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Abstract. The expressions for the additional terms to the electromagnetic field energy density, energy
flux density, momentum density, momentum flux density, components of angular momentum density
and components of anglular momentum flux density tensor in a medium with nonlocality of the n-th
order nonlinear optical response are obtained from the Maxwell equations system for the case when
the number of the interacting waves with different frequencies is less than or equal to n (frequency-de-
generate processes). It is shown that the intrinsic symmetry relations between the components of both
local and nonlocal nonlinear susceptibility tensors make it impossible to obtain the correct formulas for
the aforementioned fundamental characteristics of the electromagnetic field as a particular case of the
already known expressions for these quantities related to the nonlinear interaction of # + 1 waves with
absolutely different frequencies if we put some frequencies equal to each other. As an example, we discuss
the obtained additional terms caused by nonlocal nonlinear optical response of the medium in cases of

self-focusing, second- and third-harmonic generation.
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1. INTRODUCTION

The energy, momentum and angular momentum
(moment of momentum) of the electromagnetic field
are its most important characteristics, the analysis
of which is of considerable interest both from the point
of view of the electromagnetism theory and for prac-
tical applications. Being fundamental physical quan-
tities, they obey conservation laws, which are written
in the form of balance equations linking the densities
of these quantities and the densities of their fluxes [1-
5]. Their form depends on the spatial symmetry of the
medium in which the electromagnetic field exists.
In absorbing, inhomogeneous and anisotropic media
[1, 3, 6-8], these equations are inhomogeneous. Other
important properties of the medium, such as the fre-
quency and spatial dispersion of the optical response
and its nonlinear dependence on the external electric
field strength, do not lead to inhomogeneity in the
conservation laws, but can fundamentally change the
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formulas for the energy, momentum and angular mo-
mentum densities, as well as for their flux densities.
A certain tendency can be noted: taking into account
the frequency dispersion of the optical response leads,
as a rule, to changes in the expressions only for the
energy density, momentum density, and angular mo-
mentum density of light in the medium, without lead-
ing to significant changes in the expressions for the
corresponding energy flux density, momentum flux
density, and momentum flux density, while the spa-
tial dispersion of the optical response of the medium,
on the contrary, requires changes in the definitions
of the energy, momentum, and angular momentum
flux densities, leaving the coefficients unchanged.
In turn, the nonlinearity of the optical response affects
all of the above-mentioned quantities because they de-
pend on the polarization of the medium in one way
or another [12-14].
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In addition to fundamental aspects of electrody-
namics, the study of the influence of the optical re-
sponse of the medium on the energy, momentum and
angular momentum of propagating radiation is of great
interest for practical applications. Thus, the energy flux
density determines the intensity of radiation, which
is the main characteristic used in light detection [15].
Momentum and moment of momentum determine the
magnitude of mechanical effect of light on the medi-
um [1, 16]. In addition, the angular momentum of light
also has great practical potential in the tasks of infor-
mation transfer, control and manipulation of micro-
particles and in the study of the structure of matter
[17-26].

The formulas for energy, momentum and angu-
lar momentum of laser radiation propagating in me-
dia possessing nonlocal nonlinear optical response
are of special interest due to the study of the pecu-
liarities of interaction of elliptically polarized waves
in them. In [27], analytical expressions for the energy
density, energy flux density, momentum density, and
momentum flux density of light were derived in the
case when among the frequencies n + 1 of elliptically
polarized interacting waves in a medium exhibiting
a nonlocal nonlinear optical response of n-th order,
there are no equal to each other. For such waves in the
above-mentioned media, expressions for the angular
momentum component and the components of the an-
gular momentum flux density tensor of electromagnet-
ic field have also been derived [28]. At the same time,
many of the most common processes of nonlinear
optics, such as, for example, generation of second and
third harmonics, self-action, and the spectroscopic
scheme of Coherent anti-Stokes Raman spectroscopy
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(CARS), are degenerate in frequency, i.e., among the
frequencies of waves interacting in a nonlinear me-
dium there are those equal to each other. The initial
opinion that the presence of degeneracy of frequencies
simplifies the formulas for energy density, energy flux
density, momentum density, momentum flux density,
angular momentum component, and the components
of the angular momentum flux density tensor and they
are all easily obtained as a special case of equality
of separate frequencies in the previously obtained ex-
pressions of [27, 28], turned out to be erroneous. The
case of degeneracy of one or several frequencies turns
out to be in fact more general and requires more com-
plicated transformations for deriving formulas for the
above-mentioned characteristics of the electromagnet-
ic field than the limiting situation when the degenera-
cy coefficient of each of the frequencies of interacting
waves is equal to unity. In particular, this is due to the
fact that in the degenerate case the tensors describ-
ing the local and nonlocal nonlinear optical response
of the medium have greater symmetry than in the
nongenerated case [29, 30]. The purpose of this work
is to find analytical expressions for the additions to the
energy density, energy flux density, momentum densi-
ty, momentum flux density, angular momentum den-
sity components, and angular momentum flux densi-
ty tensor components due to the local and nonlocal
nonlinear optical response of the n-th order of volume
of a homogeneous nonabsorbing medium in the case
when the number of interacting waves with different
frequencies in it is less than or equal to n. The latter
is equivalent to the fact that there are waves with the
same frequencies among the # + 1 waves formally inter-
acting in the medium with n-order nonlinearity.

