ОБ УСТОЙЧИВОСТИ АКСИАЛЬНО-СИММЕТРИЧНЫХ СОСТОЯНИЙ В ТЕОРИИ ГИНЗБУРГА-ЛАНДАУ

$E. P. Подоляк^*$

Институт физических проблем им. П.Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 13 июля 2022 г., после переработки 2 декабря 2022 г. Принята к публикации 8 декабря 2022 г.

Изучается вопрос об устойчивости сверхпроводящих состояний с захваченным магнитным потоком в сферическом образце. Рассматриваются сверхпроводники с конечным значением параметра Гинзбурга—Ландау, в частности, сверхпроводники I рода, для которых важную роль играет искажение магнитного поля вблизи образца. Предполагается, что размер образца не слишком велик по сравнению с корреляционной длиной $\xi(T)$, а сверхпроводящее состояние имеет аксиальную симметрию. Обсуждается возможность существования состояний с захваченным потоком в нулевом внешнем поле. Проводится сравнение с результатами для образца цилиндрической формы.

DOI: 10.31857/S0044451023020062

EDN: OQICSG

1. ВВЕДЕНИЕ

Решение уравнений Гинзбурга—Ландау позволяет найти экстремум свободной энергии, но не позволяет указать тип этого экстремума: минимум, седловая точка или максимум. Поскольку существовать могут только состояния, соответствующие минимуму свободной энергии, то определение типа экстремума является важным аспектом теории Гинзбурга—Ландау. Тип экстремума можно выяснить с помощью изучения устойчивости решений Гинзбурга—Ландау.

Традиционный подход к этому вопросу основан на том, что энергия Гинзбурга—Ландау является эрмитовым функционалом параметра порядка, и, следовательно, состояние с наименьшей энергией является равновесным и заведомо устойчиво. Поэтому, если из возможных решений выбирать состояние с наименьшей энергией, то вопрос о его устойчивости решается автоматически.

Однако, такой подход не позволяет изучать метастабильные состояния, которые имеют большую энергию, чем равновесные, но тем не менее, являются устойчивыми по отношению к малым возмуще-

ниям. Определение области существования метастабильных состояний особенно важно для сверхпроводников I рода, поскольку именно метастабильные состояния отвечают за гистерезисные явления, наблюдаемые в магнитном поле.

С вычислительной точки зрения определение устойчивости решения является трудоемкой задачей. Поэтому, для ее решения приходится использовать какие-либо упрощающие предположения. Одним из таких упрощений, которое тем не менее представляет практический интерес, является изучение мезоскопических образцов, у которых симметрия решения навязывается симметрией самого образца. В случае сферических образцов за счет этого можно свести трехмерную задачу к аксиальносимметричной двумерной.

Вопрос об устойчивости решений Гинзбурга—Ландау, по-видимому, был впервые рассмотрен в [1]. В этой работе изучаются сверхпроводники II рода, у которых параметр Гинзбурга—Ландау очень велик: $\varkappa \to \infty$. В этом случае уравнения Гинзбурга—Ландау можно решать в линейном приближении, поскольку почти во всем диапазоне полей параметр порядка мал по сравнению с равновесным. Кроме того, в этом случае пренебрежимо малы и сверхпроводящие токи, а магнитное поле можно считать неискаженным. Эти соображения значительно упрощают исследование устойчивости решений в случае сверхпроводников II рода с большим значением \varkappa .

^{*} E-mail: eee@kapitza.ras.ru

В настоящей работе мы сформулируем задачу устойчивости для произвольного значения параметра Гинзбурга—Ландау и будем учитывать как нелинейный вклад от параметра порядка, так и искажение магнитного поля, вызванное сверхпроводящими токами. Эти требования являются необходимыми для сверхпроводников с конечным значением \varkappa и, в частности, для сверхпроводников I рода.

Настоящая работа направлена на изучение возможностей теории Гинзбурга—Ландау для объяснения наблюдаемых особенностей кривой намагничивания монокристаллов свинца [2]. Специальное внимание в работе уделяется адаптации получаемых соотношений для численного счета.

2. ПОСТАНОВКА ЗАДАЧИ

Существенной особенностью сверхпроводящих образцов сферической формы является искажение магнитного поля в окружающем пространстве. Поэтому для сверхпроводника, находящегося во внешнем поле H_0 , кроме энергии Гинзбурга–Ландау необходимо также учитывать диамагнитную энергию образца и энергию искаженного магнитного поля.

Рассмотрим выражение для плотности свободной энергии сверхпроводника [3] при постоянном внешнем поле

$$F = g \left| \nabla \Psi - i \frac{2\pi}{\Phi_0} \mathbf{A} \Psi \right|^2 + \alpha (T - T_c) |\Psi|^2 + \frac{\beta}{2} |\Psi|^4 + \frac{|\mathbf{B}|^2}{8\pi} - \frac{(\mathbf{B}, \mathbf{H}_0)}{4\pi}, \quad (1)$$

где

$$g = \frac{\hbar^2}{4m}, \quad \Phi_0 = \frac{hc}{2|e|}.$$

В данной работе мы не будем рассматривать какую-либо дополнительную свободную энергию, связанную с поверхностью образца, и поэтому будем использовать естественные граничные условия теории Гинзбурга—Ландау, которые следуют из (1). Соотношения, приводимые ниже, также соответствуют теории Гинзбурга—Ландау и служат лишь для определения используемых в работе обозначений.

Из (1) можно получить равновесное значение параметра порядка Ψ в нулевом поле

$$|\Psi_0(T)|^2 = \frac{\alpha}{\beta}(T_c - T) \tag{2}$$

и термодинамическое критическое поле

$$H_c(T) = \alpha (T_c - T) \sqrt{\frac{4\pi}{\beta}}.$$
 (3)

В рассматриваемой задаче в части образца, содержащей захваченный поток, параметр порядка пренебрежимо мал, а магнитное поле практически однородно. Поэтому в качестве единицы длины мы выбираем корреляционную длину

$$\xi(T) = \sqrt{\frac{g}{\alpha(T_c - T)}},\tag{4}$$

а естественной единицей магнитного поля будет поле абсолютной неустойчивости нормальной фазы

$$H_{c2}(T) = \frac{\Phi_0}{2\pi \xi^2(T)}. (5)$$

Эти единицы не зависят от коэффициента β и хорошо подходят для случая $|\Psi| \ll |\Psi_0|$. В дальнейшем мы используем безразмерные величины, которые обозначаем соответствующими маленькими буквами:

$$\mathbf{r} = \frac{\mathbf{R}}{\xi}, \quad \mathbf{b} = \frac{\mathbf{B}}{H_{c2}}, \quad \mathbf{a} = \frac{\mathbf{A}}{\xi H_{c2}} = \frac{2\pi}{\Phi_0} \xi \, \mathbf{A}.$$
 (6)

