponents for large branches v, = 1.99 + 0.03 in the
range of coordinates of the inverse spaces from 3 ¢
102 to 1 cm™ and for small branches v, = 1.20 +
0.01 in the range from 1 to 6 cm™. The inflec-
tion point g, = 1 cm™! corresponds to an average
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distance of 6 cm, which in terms of branch thick-
ness is converted to 2 cm, and in terms of branch
length — to 18 cm. Thus, the structure of branch-
es with a length from 18 to 600 cm (thickness from
2 to 60 cm) is described by the structure of a log-
arithmic fractal in two-dimensional space. And
the structure of branches from 3 to 18 cm long
(0.3 to 2 cm thick) is described by the structure
of a logarithmic fractal in three-dimensional space.

Figure 12 shows an image of an oak tree and
a Fourier intensity curve depending on the
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Fig. 12. Study of the image of an oak tree by numerical Fourier
analysis
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Fig. 14. Study of the image of an unidentified tree by numerical
Fourier analysis
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momentum in a double logarithmic scale with expo-
nents for large branches v, = 1.99 + 0.04 in the range
of coordinates of the inverse space from 2 * 107 to
3 « 10-'cm™! and for small branches v, = 1.72 £ 0.03
in The range is from 3+ 1071 to 1 cm™. The inflection
point g.= 3 * 10" cm™! corresponds to an average
distance of 20 cm, which in terms of branch thick-
ness is converted to 6.6 cm, and in terms of branch
length — to 60 cm. Thus, the structure of branch-
es from 60 to 900 cm long (6.6 to 100 cm thick)
is described by the structure of a logarithmic frac-
tal in two-dimensional space. And the structure
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Fig. 13. Study of the image of another oak tree by the method of
numerical Fourier analysis
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Fig. 15. Study of the image of a tree of the same unidentified spe-
cies by numerical Fourier analysis
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of branches with a length from 18 to 60 cm (thick-
ness from 2 to 6.6 cm) is described by the structure
of a logarithmic fractal in three-dimensional space.

Figure 13 shows an image of another oak tree
and a Fourier intensity curve depending on the
momentum in a double logarithmic scale with ex-
ponents for large branches v, = 2.00 + 0.06 in the
range of coordinates of the inverse space from
4 + 10%2to 3 « 10! cm™! and for small branches
v, =196 £ 0.03 in the range from 3 * 10" to 1.5 cm™..
The inflection point g, = 3 * 10"! cm™! corresponds
to an average distance of 20 cm, which in terms
of branch thickness is converted to 6.6 cm, and
in terms of branch length — to 60 cm. Thus, the
structure of branches from 60 to 600 cm long
(6.6 to 60 cm thick) is described by the structure
of a logarithmic fractal in two-dimensional space.
And the structure of branches from 12 to 60 cm long
(1.3 to 6.6 cm thick) is described by the structure
of a logarithmic fractal in three-dimensional space.

Figure 14 shows an image of an unidentified tree
and a Fourier intensity curve depending on the
momentum on a double logarithmic scale with ex-
ponents for large branches v, = 2.03 £0.06 in the
range of coordinates of the inverse space from
2:102 to 3-10°! cm™ and for small branches v, =
=1.81 £ 0.02 in The range is from 3+ 10" to 1.5 cm™.
The inflection point ¢, = 3 + 10! cm™ corre-
sponds to an average distance of 20 cm, which
in terms of branch thickness is converted to 6.6 cm,
and in terms of branch length — to 60 cm. Thus,
the structure of branches from 60 to 600 cm long
(6.6 to 60 cm thick) is described by the structure
of a logarithmic fractal in two-dimensional space.
And the structure of branches from 12 to 60 cm long
(1.3 to 6.6 cm thick) is described by the structure
of a logarithmic fractal in three-dimensional space.

Figure 15 shows an image of a tree of the
same unidentified species, a Fourier intensity
curve depending on the momentum on a dou-
ble logarithmic scale with exponents for large
branches v, = 2.02 £0.06 in the range of co-
ordinates of the inverse space from 3-10-
2 to 340" cm™! and for small branches v, =
=1.75 £ 0.03 in the range from 3 * 10"' to 1.5 cm™..
The inflection point ¢.= 3 + 10! cm™! corresponds
to an average distance of 20 cm, which in terms
of branch thickness is converted to 6.6 cm, and
in terms of branch length — to 60 cm. Thus, the
structure of branches from 60 to 900 cm long
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(6.6 to 90 cm thick) is described by the structure
of a logarithmic fractal in two-dimensional space.
And the structure of branches from 12 to 60 cm long
(1.3 to 6.6 cm thick) is described by the structure
of a logarithmic fractal in three-dimensional space.
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