2. POLARIZATION OF MEDIUM AT FREQUENCY DEGENERATE NONLINEAR WAVE
INTERACTION IN MEDIUM WITH NONLOCALITY OF OPTICAL RESPONSE

Let in a medium exhibiting nonlinearity of #-th order, of n + 1 frequencies of the waves involved in the inter-
action, the first m — 1 frequencies are different, the next n — m + 1 frequencies are equal to ®,,, and the last

-1
W, = mZoo, +(n-m+1)o,.
i=1

The electric field strength created by them is equal to

m

E(r,t) = ZE(/) (r,t,(ol )exp(—ic)lt) + E0*D (r,t,(n)n+1)exp(—icon+1t) +c.c. =

/=1

)

m
= YED +E"D s e,
=
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where EV )(r, t,y) is the complex amplitude of the wave with frequency ®,. The magnetic field induction B(r,?)
(which we will consider equal to the magnetic field strength H(r,7)) and the electric field induction D(r,?), similar
to (2), are expressed through the complex amplitudes E(l)(r, t,w;) and l~)(1)(r, t,@y):

B(r.c) = SBY (1.1, exp(~ivy) + B (r.1,0,,, Jexp(~ie,, 1) + c.c. =
=1

” (2)
=YBY + B tcec,
I=1
m ~ ~
D(r,t) = ZD(” (r,t,w,)exp(—ia),t) + D0+ (r,t,wn+1)exp(—i(on+lt) +c.c.=
m
= 3Dp® + D" s cec.
=1
In a medium exhibiting optical nonlinearity of n-th order
D=D, +P,
where
P= Ploc + Pnloc
Here D, is a linearly depending on E part of the electric induction vector. The local P and nonlocal P"
parts of the nonlinear polarization of the medium are also written in a form similar to E:
m
plocnloc (r,t) = ZP["C’”["C (r,t,(nl )exp(—imlt) + plocnloc (r, Lo, )exp(—imn+lt) +cc. =
=1
“)

Ploc,nloc ((0[) + Ploc,nloc ((')n+l ) + C.C.

M=

=1

The constitutive equations for Pl"c’”l"c(u)l), where / =1,2,...,m,n +1, in a medium exhibiting n-order non-
linearity can be written as [30-32]

I _ : o1 _—m-1 _(F(O )
Pioc(ml)_x.n n (‘”/»‘an“”l O @, ™%

) TT 70* T oy ©)
n P m
T | o |
p=1 7 p=m '
p#l
itl=1,2,...,m—-1,
i ) U (Fo ) pre) TT o0 T p(m)
oc _ A(n . —m— ~ - n+ p)* m*
Pi ((Dm)_xii i (mm’wn+l’_0‘)1 »— Wy, )EiI HEi H E[ > (6)
n+l'1 m+1 n+ p=1 V4 p=m+1 P
ploc _ ) c=mel ~(F(®,)) m_1E<p> - Em 7
i (wn+l) X,','" 0,50 0, H i H i ()
1 p:1 V4 p:m P
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f;nloc (0)[) = Fiiwk ((Dl; ©, . :
§=

s#l

ifl=1,2,...m-1,

Pinloc (mm) =T, k(g)m;(on+l)a E(’l+1) + Zrnk(

n+l

and

m—1

I;nloc (U)n+1) — zrii“k (wn+l; (Ds)akEi(Ss) + Fiiﬂk (wn+l;

s=1

Here, the indices i, i}, iy, ... i, |, and k take the values
x, y, and z ; the indices occurring twice are summed;
the tensors 3 and ¥ of rank n+1 and n+ 2, re-
spectively, determine the contributions of the local
and non-local nonlinear response of n-th order to the
polarization of the medium; iq where 1< s<g<n+l,
denotes the index sequence i, i, |, ..., Iy q, and +(Dq

denotes, respectively, the frequency sequences @, ®_

)8 E(””) + Zl"uk(w,,—w )8 E(S) +1"”k(co,,—u) )a E(’”)* 8)

-~ )9, B ©)

s=1

(om)akEl.(”’”). (10)

s identical freqquencies ®,, is denoted in these formu-

las as G)fn In (5)-(7) and hereafter, F(w,,) is the mul-
tiplicity of degeneracy of the frequency o, , defined
as the number of occurences of w,, after the semicolon
in the arguments of the tensor component ¥ or ¥, and
increased by one if the frequency -, is the first ar-
gument of the components of these tensors. For the
convenience of writing down (8)-(10), we introduced

e @y, O and —o, —0, |, - —0,_j, —00; the set of auxiliary tensors
. _ nloc s)| _
Fiixk(wnﬂ’ws) = 9JF, (‘”ml) / a(akEis ) N
0 Bl 5 GeD o HE(p) 11 &, (D
yll l lk (‘on+l’0)1 ms+1’
" p=m+l g
p#s
y
Ty s(opo,.) = 0B (@) / 0@, E") =
_ G g _pF@)D E®” E™”, (12)
Y,’,"*‘,’"”k (DI’ © -, 0)[+1’ (Dm H H
1 b p = m+1 p
p#l
. _ nloc ()*| _
i (m,,—ms) = 0P, (m,) / a(akEAs ) =
(n)
’Y”nnllmm(, 7 :.?:/;:al ;ax(/.:)ﬂisk
. (,s)-1 _=max(/,s)-1 _= ~(F(o,)-1)
X(mlsmn+1 ) (Omm g ’_m$?3(1,5)+1 ’_mﬁax(l,s)ﬂ =Wy, ’_(Ds) X (13)

XE(”+1) HE(P)* H E(m)*

p=1
p#l.s
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allowing to shorten the notation of Ploc(u),) and

P”loc((nl), as well as the following equations.
If the upper index at if or @/ is less than the low-
er index, the corresponding sets are empty, and the

Ly % (“’1; COn+1)

n+l

following from the intrinsic symmetry relations of the
tensor ?(”) [30]. After substituting the explicit forms
of i, @7 and @ into (5)-(7), the resulting expressions
for 2" (@), (@, ), and P (a,,,) coincide with
a special case of the formulas written out in [33], and
after substituting (11)-(13) into (8)-(10) and writing
in them the explicit forms of i, @7, @; , the resulting

expressions for P, nloc (o)), P, nloc (w,,), and P, nloc (,,1)

associated products of the fields in P loc(w,),P ”loc(u)[),
Ui (@, 500, T 1 (@50,,,), and I'; , (0,;-0,) are

considered equal to one. The components of the ten-
sors (11) and (13) satisfy the condition

- _Fiisk (_wn+l; — O )’

coincide with those given in [30]. In the constitutive
equations (5)-(10), the frequency ®,, has degeneracy
multiplicity F(w, ) = n—m+1, and all other frequen-
cies have degeneracy multiplicity 1.