Сделав переход к безразмерному параметру порядка

$$\psi = \frac{\Psi}{|\Psi_0|},\tag{7}$$

и используя определение параметра Гинзбурга-Ландау

$$\varkappa = \frac{\Phi_0}{2\pi} \sqrt{\frac{\beta}{8\pi g^2}},\tag{8}$$

можно переписать плотность свободной энергии (1) в виде

$$F = \frac{H_c^2 \xi^3}{4\pi} \times \left\{ |\nabla \psi - i\mathbf{a}\psi|^2 - |\psi|^2 + \frac{1}{2}|\psi|^4 + \varkappa^2 |\mathbf{b}|^2 - 2\varkappa^2(\mathbf{b}, \mathbf{h}_0) \right\},$$
(9)

где

$$\mathbf{h}_0 = \frac{\mathbf{H}_0}{H_{c2}}$$

обозначает приложенное магнитное поле.

Плотность свободной энергии (9) удобно отсчитывать от энергии нормальной фазы ($\psi = 0, \mathbf{b} = \mathbf{h}_0$)

$$\widetilde{F} = \frac{H_c^2 \xi^3}{4\pi} \times \left\{ |\nabla \psi - i\mathbf{a}\psi|^2 - |\psi|^2 + \frac{1}{2}|\psi|^4 + \varkappa^2 |\mathbf{b} - \mathbf{h}_0|^2 \right\}.$$
(10)

Подчеркнем еще раз, что поскольку магнитное поле вне образца отличается от приложенного поля, то минимизацию свободной энергии нужно выполнять во всем пространстве, а не только внутри образца.

3. АКСИАЛЬНО-СИММЕТРИЧНОЕ СОСТОЯНИЕ

Рассмотрим сферический образец (радиуса r_s), находящийся во внешнем магнитном поле (h_0) , направленном вдоль оси z. В этом случае удобно пользоваться цилиндрической системой координат (ρ, φ, z) . Будем считать, что сверхпроводящее состояние имеет аксиальную симметрию, и фаза параметра порядка $\phi = n\varphi$ пропорциональна азимутальному углу. Аксиальной симметрии параметра порядка

$$\psi(\mathbf{r}) = |\psi(\rho, z)| e^{in\varphi} \tag{11}$$

соответствует симметрия векторного потенциала

$$\mathbf{a}(\mathbf{r}) = a(\rho, z) \,\mathbf{e}_{\varphi}.\tag{12}$$

Поэтому удобно воспользоваться лондоновской калибровкой векторного потенциала $\mathbf{q}(\mathbf{r}) = \mathbf{a} - \nabla \phi = q(\rho,z) \, \mathbf{e}_{\varphi}$, в которой параметр порядка $\psi = \psi^* = f(\rho,z)$ является вещественной функцией координат.

Свободную энергию в лондоновской калибровке можно представить в виде интеграла

$$E = \frac{H_c^2 \xi^3}{2} \int \rho \, d\rho \int dz \times \left\{ |\nabla f|^2 + q^2 f^2 - f^2 + \frac{1}{2} f^4 + \varkappa^2 |\mathbf{b} - \mathbf{h}_0|^2 \right\}, \quad (13)$$

где

$$q = a - n/\rho, \tag{14}$$

$$\mathbf{b} = \operatorname{rot} \mathbf{a} = \operatorname{rot} \mathbf{q} = \frac{1}{\rho} \partial_{\rho} (\rho q) \mathbf{e}_{z} - \partial_{z} q \mathbf{e}_{\rho}.$$
 (15)

Приравнивая нулю вариацию энергии (13), получим уравнение Гинзбурга–Ландау

$$\Delta f = f(q^2 - 1 + f^2),$$
 (16)

где Δ обозначает двумерный оператор Лапласа

$$\Delta = \partial_{\rho}^2 + \frac{1}{\rho}\partial_{\rho} + \partial_z^2$$

в цилиндрической системе координат, и уравнение Максвелла

$$-\operatorname{rot} \mathbf{b} = \frac{f^2}{\varkappa^2} \mathbf{q}. \tag{17}$$

Векторный потенциал и сверхпроводящий ток в рассматриваемой задаче имеют только \mathbf{e}_{φ} компоненту, поэтому уравнение (17) можно переписать в скалярном виде

$$\partial_{\rho} \left(\frac{1}{\rho} \partial_{\rho} (\rho q) \right) + \partial_{z}^{2} q = \frac{f^{2}}{\varkappa^{2}} q.$$
 (18)

Приравнивая нулю вариацию энергии (13) на поверхности шара $(r=r_s)$ получаем граничное условие Гинзбурга–Ландау

$$\partial_n f(r_s) = 0, (19)$$

где

$$\mathbf{n} = \frac{\rho}{r} \, \mathbf{e}_{\rho} + \frac{z}{r} \, \mathbf{e}_{z}$$

— нормаль к поверхности образца, и условие непрерывности магнитного поля на границе образца.

Вне образца (18) сводится к уравнению Лапласа

$$\Delta q = \frac{1}{\rho^2} q,\tag{20}$$

для которого существует точное решение в виде разложения по мультиполям

$$q(\rho, z) = \frac{1}{2} h_0 \rho - \frac{n}{\rho} + \sum_{j=1}^{\infty} C_j \frac{P_j^1(\rho, z)}{r^{j+1}}, \qquad (21)$$

где коэффициенты C_j обозначают мультипольные моменты, а $P_j^1(\rho,z)$ — присоединенные функции Лежандра. Решение задачи симметрично относительно экваториальной плоскости, и для векторного потенциала справедливо $q(\rho,-z)=q(\rho,z)$, поэтому в разложении (21) отличны от нуля только мультипольные моменты с нечетными индексами.

Магнитное поле вне образца, как правило, содержит большое число мультиполей, поэтому выгодно решать (20) численно, а выражение (21) использовать только для задания граничного условия. При $r \to \infty$ это приводит к естественному условию — магнитное поле равно приложенному. На конечном радиусе $r = r_{out}$, которым ограничена область численного счета, граничное условие должно учитывать остаточный вклад от мультиполей.

В случае уравнения Лапласа (20) граничное условие на конечном радиусе выражает нормальную производную векторного потенциала в каждой точке границы

$$\partial_r q = \frac{1}{r} \left[\frac{1}{2} h_0 \, \rho + \frac{n}{\rho} - \sum_{j=1}^{\infty} (j+1) \, C_j \frac{P_j^1(\rho, z)}{r^{j+1}} \right] \quad (22)$$

через значение самого векторного потенциала. Поскольку и векторный потенциал (21), и его нормальная производная (22) являются функциями мультипольных моментов, то граничное условие представляет собой неявный способ определения муль-

типольных моментов. Пользуясь ортогональностью функций Лежандра можно вычислить

$$C_{j} = \frac{2j+1}{2j(j+1)} r_{out}^{j-1} \times \times \int_{r=r_{out}} \rho \, dl \left[q(\rho, z) - \frac{1}{2} h_{0} \, \rho + \frac{n}{\rho} \right] P_{j}^{1}(\rho, z), \quad (23)$$

где

$$\mathbf{l} = -\frac{z}{r} \mathbf{e}_{\rho} + \frac{\rho}{r} \mathbf{e}_{z}$$

обозначает касательную к границе рабочей области.

При такой формулировке граничного условия, численное решение (20) не зависит (с вычислительной точностью) от величины r_{out} . Значение r_{out} влияет только на точность вычисления мультипольных моментов и на общий объем вычислений.

По мере увеличения r_{out} уменьшается влияние высших мультиполей, но при этом ухудшается точность вычисления мультипольных моментов, поскольку выражение в квадратных скобках в (23) стремится к нулю. В дальнейшем нам потребуется значение дипольного момента (C_1) , поэтому мы выбираем r_{out} так, чтобы дипольное слагаемое (j=1) было не слишком мало как по отношению к потенциалу неискаженного поля, так и по отношению к сумме остальных мультиполей. В работе мы используем $r_{out} = 10 \, r_s$, при котором относительная погрешность вычисления дипольного момента не превышает 10^{-3} .

Оставшиеся граничные условия сводятся к требованию непрерывности функций ψ , ${\bf a}$ и ${\bf b}$ на оси образца. Отметим, что вариационные граничные условия при $\rho=0$

$$\rho \,\partial_{\rho} f = 0, \qquad \rho \,\partial_{z} q = 0 \tag{24}$$

допускают особенности в функциях $\partial_{\rho} f$ и q.

Численное интегрирование системы уравнений (16), (17) вблизи оси образца представляет некоторую трудность. Дело в том, что при $\rho \to 0$ модуль параметра порядка изменяется как $f(\rho,z) \propto \rho^n$, и при больших значениях n — это практически ступенчатая функция, которая вблизи оси становится исчезающе малой.

Проблему с быстрым изменением функции f вблизи оси можно устранить с помощью замены переменных

$$g = \ln f, \tag{25}$$

но функция g приобретает при $\rho \to 0$ логарифмическую расходимость. Для численного счета расходимости в функциях g и q необходимо выделить

$$\widetilde{g} = g - n \ln \rho, \quad \widetilde{q} = q + \frac{n}{\rho}.$$
 (26)

Таким образом, система уравнений Гинзбурга-Ландау приобретает вид

$$\Delta \widetilde{g} = \widetilde{q}^2 - |\nabla \widetilde{g}|^2 - \frac{2n}{\rho} (\widetilde{q} + \partial_{\rho} \widetilde{g}) - 1 + f^2, \qquad (27)$$

$$\Delta \widetilde{q} = \frac{1}{\rho^2} \widetilde{q} + \frac{f^2}{\varkappa^2} q. \tag{28}$$

Кроме конечности функций \widetilde{g} и \widetilde{q} , входящих в эти уравнения, при $\rho \to 0$ справедливо также $\widetilde{q} \propto \rho^1 \to 0$ и $\partial_o \widetilde{q} \propto \rho^1 \to 0$.

Можно видеть, что в правой части уравнения (27) присутствуют неопределенности вида 0/0, а в (28) первое слагаемое расходится как ρ^{-1} . Способ обработки этих особенностей определяется конкретной программой численного счета. Мы используем программу FlexPDE [5], в которой эта проблема не существенна благодаря интерполяции функций внутри элементов пространственной сетки, примыкающих к оси образца. Этого оказывается достаточно для решения системы (27), (28) с точностью лучше, чем 10^{-5} .

Точность вычислений вблизи оси образца можно улучшить, если дополнительно ввести вспомогательные функции

$$\widetilde{t} = \frac{1}{\rho} \partial_{\rho} \widetilde{g}, \quad \widetilde{s} = \frac{2}{\rho} \widetilde{q},$$
 (29)

уравнения для которых можно получить простой подстановкой (29) в (27), (28). Использование функций \widetilde{t} и \widetilde{s} позволяет вычислять решение системы уравнений Гинзбурга–Ландау (f,q) с точностью ($\approx 10^{-7}$) достаточной для последующего анализа его устойчивости.

Приведем некоторые общие свойства решений системы уравнений Гинзбурга—Ландау. Для вычисления энергии полученного сверхпроводящего состояния можно проинтегрировать первое слагаемое в (13) по частям и подставить соотношение (16)

$$E = \frac{H_c^2 \xi^3}{4} \int \rho \, d\rho \int dz \{ -f^4 + 2\varkappa^2 |\mathbf{b} - \mathbf{h}_0|^2 \}. \quad (30)$$

Это выражение не содержит векторного потенциала и производных параметра порядка и оказывается более удобным для численного счета, чем (13).

Отметим, что конечная магнитная энергия вне образца приводит к изменению величины критического поля H_c от его значения (3) для бесконечного сверхпроводника. Пренебрегая глубиной проникновения поля в образец, можно показать [3], что для майснеровского состояния (n=0) вне образца отличен от нуля только дипольный момент

$$C_1 = -h_0 \frac{r_s^3}{2}. (31)$$

В этом приближении энергию майснеровского состояния можно вычислить аналитически

$$E = \frac{H_c^2 (\xi r_s)^3}{6} \left(\frac{3}{2} \varkappa^2 h_0^2 - \frac{1}{2} \right).$$
 (32)

Из (32) следует, что энергия сверхпроводящего шара во внешнем поле сравнивается с энергией шара в нормальном состоянии при приложении поля

$$h_0 = h_{cM} = \frac{1}{\varkappa\sqrt{3}},$$
 (33)

в то время как термодинамическое критическое поле в принятых обозначениях

$$h_c = \frac{1}{\varkappa\sqrt{2}}. (34)$$

Уменьшение критического поля в случае сферического образца соответствует тому, что при приложении внешнего поля $h_0=h_{cM}$ поле на экваторе образца ($\rho=r_s,z=0$) с учетом размагничивающего фактора составит

$$b_e = \frac{3}{2}h_0 = \sqrt{\frac{3}{2}}h_c.$$

В используемых здесь единицах безразмерный квант магнитного потока равен 2π , поэтому можно сформулировать условие квантования захваченного в образце магнитного потока

$$\int_{0}^{\rho^{*}} \rho \, d\rho \, b_{z}(\rho, 0) = n. \tag{35}$$

Здесь ρ^* обозначает радиус в экваториальном сечении образца, на котором сверхпроводящий ток обращается в 0, т.е. меняет свое направление. Поэтому можно считать, что число n описывает не только набег фазы параметра порядка при обходе образца, но и количество квантов захваченного образцом магнитного потока.