The absence in these formulas of several different
sets of identical frequencies is due solely to the purpose
of making the cumbersome formulas used shorter. All
further formulas obtained in this approximation can
be easily generalized to the cases of several degenerate
frequencies.

3. ENERGY AND MOMENTUM OF LIGHT AT FREQUENCY DEGENERATE NONLINEAR
WAVE INTERACTION

To obtain additions to the energy density

U(") — U(HJOC) + U(n,nloc)

to the field energy flux density vector

S(”) — S(”JOC) + S(n,nloc)

(also known as the Poynting vector), the momentum density component

g" =g

and the momentum flux density component

(n,loc) n g{n ,nloc)

1

G_(.n) — ng,loc) " G.(In,nloc)

y y

related to the local and nonlocal nonlinear opti-
cal response of n-th order volume of a homogeneous
non-absorbing medium, it is necessary to substi-
tute expressions (5)-(10) into the formula for D(r,?),

1

c

la,[DxB]+D><V><E+B><V><B=0,
c

(E-9,D+B-9,B)+divExB]=0,

ij 5

similar to [27]. The obtained result, as well as E(r,?),
B(r,?), should be further substituted into the following
of Maxwell equations of energy conservation and mo-
mentum conservation laws [1-3]:

(14)

(15)

and average the resulting expressions over time. As a result, only the derivatives of slowly changing quantities
will remain in the equations. Then the obtained expressions should be transformed so that they take the form

of continuity equations:

LU +divs =0,
Cc

(16)
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c
relating the energy density U to the energy flux densi-
ty S and the momentum density g; to the momentum
flux density G,.. Since D additively includes the sum-
mands related to the linear and nonlinear components

!
I
M3

3
Il
—_

i
M

3
Il
—_

sl
I
M

1

3
Il
—

G,

y

Il
M

3
I
_

To find the explicit form of the summands
in the right-hand sides of equations (18)-(21),
it is necessary to transform the expressions
(E-9,P) =0,(E-P)—(P-9,E) and (P- apE), where
the angle brackets denote time averaging, and p takes
the values x,y, and z. Unfortunately, this procedure
turns out to be fundamentally dependent on the num-

ber of summands in the constitutive equations and,
1 _
X, ((°n1§"(01

==X o |70
F(()) )Xlnﬂll ]lmnl(

n+l

1
d,g; + ale.j =0,

(U(n,loc) + U(n,nloc))’

(S(n ,loc) + S(n ,nloc) )

(ggn,loc)

(n,loc) (n,nloc)
(G,.j +GY )

m-1 _~(F(o,)-1)
7_(Dm

n+l°

17)

of the polarization of the medium, respectively, and
each of them consists of the sum of local and nonlocal
components, the entries in (16), (17) U, S, g;, and Gl.j.
can be written in the form of

(18)

(19)

" ggn,nloc) )’

1

(20)
21

therefore, the results of [27], where m was equal to n,
i.e., the frequencies of all # + 1 interacting waves were
different, cannot be directly used to find them.

Substituting constitutive equations (5)-(7) for the
local nonlinear polarization into (P - d pE> and con-
sidering the property of permutation symmetry of the
tensor 2(”), according to which [29]

’(Dn+l) =
(22)

“‘57_2—&x“%»}

it is possible to check that for any of the set of frequencies @, , ., of interacting waves the equality is true

s

For this purpose we need to substitute formulas
(5)-(7) into the left part of formula (23), then in the
summand containing the derivative of the electric field
strength at the frequency w,,, to bring, applying the rules
of differentiation, under the derivative of all fields at this
frequency, and then, using the internal symmetry rela-
tions (22), to transform in all the resulting summands
of the left part of formula (23) the components of the

tensor )”((”) so that they all have the same sequences

of indices and frequency arguments. If, for example, w,
is chosen as the first frequency, the resulting expression
will coincide with the right part of formula (23). The
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S5 (0)2,7 2o

(23)

transformation of the latter and, as a consequence, find-
ing the explicit form of the additions to the components
of the energy-momentum tensor of the electromagnetic
field associated with the local nonlinear optical response
of the volume of a nonabsorbing isotropic medium is re-
lated to the difference between two approaches to the
formal determination of the number of waves involved
in the interaction.

At widespread direct approach it is considered that
in the medium demonstrating nonlinearity of n-th or-
der, interact m +1 waves with different frequencies

® 5 uns1» Where m < n, for each of which Maxwell
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equations have the same form. It looks more natural
when checking the system of equations describing the
interaction of waves in a nonlinear medium for the
necessary fulfillment of the laws of conservation of en-
ergy, momentum and angular momentum of light. The
resulting electric field in this case is first represented
as a superposition of field strengths of a given number
of interacting waves with different frequencies, and
then the coupling between them due to the nonlin-
earity of the medium is used. But within the approach

To obtain the right-hand side of (24) it is neces-
sary m + 1 times to write equality (23), successively
choosing O 5. mat1 A8 the frequency standing to the
left of the semicolon in the sequence of frequency