В данной работе мы не приводим вычисленные функции $f(\rho,z)$ и $q(\rho,z)$ двух координат, а представляем результаты вычислений в виде кривой намагничивания, т.е. в виде зависимости дипольного момента $M(h_0)=C_1$ от приложенного поля. Такое представление удобно тем, что оно соответствует зависимостям, измеряемым в эксперименте. Зависимость $M(h_0)$ — многозначная, т.к. каждому значению параметра n на ней соответствует отдельная ветвь. Различия между ветвями носят количественный характер, поэтому в дальнейшем мы используем для иллюстраций только одну ветвь: n=10, которая показана на рис.1.

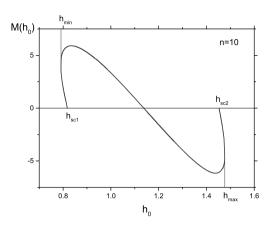


Рис. 1. Кривая намагничивания для образца $r_s=5$, arkappa=0.6 при n=10

Кривая намагничивания, показанная на этом рисунке, демонстрирует поведение, характерное для сверхпроводников I рода, а именно, существование двух решений при некоторых значениях поля.

Сначала рассмотрим точки окончания кривой $(h_0=h_{sc1},h_{sc2})$. В этих точках параметр порядка обращается в нуль. И, следовательно, в окрестности этих точек уравнение Гинзбурга–Ландау можно линеаризовать. Решения линейной задачи для образцов как сферической, так и для цилиндрической формы получены в [4]. Кроме величин критических полей $h_{sc}(r_s,n)$ в [4] вычислено максимальное значение $n=n_{max}(r_s)$, а также критическое значение $\varkappa_{crit}(r_s)$ параметра Гинзбурга–Ландау, которое определяет знак производной кривой намагничивания при подходе к h_{sc} .

Результирующую кривую намагничивания образца мы получаем, повторяя вычисления магнитного момента для всех значений $0 \leqslant n \leqslant n_{max}.$

В общей постановке задачи о свойствах сферического образца в магнитном поле остаются еще два параметра: радиус образца и параметр Гинзбурга—Ландау \varkappa . Следует напомнить, что уравнения Гинзбурга—Ландау (16), (17) не содержат температурных зависимостей. От температуры зависят лишь размерные единицы (4) и (5). Для сферических образцов конечных размеров, рассматриваемых здесь, ситуация качественно меняется. Физическому размеру образца R_s соответствует безразмерный радиус

$$r_s = \frac{R_s}{\xi(T)} \propto \sqrt{T_c - T},\tag{36}$$

который меняется с температурой и стремится к нулю при температуре сверхпроводящего перехода. Поэтому, в эксперименте можно управлять величиной r_s с помощью изменения температуры. Хорошо известно [6], что маленький образец (при $r_s < 1.33$) не может иметь состояний с захваченным потоком. И, наоборот, при $r_s \gg 1$ наблюдаемое промежуточное состояние имеет сложную структуру без аксиальной симметрии. Тем не менее, подчеркнем, что при приближении к сверхпроводящему переходу всегда существует область температур, в которой r_s не слишком велик, и для которой применимы результаты настоящей работы.

В данной работе мы не проводим исследование влияния параметров r_s и \varkappa , а ограничиваемся значениями радиуса $r_s=5$ и параметра Гинзбурга—Ландау $\varkappa=0.6$. Такие значения выбраны для удобства сравнения с результатами [4], полученными для образца цилиндрической формы, который имеет такие же радиус и \varkappa .

Уже из рис.1 видно, что при заданном внешнем поле задача может иметь одно, два или ни одного (нетривиального) решения. Поэтому возникает вопрос: какое из возможных решений реализуется, и как изменяется число n сверхпроводящего состояния при изменении внешнего поля. На этот вопрос отвечает исследование устойчивости полученных решений.

4. УСТОЙЧИВОСТЬ

В предыдущем параграфе описана процедура вычисления сверхпроводящего состояния, которое имеет аксиальную симметрию. Возмущения, которые приводят к его разрушению, не обязательно имеют такую же симметрию. Ниже мы исследуем устойчивость решения по отношению к возмущениям произвольного вида.

В рассматриваемой задаче произвольные возмущения описываются четырьмя вещественными функциями: одна функция — $p(\rho,\varphi,z)$ описывает возмущение модуля параметра порядка $f(\rho,\varphi,z)=f_0(\rho,z)+p(\rho,\varphi,z),$ и еще три функции описывают возмущение компонент векторного потенциала:

$$\mathbf{q}(\rho, \varphi, z) = \mathbf{q}_0(\rho, z) + \delta \mathbf{q}(\rho, \varphi, z),$$

$$\delta \mathbf{q} = q_{\rho}(\rho, \varphi, z) \mathbf{e}_{\rho} + q_{z}(\rho, \varphi, z) \mathbf{e}_{z} + q_{\varphi}(\rho, \varphi, z) \mathbf{e}_{\varphi}.$$

Здесь и далее индекс '0' обозначает то решение уравнений Гинзбурга—Ландау — f_0 , \mathbf{q}_0 , устойчивость которого мы изучаем. Отметим, что использование лондоновской калибровки значительно упрощает постановку задачи об устойчивости, поскольку исключает возмущения фазы параметра порядка,

которые с учетом изменения калибровки, не меняют состояние сверхпроводника.

Устойчивость сверхпроводящего состояния по отношению к малым возмущениям определяется знаком второй вариации энергии

$$\delta^{2}E = \int \rho \, d\rho \int d\varphi \int dz \times \left\{ |\nabla p|^{2} + p^{2} \left(\mathbf{q}_{0}^{2} - 1 + 3f_{0}^{2}\right) + 4f_{0}p\left(\mathbf{q}_{0}, \delta\mathbf{q}\right) + f_{0}^{2}|\delta\mathbf{q}|^{2} + \varkappa^{2}|\delta\mathbf{b}|^{2} \right\}, \quad (37)$$

где

$$\delta \mathbf{b} = \operatorname{rot}(\delta \mathbf{q}).$$

Устойчивыми (в малом) являются состояния, для которых любое возмущение приводит к положительной $\delta^2 E$. И, наоборот, если найдется какое-либо возмущение, для которого $\delta^2 E < 0$, то сверхпроводящее состояние является неустойчивым.

Следуя общепринятой процедуре, разложим возмущение в ряд Фурье по азимутальному углу φ :

$$p(\rho, \varphi, z) = \sum_{k=-\infty}^{\infty} e^{ik\varphi} p_k(\rho, z), \quad q_{\varphi}(\rho, \varphi, z) =$$
$$= \sum_{k=-\infty}^{\infty} e^{ik\varphi} q_{k\varphi}(\rho, z), \quad (38)$$

$$q_{\rho}(\rho,\varphi,z) = \sum_{k=-\infty}^{\infty} e^{ik\varphi} \, q_{k\rho}(\rho,z), \tag{39}$$

$$q_z(\rho, \varphi, z) = \sum_{k=-\infty}^{\infty} e^{ik\varphi} q_{kz}(\rho, z).$$
 (40)

Теперь, подставим (39) – (41) в (37) и проинтегрируем по φ . С учетом ортогональности фурье-гармоник получим

$$\delta^{2}E = \sum_{k=-\infty}^{\infty} \int \rho \, d\rho \int dz \times \left\{ |\nabla p_{k}|^{2} + \frac{k^{2}}{\rho^{2}} |p_{k}|^{2} + |p_{k}|^{2} \left(\mathbf{q}_{0}^{2} - 1 + 3f_{0}^{2}\right) + 4f_{0}p_{k}q_{0}q_{k\varphi}^{*} + f_{0}^{2} |\delta \mathbf{q}_{k}|^{2} + \varkappa^{2} |\delta \mathbf{b}_{k}|^{2} \right\}, \quad (41)$$

где

$$\delta \mathbf{q}_k = q_{k\rho}(\rho, z)\mathbf{e}_\rho + q_{kz}(\rho, z)\mathbf{e}_z + q_{k\varphi}(\rho, z)\mathbf{e}_\varphi,$$

$$\delta \mathbf{b}_k = b_{k\rho}(\rho, z)\mathbf{e}_\rho + b_{kz}(\rho, z)\mathbf{e}_z + b_{k\varphi}(\rho, z)\mathbf{e}_\varphi$$

И

$$b_{k\rho} = -\partial_z q_{k\varphi} + i \frac{k}{\rho} q_{kz}, \tag{42}$$

$$b_{kz} = \frac{1}{\rho} \partial_{\rho}(\rho q_{k\varphi}) - i \frac{k}{\rho} q_{k\rho}, \tag{43}$$

$$b_{k\varphi} = -\partial_{\varrho} q_{kz} + \partial_{z} q_{k\varrho}. \tag{44}$$

Поскольку все функции (38)–(40) вещественные, то для амплитуд гармоник выполняются соотношения $p_{-k} = p_{+k}^*$ и т. д. Попарно суммируя в (41) слагаемые с +k и -k получим

$$\delta^{2}E = \delta^{2}E_{0}(p_{0}, q_{0r}, q_{0\varphi}, q_{0z}) + 2\sum_{k=1}^{\infty} \delta^{2}E_{k}(p_{k}, q_{k\rho}, q_{k\varphi}, q_{kz}), \quad (45)$$

где

$$\delta^{2}E_{k}(p_{k}, q_{k\rho}, q_{k\varphi}, q_{kz}) = \int \rho \, d\rho \int dz \times \\ \times \left\{ |\nabla p_{k}|^{2} + |p_{k}|^{2} \left(\mathbf{q}_{0}^{2} + \frac{k^{2}}{\rho^{2}} - 1 + 3f_{0}^{2} \right) + \right. \\ + 2f_{0}q_{0} \left(p_{k}^{*}q_{k\varphi} + p_{k}q_{k\varphi}^{*} \right) + f_{0}^{2} |q_{k\varphi}|^{2} + \\ + \varkappa^{2} |\operatorname{rot}(q_{k\varphi}\mathbf{e}_{\varphi})|^{2} + \\ + \frac{k^{2}\varkappa^{2} + \rho^{2}f_{0}^{2}}{\rho^{2}} \left(|q_{k\rho}|^{2} + |q_{kz}|^{2} \right) + \varkappa^{2} |\partial_{z}q_{k\rho}|^{2} - \\ - \varkappa^{2} (\partial_{\rho}q_{kz}^{*} \partial_{z}q_{k\rho} + \partial_{\rho}q_{kz} \partial_{z}q_{k\rho}^{*}) + \varkappa^{2} |\partial_{\rho}q_{kz}|^{2} - \\ - \varkappa^{2} \frac{ik}{\rho^{2}} \left(\partial_{\rho}(\rho q_{k\varphi}^{*}) q_{k\rho} - \partial_{\rho}(\rho q_{k\varphi}) q_{k\rho}^{*} \right) - \\ - \varkappa^{2} \frac{ik}{\rho} \left(\partial_{z}q_{k\varphi}^{*} q_{kz} - \partial_{z}q_{k\varphi} q_{kz}^{*} \right) \right\}. \tag{46}$$

Теперь устойчивость k-й азимутальной гармоники возмущения можно исследовать независимо от остальных. Гармоники k=0 и k=n являются выделенными, что типично для сферической геометрии. Мы рассмотрим эти гармоники отдельно в конце параграфа. Сейчас остановимся на случае 0 < k < n.

Определим норму собственной функции с помощью интеграла

$$||p_{k}, q_{k\rho}, q_{k\varphi}, q_{kz}|| = \int \rho \, d\rho \int dz \times \left\{ |p_{k}|^{2} + w_{k\rho} \, |q_{k\rho}|^{2} + w_{k\varphi} \, |q_{k\varphi}|^{2} + w_{kz} \, |q_{kz}|^{2} \right\},$$
(47)

где неотрицательные весовые функции $\{w_{k\alpha}(\rho,z)\}$ определяют условия ортонормированности компонент $\{p_k,q_{k\rho},q_{k\varphi},q_{kz}\}$ собственных функций.

Задача об устойчивости решения по отношению к k-й гармонике произвольного возмущения заключается в определении знака наименьшего значения (46) при фиксированной норме (47). Используя, например, метод множителей Лагранжа эта задача сводится к вычислению знака наименьшего собственного значения E_k в задаче

$$\delta^2 E_k(p_k, q_{k\rho}, q_{k\varphi}, q_{kz}) = E_k \| p_k, q_{k\rho}, q_{k\varphi}, q_{kz} \|. \tag{48}$$

Следует подчеркнуть, что выбор весовых функций $\{w_{k\alpha}\}$ влияет как на форму самих собственных функций, так и на спектр собственных значений. Здесь ключевым моментом является то, что знак наименьшего собственного значения и, следовательно, устойчивость k-й гармоники не зависит от выбора $\{w_{k\alpha}\}$. В терминах линейной алгебры это утверждение означает, что положительная обусловленность квадратичной формы не зависит от выбора базисных векторов.