SR (0,2, B (0,)0,E .=

s=1

To obtain this equality, it is necessary to mul-

tiply the right and left parts of (23), written for
frequencies ® , .., respectively by F(w,),
where [ =1,2,....mn+1, add the resultingm +1
equalities and divide the result by n+1 . Since

2;"=1F () + F(-o,,,) = n+1, the left part after this
transformation remains unchanged.

gy n-loe) — lmZI[I_K((D])] iloc ((Dl)Ei(l)*

(n,loc) _
s =0,

m
(n,loc) _ loc (*
&p - zepijPi ((Dl)Bj te

=1

1
S n+1

RYZHIKOV, MAKAROV

based on the limiting transition from the case n+1
of waves with different frequencies to the degenerate
case considered in this paper, one can consider that
n + 1 waves interact in the medium, but the equations
for n — m + 1 them having the same frequency w,, co-
incide. This case reflects the point of view, according
to which in the medium having nonlinearity of #-th or-
der, always interact exactly #n + 1 waves, even if there
is a degeneracy of frequencies. In the framework of the
first approach, formula (23) takes the following form

.106 (ms)aPEl'(XS)*-l- [.:_ioC (wnﬂ ) apEz'(n+l)*+ ¢.c.=

24

arguments of the tensor f((”), add these expressions and
divide the obtained result by m + 1. According to the

second approach, formula (23) is written in the form of

JECD" 4 cc.|. (25)

n+l

ap lﬁ:—lpilloc ((D[)E,-(,l)* + Pl-nljc ((,0

Substitution of the found expressions (Ploc -0 pE>
into (15) and (Ploc -d,E) into (14) and compari-
son of the resulting formulas with (16), (17) allow
us to write down the additions to the components
of the energy-momentum tensor associated with the
local nonlinear optical response of the non-absorbing
medium volume in the following form:

#[1= K (-0,0) ] B (0, E"" + e 26)
@)
i (0,0) B+ e 8)
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(e ij Levy-Civita tensor),

6 = S8kl 2 (o)~ 1 (o) £ ]+

/=1

+6pkK(—m )Pl.loc (m

n+l n+l

In formulas (26)-(29), in the case of the direct ap-
proach, K((Dl,n+1) [(m+1)F(w, n+1)]
limit transition approach, K(w, n+1)

m = n for all indices F(w;) =
leads to the same result.

The formulas (26) and (29) obtained within the lim-
it transition approach and formula (28), independent
of the choice of approach, differ from their analogous
expressions for the energy and momentum densities
and momentum flux densities due to the nonlinear lo-
cal optical response of the medium volume in the case
when all n + 1 frequencies of interacting waves differ
only in the number of summands in their sums. At the
same time, formulas (26) and (29) in the case of the
direct approach contain additional coefficients. It will

and in the
(n+ 1)_
1, and using any of them
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(29)

)El'(n+l)* - Pkloc (®n+1)E(n+l) tc.C

be shown below that both of these approaches to find-
ing the additions to the energy density, field energy flux
density vector, momentum density component, and
momentum flux density component of the propagat-
ing radiation due to the nonlinearity of the medium,
when applied to obtain the contribution to the angular
momentum flux density due to the nonlinearity of the
medium, lead to expressions satisfying the same crite-
rion of equivalence of the contribution of each of the
interacting waves, which was demonstrated in [28].
If we substitute into (P - d E) the constitutive equations
for the nonlocal component of the nonlinear polariza-
tion of the medium (formulas (8)-(10)), then, taking
into account the spatial derivatives of the electric field
strength amplitudes at different frequencies contained
in these formulas, we can write the following equality

m
<P”’“ > Z "’c( ¢)9, E(” Pl:"" (mnﬂ)apEl.(”’:*”* +c.c. =
- 0) (@) (m) gty p(D)
—aPEZA kHEq HE’"E” 0 E;
=1 qg=m
q;tl
+ A<'"> H E(q)H E(m) E™D), E(m) + A("H)H E@ H E("”a E<n+1>*J 30)
q g=m q q g=m

q

[Z A( HE(Q) HE(m)E(YH'l)*a E(l) + A(m) HE(l]) HE(m)E(nH)*a E(m) +

q¢l

Here A([Jc are unknown auxiliary tensors, the

specific form of which determines {/{"*"°) | glmomloc)
(m.nloc) and G;."’nloc). To find A:(l}c it is necessary

i

to solve the system of equations, which is formed af-
ter opening the derivatives included in the right part
of (30) and equating the coefficients contained in the
left and right parts at the same combinations of electric
field strengths and their spatial derivatives. The system

of equations with respect to AI(IIL obtained in this way
1
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q=m

Al('l’ljl) HEE‘]) HE(’")B E(”“)*J +c.c.
qg=m

does not have a single solution due to the fact that the

conservation laws (16), (17) remain unchanged when

expressions with divergences and time derivatives equal

to zero are added to them. Nevertheless, starting from

the difference of formula (23) from the analogous ex-

pression in the case when all frequencies @, , ., are

different, and from the form that formula (30) takes at

m = n [27], it is also possible to pick up Al(gc and write
(30) in the form '
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s

s=1

_ 1 nloc* 10 )
= J (Pi ((D/)Ei )_ak E; rijk(_ml’

if/ =1,2,...,m, and

> P ()3, + B (0

£

n+1
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)8 E(”+1) +c.c. =

m
)0, EV D+ ED Y T (o)
ol

(s)
ms)apEj +c.c,

ipinloc (ws)apEi(S)* + Pinloc( ,,+1)a E(n+1) +cc. =

s s n+l

s=1

_ 1 nloc (n+1)*)
F(_wnﬂ){ap(ﬁ ( n+1)Ei J [

if I = n+1. To be convinced of the validity of these ex-
pressions, it is enough to write explicitly the derivatives
in their right parts and compare the coefficients at the
same combinations of field strengths and their deriva-
tives in the right and left parts of the equations. By vir-
tue of the intrinsic symmetry relations [30], these coef-
ficients appear to be equal to each other.