На практике мы выбираем весовые функции так, чтобы минимизировать время вычислений, а собственная функция была максимально гладкой. Поскольку выбор $\{w_{k\alpha}\}$ не имеет принципиального значения при анализе устойчивости, то далее для простоты изложения положим все $w_{k\alpha}=0$.

Выражение (46) можно минимизировать по функциям $q_{k\rho},\ q_{kz}$ и $q_{k\varphi},\$ вариационные уравнения для которых

$$\varkappa^{2} \partial_{z}(\rho b_{k\varphi}) = \frac{k^{2} \varkappa^{2} + \rho^{2} f_{0}^{2}}{\rho} q_{k\rho} + i \frac{k \varkappa^{2}}{\rho} \partial_{\rho}(\rho q_{k\varphi}), \quad (49)$$

$$-\varkappa^{2} \partial_{\rho}(\rho b_{k\varphi}) = \frac{k^{2}\varkappa^{2} + \rho^{2} f_{0}^{2}}{\rho} q_{kz} + i \frac{k\varkappa^{2}}{\rho} \partial_{z}(\rho q_{k\varphi}), \quad (50)$$

$$\varkappa^2 \partial_{\rho} b_{kz} - \varkappa^2 \partial_z b_{k\rho} = f_0^2 q_{k\varphi} + 2 f_0 q_0 p_k.$$
 (51)

Удобно ввести обозначения

$$Q_{\rho} = i \frac{k}{\rho} q_{k\rho}, \qquad (52)$$

$$Q_{z} = i \frac{k}{\rho} q_{kz}, \qquad (53)$$

$$t = \rho q_{k\varphi},$$

$$u = -i \frac{\rho}{h} b_{k\varphi},$$

и переписать (49)–(51) в виде

$$\partial_z u = \frac{1}{\rho} \, \partial_\rho t - \frac{1}{\tilde{\gamma}} \, Q_\rho, \tag{54}$$

$$-\partial_{\rho}u = \frac{1}{\rho}\,\partial_z t - \frac{1}{\widetilde{\gamma}}\,Q_z,\tag{55}$$

$$\operatorname{div}\left(\gamma_{2}\nabla t\right) = \frac{f_{0}^{2}}{\varkappa^{2}\rho^{2}}t + 2\frac{f_{0}}{\varkappa^{2}\rho}q_{0}p_{k} + \frac{1}{\rho}\left(\partial_{z}\widetilde{\gamma}\,\partial_{\rho}u - \partial_{\rho}\widetilde{\gamma}\,\partial_{z}u\right), \quad (56)$$

где

$$\begin{split} \widetilde{\gamma} &= \frac{k^2 \varkappa^2}{k^2 \varkappa^2 + \rho^2 f_0{}^2}, \\ \gamma_2 &= (1 - \widetilde{\gamma}) \rho^{-2} = \frac{{f_0}^2}{k^2 \varkappa^2 + \rho^2 {f_0}^2}. \end{split}$$

Обратим внимание на важное обстоятельство, связанное с непрерывностью возмущений $\delta \mathbf{q}_k$ и $\delta \mathbf{b}_k$ на границе образца. Компоненты векторного потенциала (52), (53) и их производные должны быть непрерывны на границе образца, а коэффициент $\tilde{\gamma}$ в (54), (55) испытывает скачек, поскольку вне образца $f_0=0$.

Выразим нормальную и касательную (в плоскости ρ, z) компоненты возмущения векторного потенциала на границе образца

$$Q_n = \widetilde{\gamma} \left[\frac{1}{\rho} \, \partial_n t - \partial_l u \right], \tag{57}$$

$$Q_l = \widetilde{\gamma} \left[\frac{1}{\rho} \partial_l t + \partial_n u \right]. \tag{58}$$

Из производных, входящих в правую часть этих уравнений, претерпевать скачек может только нормальная производная u. Отсюда следует, что на границе образца должно выполняться $Q_n=0$, т.е.

$$\partial_n t = \rho \, \partial_l u, \tag{59}$$

что соответствует обращению в нуль нормальной компоненты возмущения тока.

Поскольку вне образца $\tilde{\gamma}=1$, то из условия непрерывности Q_l можно вычислить величину скачка $\partial_n u$ на поверхности образца

$$\widetilde{\gamma} \, \partial_n u_{int} - \partial_n u_{ext} = \gamma_2 \, \rho \, \partial_l t. \tag{60}$$

Условия (59) и (60) можно независимо получить приравнивая нулю вариацию (46) на поверхности шара.

Подставив (52)–(55) в (46), получим выражение для $\delta^2 E_k$,

$$\delta^{2}E_{k} = \int \rho \, d\rho \int dz \times \left\{ |\nabla p_{k}|^{2} + |p_{k}|^{2} \left(\mathbf{q}_{0}^{2} + \frac{k^{2}}{\rho^{2}} - 1 + 3f_{0}^{2} \right) + 2\frac{f_{0}}{\rho} \, q_{0} \left(p_{k}^{*}t + p_{k}t^{*} \right) + \varkappa^{2} \gamma_{2} |\nabla t|^{2} + \frac{f_{0}^{2}}{\rho^{2}} |t|^{2} + \varkappa^{2} \left[\widetilde{\gamma} |\nabla u|^{2} + \frac{k^{2}}{\rho^{2}} |u|^{2} \right] \right\}, \quad (61)$$

из которого видно, что для вычисления устойчивости нет необходимости находить функции $q_{k\rho}$ и q_{kz} . Вместо этих двух функций достаточно вычислить только одну функцию u, уравнение для которой получается подстановкой (52)-(55) в (44)

$$\operatorname{div}(\widetilde{\gamma} \nabla u) = \frac{k^2}{\rho^2} u + \frac{1}{\rho} \left(\partial_z \widetilde{\gamma} \, \partial_\rho t - \partial_\rho \widetilde{\gamma} \, \partial_z t \right). \tag{62}$$

Заметим, что это уравнение нельзя получить прямым варьированием (61), поскольку u определена с помощью (44) из минимизации (46) по $q_{k\rho}$, q_{kz} , и не является независимой функцией.

В итоге задача об устойчивости сверхпроводящего состояния сводится к определению знака наименьшего собственного значения E_k в краевой задаче

$$\Delta p_{k} = p_{k} \left(\mathbf{q}_{0}^{2} + \frac{k^{2}}{\rho^{2}} - 1 + 3f_{0}^{2} - E_{k} \right) + 2 \frac{f_{0}}{\rho} q_{0} t, \quad (63)$$

$$\operatorname{div}(\gamma_{2} \nabla t) = \frac{f_{0}^{2}}{\varkappa^{2} \rho^{2}} t + 2 \frac{f_{0}}{\varkappa^{2} \rho} q_{0} p_{k} + \frac{1}{\rho} \left(\partial_{z} \widetilde{\gamma} \partial_{\rho} u - \partial_{\rho} \widetilde{\gamma} \partial_{z} u \right),$$

$$\operatorname{div}(\widetilde{\gamma} \nabla u) = \frac{k^{2}}{\rho^{2}} u + \frac{1}{\rho} \left(\partial_{z} \widetilde{\gamma} \partial_{\rho} t - \partial_{\rho} \widetilde{\gamma} \partial_{z} t \right)$$

с условиями (59), (60) и $\partial_n p_k = 0$ на границе образца.

Важным свойством (61) является то, что вне образца она зависит только от u. Действительно, вне образца $p_k = 0$, а все слагаемые с t содержат множитель $f_0 = 0$, и, следовательно, уравнение (56) вне образца выполняется для произвольной функции t. Поэтому вне образца система (63) сводится к единственному уравнению для u:

$$\Delta u = \frac{k^2}{\rho^2} u \tag{64}$$

с условиями $u(\rho, -z) = -u(\rho, z)$ и u=0 при $r\to\infty$. Это уравнение Лапласа с азимутальным индексом k, решение которого выражается через присоединенные функции Лежандра. Уравнение (64) мы решаем численно, исходя из тех же соображений, что и при решении (20).

В численном счете, который также выполнен с помощью программы FlexPDE, при 0 < k < n мы пользуемся весовыми функциями

$$w_{k\rho} = w_{kz} = 0, \quad w_{k\varphi}(\rho, z) = \frac{\rho^2}{k^2} f_0^2.$$
 (65)

Следует сказать, что вопрос об оптимальном выборе весовых функций $\{w_{k\alpha}\}$ остается открытым. Можно лишь отметить, что при $\rho \to 0$ используемое нами значение $w_{k\varphi}$ обеспечивает выполнение равенства

$$f_0 t = k p_k, \tag{66}$$

что значительно упрощает раскрытие неопределенностей вблизи оси образца.

С другой стороны, из равенства нулю сверхпроводящих токов (и их возмущений) вне образца следует, что и все $\{w_{k\alpha}\}$ вне образца должны обращаться в нуль. Таким образом, можно считать, что собственная функция существует только внутри образца, а вне образца во второй вариации энергии дополнительно присутствует интеграл от квадрата возмущения поля. Уравнение (48) превращается в

$$\delta^{2} E_{k}(p_{k}, q_{k\rho}, q_{k\varphi}, q_{kz}) =$$

$$= E_{k} \iint_{r \leqslant r_{s}} \rho \, d\rho dz \left\{ |p_{k}|^{2} + w_{k\varphi} |q_{k\varphi}|^{2} \right\} +$$

$$+ \varkappa^{2} \iint_{r \geqslant r_{s}} \rho \, d\rho dz \, |\delta \mathbf{b}_{k}|^{2}. \quad (67)$$

Второй интеграл в этом выражении можно проинтегрировать по частям. С учетом соотношений (64) и (60) окончательно получим

$$\delta^{2} E_{k}(p_{k}, q_{k\rho}, q_{k\varphi}, q_{kz}) =$$

$$= E_{k} \iint_{r \leqslant r_{s}} \rho \, d\rho dz \left\{ |p_{k}|^{2} + w_{k\varphi} |q_{k\varphi}|^{2} \right\} +$$

$$+ \varkappa^{2} \oint_{r=r_{s}} dl \, \gamma_{2} \rho^{2} u \, \partial_{l} t. \quad (68)$$

Теперь рассмотрим случай k=0. Уже из определений (52), (53) видно, что этот случай является особым. Возвращаясь к минимизации (46), можно видеть, что при k=0 исчезает связь между $q_{k\rho}, q_{kz}$

и $q_{k\varphi}$. Это приводит к тому, что минимуму (46) соответствует $q_{0\rho}=q_{0z}=u=0$. Формально систему уравнений (63) можно оставить в том же виде, что и при 0 < k < n, если положить u=0 и $\gamma_2=1/\rho^2$ во всем пространстве. При этом уравнение для t нужно решать не только внутри образца, а во всем пространстве с граничным условием t=0 при $r\to\infty$, что аналогично задаче (28) вычисления сверхпроводящего состояния. На границе образца в этом случае требуется лишь непрерывность t и ее производных. Укажем также, что при k=0 в качестве весовой функции мы используем $w_{0\varphi}(\rho,z)=f_0^2$, при этом соотношение (66) превращается в $f_0t=p_0$.

Следует сказать, что случай k=0 обычно не представляет интереса из-за общих свойств решений уравнений Гинзбурга—Ландау . При заданном внешнем поле либо не существует нетривиальных решений, либо существуют два решения, одно из которых устойчиво (по отношению к гармонике k=0), а другое неустойчиво. Отличить устойчивое решение от неустойчивого легко, поскольку энергия устойчивого состояния должна быть меньше, чем у неустойчивого. Кроме того, с увеличением внешнего поля у устойчивого решения параметр порядка уменьшается, а у неустойчивого — растет. При некотором внешнем поле эти два решения сливаются, и при дальнейшем увеличении поля нетривиальные решения не существуют.

Существование двух близких решений вблизи максимального (и минимального) поля является трудной ситуацией для любой программы численного счета. Поскольку в максимальном (и минимальном) поле $\delta^2 E_0$ обращается в нуль, то точное значение поля, в котором еще существует сверхпроводящее состояние с данным n, мы определяем из интерполяции $\delta^2 E_0$ между устойчивым и неустойчивым решениями.

Другой особый случай k=n возникает из-за изменения особенности поведения собственной функции вблизи оси образца. Можно показать, что для любого k при $\rho \to 0$

$$p_k \propto \rho^{|n-k|}, \quad t \propto \rho^{|n-k|-n}, \quad u \propto \rho^k.$$
 (69)

Степени ρ (как положительные, так и отрицательные) можно выделить с помощью замены

$$p_k = v_k f_0 \rho^{|n-k|-n}, \quad t = t_k \rho^{|n-k|-n}, \quad u = u_k \rho^k.$$
 (70)

Определенные таким образом функции v_k, t_k и u_k не имеют особенностей при $\rho \to 0$ и позволяют решать задачу об устойчивости при произвольном k.