Using the equalities (31) and (32), two sets of for-
mulas for U(n,nloc)’ S(n,nloc)’ ;n,nloc) and Gl;n,nloc),
corresponding to the two different criteria of equality
of frequencies of interacting waves described above,
can be obtained. To realize the direct approach,
it is necessary to add the sum of the expressions (31)

alternately written for o, = ®, , , with the expression

+1

(32)

+c.c.,
s=1

(32) and divide the obtained result by m + 1. The ap-
proach based on the limit transition requires, before
adding the sum of the expressions (31) written one
by one for 0, = O m with expression (32), to first
multiply the summands of this sum by F(w,), and (32)
by F(-w,,,), respectively. Then the result obtained
by this operation should be divided by # + 1. Due to the
cumbersome nature of the resulting final expressions
similar to (23) and (24), we will not give their explicit
form here, but will immediately write down formulas
for the additions to the components of the energy-mo-
mentum tensor of the electromagnetic field associated
with the nonlocal nonlinear optical response of the
non-absorbing medium volume:

ynnioe) = i[1 — K ()| (0 ) ED" +[1= K (~w,,1) | 2" (@, ) BV + cc, (33)
I=1
m

s = C_IZ[K( Oy )BT X Ty (00,,050,)0, EF) +

+K(u),)E(1)FUk( 0= 0,,,)9, E("“) + (34)
+ K((Dl)z E( )Fyk ( @5 (Ds)atEE'S)} +c.c,
s;tl

;n,nloc) _ & plenloc (0)1)35.1)* n epijPinloc( n+l)B(n+l) +c.c., (35)

/=1
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(n,nloc) __
ka =

1

= 3 [3,k(0) 5™ (@)

(* _ pnloc o
E7 - B (mﬂﬂ;}—

1

/=
_Pknloc ((’)n+1)E§;n+1)* + 8pkK(_(Dn+1)Pinloc (OJn+1)E-(n+l)* _

m
_IZE(K(_G)”“)E;MD 1“ijk (“)n+1;ml)apE§'1) +

(—oa,;—mwr1 )apE;.””)* +

K (o) B

(36)

K () SEOT, (~0:0,)9,E9) + c..

s=1
s#l

Here the explicit form of K(w, ,,,) depends on the
realized approach and takes the same values as in the
case of the above discussed influence of the local non-
linear optical response of the non-absorbing medium.
The above comparison of formulas (26)-(29) with
the analogous formulas for the energy density, ener-
gy flux density, momentum density, and momentum
flux density associated with the nonlinear local optical
response of the medium volume, obtained earlier for
the case in which the frequencies of all # + 1 interact-
ing waves are different, also remains valid for formulas
(33)-(36). The formula for the energy flux density as-
sociated with the nonlocal nonlinear optical response
(34), using the limit transition approach, differs from

T (0 0,)= aP,.(”’”"’C’ (0),) / a(akE§s>)

is in this case the product of the tensor component ?(”),
whose first frequency argument is equal to ®,, and the
last one to w,, by n — 1 components of the electric field
strength vector, among which the vector components
at frequencies —o; and , occur F(-,) — land F(o,) -1
times, respectively, and the components at each of the
frequencies ®, (o, # 0, and ®, # —,) occur F(®,)
times. Each of the sums from one to m in formulas (26)-
(29) and (33)-(36) turns in this case into a sum over all
possible different frequencies except for the frequency

the analogous formula for the nondegenerate case only
by the number of terms included in it.

Despite the fact that the constitutive equations
(5)-(10) for the local and nonlocal components of the
nonlinear polarization of the medium were written for
brevity in the form corresponding to the situation when
only one frequency o, has a degeneracy multiplicity
higher than unity, the obtained formulas (26)-(29) and
(33)-(36) can be easily generalized to the case when
several different frequencies of interacting waves have
a degeneracy multiplicity higher than unity (up to the
situation when the moduli of frequencies of all inter-
acting waves are equal to each other). The tensor used
to write the polarization of the medium

G37)

®,,, accounted for by a separate summand. In this
case, in the direct approach, the explicit form of the
expressions for K(w; , ;) provides a form of the record

(26)-(29) and (33)-(36) containing the coefficients nec-
essary to account for the possible degeneracy of several
different frequencies. Moreover, at the approach based
on the limit transition, formulas (26)-(29) and (33)-
(36) do not depend at all on the multiples of degenera-
cy of the frequencies of the interacting waves.

4. ANGULAR MOMENTUM OF LIGHT AT FREQUENCY
DEGENERATE NONLINEAR WAVE INTERACTION

From the law of conservation of momentum (15) we can obtain a formula expressing the law of conservation
of angular momentum (moment of momentum) of the electromagnetic field [3, 8]:

<10, [ey8, |+ 0|
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Here x ;are the Cartesian coordinates of the radius-vector. Similarly to the way the equations for energy (16)
and momentum (17) relate the densities of these quantities to the densities of their fluxes, we can aim to represent
(38) as a balance equation for the angular momentum density J; and the angular momentum flux density M, :

c—la,J,. +0, M,

In (39) 1, is the component of the torque density
vector due to the anisotropy of the medium. It is iden-
tically equal to zero if the axisi is the axis of symmetry
of the medium of infinite order. Since g, and ka are
expressed as sums of linear and nonlinear components

- (n, loc) (n,nloc)
My = 3 (M + i)

_ — (n,nloc) (n,nloc)
T, = Z(ri +1, )

then these expressions for any natural # (including
linear media) can indeed be considered as angular
momentum density, angular momentum flux den-
sity, and torque density of light, respectively, related
to the local optical response of the medium volume.
If the latter is nonlocal, then, as it was shown in [27,
28], the 31m11ar1y defined 'c( W, loc components of the
(n,nloc) . .
vector e, G are not equal to zero in an isotro-
pic medlum and therefore the latter formula cannot
be considered as the torque density. In this connection,

(n,nloc) __
zkp ka

J. = i(J(n loc) Ji(n,nloc))’

(39)

corresponding to different #, and each of the latter
consists of two summands responsible for local and
nonlocal optical responses of the medium volume
to the electric field, J;, M, and 1, can be naturally
represented in the followmg form

(40)
(41)
42)
(n,loc)
iinXj8p >
(n,loc)
ip~ ka >
(n,loc)
ikpka ’
it is necessary to transform the expression e, G"-oc)

ikp™ pk
in a way that it is represented as the sum of the full

spatial derivative of some quantity Sl;”), which will
further describe the contribution of nonlocality of the
nonlinear optical response to the angular momentum
flux density of light, and the vector %g"), the projection
of which on the symmetry axis of the medium (if pres-

ent) is equal to zero [28], i.e., to find S(”) and ‘c(”) sat-
isfying the following equality
= 9,8 + 3" 43)

After performing such transformation, the expressions for

(n,nloc) _ (n,nloc) (n)
My i Opk = Sik
and
Tﬁn,nloc) — %En)

will correctly describe the contribution of nonlocality of the nonlinear optical response to the angular momen-
tum flux density of light and the torque density, respectively.
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To find the explicit form of Sl.(,f) and %g”) similar-

ly [28] with the help of Kronecker delta, we redesig-
nate in each of the summands of the formula (36) for

G(';(’"loc) the indices at the components of the electric
field strengths so that the fields at the same frequen-
cies in each of them have the same index, and the in-
dex associated with the differentiation is always equal
to j, naturally without violating the rule according

to which the summation is carried out on twice oc-

curring identical indices. The expression for G(” »nioc)

transformed in this way is then multiplied by Cikp and
we group in it all summands with identical combina-
tions of fields and their spatial derivatives. Then in the
summand containing the spatial derivative of the field
at the degenerate frequency, let us introduce all the
remaining field strengths at the same frequency un-
der the differentiation operator. As a result, in further
expressions this summand will contain the multiplier
[F(o,)I!
for degenerate processes and appears to be possible
solely due to the intrinsic symmetry of the tensor y(”)

[30], due to which one can freely rearrange the indices
of the fields belonging to the same frequency.

. The performed transformation is specific

If several frequencies are degenerate, this procedure
must be repeated in each of the summands containing
the derivatives of the fields at these frequencies. In the
remaining summands, where under the spatial deriv-
ative there are fields at nondegenerate frequencies,

it is necessary to formally add a coefficient [F(a),)]_l

S =—e [

—s—1 —

-1 ~(F(o, ))
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that equal to one. Then, in the obtained expression

for Cikp G(” nloc) , represent the summand containing

the spatlal derwatlve of the field component at the fre-
quency wy, as the difference of the summand with the
derivative of the product of all electric field strengths
at all frequencies and the expression equal to the prod-
uct of all fields at the frequency ;, and the spatial de-
rivative of the product of all other fields whose frequen-

cies are different from ®,. Then it is necessary to write

down m + I times the resulting formula for e, Gl nloc)

successively considering in each of them the value o,
equal to O 5 il add them up and, realizing the
above-mentioned direct approach to the number of in-
teracting waves, divide the result by m + 1.

In the approach based on the limiting transition
from the interaction of n+1 waves with different
frequencies to the case when among the frequencies
of interacting waves there are equal to each other,
it is necessary immediately after writing down the
above-mentioned m + 1 equations to multiply each
of them by F(w,) (/ =1,2,...,m,n+1), and only then
successively substitute for o, the frequencies QNP Y—
The result of summation of the resulting m + 1 equa-
tions should be divided by n+ 1. Both of these ap-
proaches, after dividing the corresponding sums
of the above m + 1 equations by m + 1 and n + 1, lead to

el.kpG(’;c’"loc) in the left part of the final expression. Its
right part in both cases is the sum of two rather cum-
bersome summands.

The first of these is 0 jS;."), where

-1 ~(F(w,))

I

ZK((D )’Ykzs '1" 1]( n+l’0‘)l ’0‘)5‘+1 ’0‘) S)+ K(mm)’ykll"j( n+1’0‘)1 ’mm
s=1
(n+1)* (r) () S =I-1 1 (F( ))
n+ r m —m-1 ~ [0
xE, HE HE + 2 [K- ®,, 1)V ki ',"Himj( O @ 50,0 ‘Dn+1)+
Pl r=m =1
£ (,s)-1 ~(F( ))
. —min(/,s —max(/,s)-1 —~m-1 o,
+ ZK(O) )Ykl l“""(”) ]:lﬂnx((llxs))-t-l]l;ax(l_v)-v»ij (_ ('O/’_ 0‘)n+1’0‘)1 wmin(l,s)ﬂ’wmax(l s)+l’0) s )+
s=1
s#l
. =I-1 =m-1 ~(F(®,)) n+1)* (! r m
+K(®,)Y,; 5 j( O)—0,, 1,0, 0,0, )}xE( )E()HE()HE( ) 4
+II 1+1 o 1 , r=m " (44)
r#l
. —s—1 m1~(F(0))])
{2 K(U) )Yk, A l:”ﬂ‘;ﬂ'j(_ @5 = @y O WO 0 )+
s=1

sm— l e
m+l n+1~1

+K( n+1)Yk1

JETP, Vol. 165, No. 2, 2024

-1 ~(F(o,)-1)
( @, 0‘){” >0, ’_O‘)n+l):|x

x B E("’)HE(’) 11 £
1

r=1

} + C.C.

" r=m+l



154 RYZHIKOV, MAKAROV

Here

K(O‘)l,n+1) = [(m + I)F(‘Dl,nﬂ”_l

in the case of the direct approach, but in the limit transition approach,

K((Dl,n+1) =(n+1)

Given m = n for all indexes F(w;) = 1 and using either approach results in the same expression for S;.”). The

second summand, naturally equal to

e G(n ,nloc)

ikp™ pk

where G;’,:’"IDC) is given by the formula (36), goes
to zero if the nonlinear medium has a symmetry axis

NP . g . . . ~(n,nloc)
of infinite order coinciding with x;, i.e. is %; .

We do not give the explicit form of Tg”’"loc), because

_ (n)
9,80,

[/

differentiating the complex several times occurring
products of electric field strengths in Sg." ) makes this for-
mula very cumbersome. Full contribution of the nonlin-
ear optical response to the rotational momentum density

Tgn) =e. G(n,loc) +%(.n,nloc)'

ikp ™~ pk

To conclude this section, we note that among the
various modes of wave interaction caused by odd-or-
der nonlinearities (including the linear response), there
are those for the where the sums in expressions (26)-
(28), (33)-(36) and (44) are real, and therefore these
formulas should be written without the summand c.c.
If we choose one of the waves participating in such

interaction, for example, having the frequency ®, .,

and write the frequency arguments in the E(loc)(mn o)

1

and Pl.(”l"c) (®,,,) tensors 7 and ¥ as a sequence
®,,,~0,-0,,...,—0,, it will appear that, guided
by the intrinsic symmetry relations, the frequency
arguments can always be rearranged so that the sum
of the frequencies standing next to each other at odd
and even places is equal to zero. An example of such
a process is the self-interaction of light in a medium
with cubic nonlinearity, which together with others
will be considered in the next section.

5. SOME EXAMPLES

As examples of the use of the obtained general
formulas, we give expressions for the additions to the

energy density U™ energy flux density vec-
tor S,(C"’nloc), components of the momentum density
("’"loc), components of the momentum flux

P (n,nloc)
density tensor ka’

vector g

and component of the tensor

(n,nloc) _
Ji ip*i8p

and angular momentum flux density

Sl;.") associated with the nonlocal nonlinear optical re-
sponse of the non-absorbing medium volume for gen-
eration of the second and third harmonics and self-fo-
cusing. The lengthy expressions for the associated with
the nonlinear optical response of volume of medium
components of angular momentum density

(n,nloc)

(n,nloc) __ (n,nloc) (n)
My = X G = S

and %g"’"loc) for these processes can be written using the expressions below for G;Z’"loc) and Sl;.") if necessary.
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When the second harmonic is generated in a medium with quadratic nonlinearity n = 2, o, ,

®; = 2w, and F(w) = 2, F(-20w) = 1. Therefore

S,(f) =c! [K(—Zm)yiﬂk (20); m,w)

g;2,n[oc) =

+K(—2w)y[ﬂm (2(0'0) 0

+K ()7, (-0 0,-20) E

g (-0 0,-20) E, (0)9,

S[Q) = —€, [K( )yk/mj (20) , w)E

=w,m=1,
y@nlee) = {[1 - K(a))] Yk (—(o; o, —20)) X
X E; (0)) akE,* (20)) + 45)
+[1 - K(—Zoa)] Vi (20; (o,co) X
El* (20)) J, E, (m)} Ej (0)) +c.c.,
E; (20)0,E, (o) + 46
+K (@)Y (-0;0,-20) E; (0) 9, E; (203)] E, (0)) +c.C.
i (Vi (- ©,-20) B, (0) 0, E,, (20) + @7)
Y e (2003 0, 0) B; (2(0)8k E, (m))E, (0) + c.c.,
G(2 nloc) {SPk [K(w)yiﬂm (—m'w ~20) E; (0)9,,E, (20) +
 (20)9,, E, (0)] -
_[ (—20) v, (205 0, 0)) (2(0) o E (m) + )
(20)]-
‘[ijlm (20) o, co) (20))8 E, ( )
0 E ( )}Ej(oo)+c.c.,
20), o) -

+K(—2co)yk,mj ( o; 0, —

Here K(w) = 1/4 and K(—2w) = 1/2 for the direct ap-
proach and K(®w) = K(-2w) =1/3 for the approach
based on the limit transition. Using the formulas
of [27], obtained in the case of nondegenerate process-
es, we would get in formulas (45)-(49) incorrect values
of K(w) = 2/3 and K(-2wm) = 1/3. Besides, in the for-
mulas (45), (47), as well as in the right-hand side of the

( )E 203)]E((0)+cc

equation (48), that not containing K (), the coefficient
2 not existing in the correct equality would appear at
the tensor components ¥, the first frequency argument
of which is equal to —m.

In the case of third harmonic generation in a medium
with cubic nonlinearity, n = 3, @, , ; = ®, ®, = 3oi.e.,
m =1, F(w) = 3and F(-3w) = 1. As a result, we obtain

yGloc) _ {[1 _ K(a))] Vi (—(o; 0,0, —3(D)E,- ((D) A.E, (30)) +

+[1—

K(—30))] Y jiimi (30); w, W, u)) E,.* (300) X

(50)

xd, E (w)} E; (0)E (o) + c.c,

S0 = [ K (301, (3050,0,0) E (30)2,E, (0)

K (0)Y i (-5 0,0,-30) £ (0) 9, E, (303)] X .

><Ej (u))E, (co) + c.c,,

JETP, Vol. 165, No. 2, 2024



156 RYZHIKOV, MAKAROV

g;f oe) = €pij (Ytlmnk ( —; 0, O, 30)) ( )a E ( )

(52)

Y e (300, 0,0) B ! (30)) 9. E, (oo)) x E; (0)E,, (0) + c.c,

GS;"I"C) = {Spk [K(m)yiﬂmn( 0,0, O, 30))E ( )8 E (30))+

K(_3(’°)ij1mn (3(0; , m,m) 30) J,E, 0) ]
_[K(—3(o)yiﬂmk (30); o, m,(o) (30))8 E, (co) + )
+K( )Yylmk ( )ap ( )]
[Vk//mn (3o 0,0,0) F ( ®)9,E,, (@) +

Y itmn (-0 0,0, —30)) p( ®)d,E ( )}} X E;()E (®) + c.c,

S;_S) = —¢, [K(O))yk,mnj (30;0,0,0) E; (30)E, (co) + -~

K(—3m)yk,mnj (—03; o, , —303) Ep (u)) E: (30))} X E, (o))Em (0)) + c.cC.
In these formulas

K@) =16 and K(-3w)=1/2

using the direct approach and

k(o) =

when using the approach based on the limit transition.
Using the formulas of [27], obtained in the case of non-
degenerate processes, we would obtain in formulas (50)-
(54) incorrect values K(w) = 3/4 and K(-3w) =1/4.
Also in the formulas (50), (52), and (53) there would ap-
pear the coefficient 3, which does not exist in the correct
expression, at the summands containing the tensor com-
ponents ¥, whose first frequency argument is equal to —w.

U(3’"/00)—3[yylmk(co u)oow) ( )8 E ( )

(3,nloc) _—
gP PlJ

—30) =1/4

If there is self-action of an electromagnetic wave
(process ® = —o+ w+ ®) in a medium with cubic
nonlinearity (n = 3), then the frequency o, = —@ and
o, 3, = @. Formally, we can consider that two waves
Wi’ﬂ:l frequencies w and —w interact, and therefore
m = 2 and F(w) = F(—w) = 2. In this case, the formu-

las take the form

(55)
+yﬂjmk( ®; ,—0, (o) ( )8 E ( )}xEj(co)E,(co),
1 *
Sl((3) = Z[%ﬂmk (0;~0,0,0) E; (0)d,E, (0) + 56)
Y e (— 00 0, ~ 0, —0) E;(®) 9, E (oo)} xE’ (m)E (o),
[V i (05—, @, a))B ()0 E, (o) +
(57)

Y ke (O @, —0, —co)Bj (®) akEn(co)] X E, (W)E,, (w),

(3,nloc)
G oK

1 * *
= {Z[S ok Vit (@ =0, 0,0 E; () 9, E, () +

Y i (— 5 0, ~0,~0) E; () 0, E, () —

_(Y,'j/mk (00—, o, (l))El* () apEm (0) +
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Y s (0 0, — 0, —0) E; () apE; ()] -

Vi (@ =0, 0, OV E () 9, E, () = Yy (—00 0=, =) E, (@) 0, E, ()} X E;; (@) E, (), (58)
e. * * *
S = ’f’ (Y ki (05—, 0, @) E (D) E, (@) + ¥, (-0 0= 0,— @) E (0) E, ()] X E; (W)E, (@).  (59)

In self-focusing, both approaches lead to the same
results. Note that in this process each of the expres-
sions is automatically real; and the presence of com-
plex conjugation in the formulas is not required. Using

the formulas [27] obtained in the case of nondegen-
erate processes, we would obtain twice as large val-
ues as those in the right-hand sides of the equations

(55)-(59).

6. CONCLUSIONS

In this work, analytical expressions for additions
to the energy density, energy flux density, momentum
density, momentum flux density, angular momentum
density components, and components of the angular
momentum flux density tensor due to the local and
nonlocal nonlinear optical response of the n-th or-
der of a homogeneous nonabsorbing medium volume
in the case when the real number of interacting waves
with different frequencies in it is less than or equal to n
have been obtained. These additions cannot be direct-
ly determined from analogous expressions previous-
ly obtained in the case of nonlinear interaction # + 1
of waves with different frequencies in such a medium,
if in them we put some of the frequencies equal to each
other, i.e. we formally consider that n + 1 waves propa-
gate, but the frequencies, amplitudes and wave vectors
of some of them completely coincide. The formulas ob-
tained in this paper can be used not only by those who
rightly believe that the number of interacting waves
with different frequencies participating in degenerate
nonlinear optical processes is less than or equal to
n, but also by those for whom the degenerate process
is obtained as a limiting transition from the case n + 1
of different frequencies of interacting waves, as a re-
sult of which some of them are made equal to each
other, i.e., n + 1 waves formally propagate in the medi-
um, but some of them are completely identical to each

other. The two sets of formulas obtained as a result
of these two approaches differ only in the numerical
coeflicients, whose values are determined by the mul-
tiples of degeneracy of the frequencies of the interact-
ing waves and the number of summands in the sums
included in them. The formulas obtained in the first
case have a more complicated form. Each summand
in them explicitly contains the multiplicity of degen-
eracy of the corresponding frequency. In the second
case, the analytical expressions for the fundamental
characteristics of the field appear outwardly similar
to the analogous formulas of the studies in which all
n+1 frequencies of interacting waves are different.
The fundamental difference of the formulas obtained
in the paper is manifested in the number of summands
in the expressions for the additions to the electromag-
netic field characteristics due to the nonlinearity of the
medium.

The found formulas for the additions to the ener-
gy density, energy flux density, momentum density,
momentum flux density, components of the angular
momentum density and components of the angu-
lar momentum flux density tensor due to the local
and nonlocal nonlinear optical response of the vol-
ume of a homogeneous nonabsorbing medium allow
us to write down their specific form for all degenerate
processes of nonlinear optics.
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