Изложенный выше метод определения устойчивости для сферических образцов можно естествен-

ным образом обобщить на цилиндрические образцы (ориентированные вдоль поля). Если положить отсутствие зависимостей от z для всех функций и равенство нулю размагничивающего фактора ($b_{\rho}=0$, $b_{ext}=h_0$), то соотношения, полученные здесь, переходят в соответствующие выражения [4] для цилиндрического образца.

Как было сказано выше, устойчивые по отношению к малым возмущениям состояния должны иметь неотрицательную вторую вариацию энергии для всех гармоник возмущения. Для состояний с n=10, изображенных на рис.1, область неотрицательной второй вариации энергии показана на рис.2.

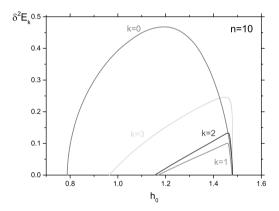


Рис. 2. Спектры устойчивости состояний, представленных на рис.1, для нескольких первых гармоник возмущения: k=0,1,2,3

Из рисунка видно, что для n=10 условие устойчивости выполняется в области полей $1.18 \le h_0 \le 1.48$. При уменьшении поля $(h_0 < 1.18)$ первой теряет устойчивость гармоника с k=1. Это свойство, по-видимому, является общим для сверхпроводников с любым ж. Можно сказать, что магнитное поле выходит из образца по одному кванту. При увеличении поля картина потери устойчивости оказывается несколько сложнее. Для сверхпроводников I рода с $\varkappa \ll 1$ потеря устойчивости происходит в поле $h_0 = h_{max}(n)$ при k = 0. Для сверхпроводников II рода с $\varkappa > 1$ потеря устойчивости происходит в поле $h_0 \lesssim h_{max}(n)$ при k=1. В промежуточном случае $\varkappa \sim 1$ при малых n потеря устойчивости происходит при k=0, а при больших $n \lesssim n_{max}$ — при k = 1. Возможно, что достаточным условием для потери устойчивости при k=1является существование в поле $h_0 \lesssim h_{max}(n)$ состояния n+1. Это предположение подводит к вопросу

о конечном состоянии, в которое перейдет состояние n при потере устойчивости. Очевидно, что в этом поле само конечное состояние должно быть устойчивым и иметь меньшую энергию. Если при заданном поле сравнивать энергию устойчивых состояний с разными значениями n, то состояние с наименьшей энергией будет абсолютно устойчивым, т.е. равновесным, а все остальные — метастабильными. Это значит, что при достаточно большой амплитуде возмущения метастабильное состояние может перейти в равновесное состояние или в другое метастабильное состояние с меньшей энергией.

Заметим, что в случае сверхпроводников II рода неустойчивость может развиться в много-вихревое состояние [1], которое в линейном приближении можно представить как суперпозицию аксиальносимметричных решений. В настоящей работе такие состояния не изучаются, поскольку в нелинейной задаче, рассматриваемой здесь, суперпозиция аксиально-симметричных состояний решением не является. Можно, тем не менее, предположить, что поскольку в сверхпроводниках I рода энергия пъграницы положительна, то (по аналогии с массивными образцами) много-вихревые состояния будут невыгодными.

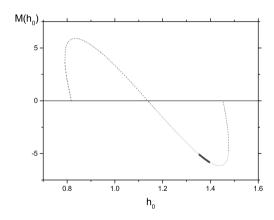


Рис. 3. Области устойчивости состояний с n=10. Толстая кривая — равновесные состояния, тонкая кривая — метастабильные (устойчивые в малом) состояния, пунктирная кривая — абсолютно неустойчивые состояния

Таким образом, с точки зрения устойчивости на кривой намагничивания рис.1 можно выделить 3 типа состояний: равновесные, метастабильные и неустойчивые. Соответствующие области устойчивости показаны на рис.3. Неустойчивые состояния (пунктирная кривая) не реализуются никогда. Метастабильные (тонкая кривая) и равновесные (тол-

стая кривая) состояния являются устойчивыми и могут наблюдаться.

5. РЕЗУЛЬТАТЫ И ВЫВОДЫ

Результирующая кривая намагничивания для сферического образца, составленная из устойчивых состояний для всех допустимых значений $0 \le n \le 14$ показана на рис.4. Эта кривая заметно отличается от результата [4] для цилиндрического образца. Вопервых, в сферическом образце нет "парамагнитных" состояний, т.е. в сферическом образце для всех устойчивых состояний $M(h_0) \le 0$. Во-вторых, минимальное поле, в котором существуют состояния с захваченным потоком, составляет $h_0 \approx h_{cM}$. Отметим, что в нулевом внешнем поле существуют решения с $0 \le n \le 5$, но среди них только майснеровское состояние является устойчивым.

Можно сказать, что состояния с захваченным потоком в сферическом образце менее устойчивы, чем в цилиндрическом. Такой результат легко объяснить, если обратить внимание, что при смещении области нормальной фазы от оси шара (что соответствует k=1) уменьшается ее длина. А поскольку энергия единицы длины такого "вихря" положительна, то это смещение более эффективно понижает энергию в сферическом образце, чем в цилиндрическом, где подобного уменьшения длины нет.

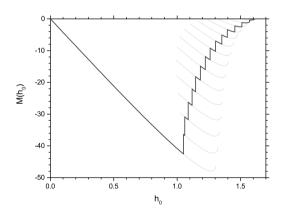


Рис. 4. Полная кривая намагничивания. Вертикальные линии обозначают границы равновесных состояний

От экспериментальных результатов [2] полученная кривая отличается существенно. Остановимся на двух ключевых отличиях. Первое заключается в наблюдении положительного магнитного момента в нулевом поле, которого, как показано в этой работе, теория Гинзбурга—Ландау не допускает.

Второе отличие состоит в наблюдении сверхпроводящих состояний выше T_c , чего также не может быть в рамках теории Гинзбурга—Ландау. Существование сверхпроводимости выше T_c означает, что в свободной энергии присутствуют дополнительные отрицательные слагаемые, которые выше T_c преобладают над положительной энергией Гинзбурга—Ландау.

Поэтому, полученную здесь кривую намагничивания следует рассматривать как результат применения к сферическим образцам теории Гинзбурга—Ландау в ее классической форме.

Среди возможных дополнительных слагаемых в свободной энергии, которые могут быть существенными для описания экспериментальных результатов, естественно рассмотреть энергию, связанную с поверхностью образца. Описание поверхности сверхпроводника в терминах поверхностной свободной энергии хорошо известно [7]. Здесь мы обсудим лишь самые общие свойства, следующие из граничных условий Де Жена [8].

5.1. Граничное условие Де Жена

Граничное условие на поверхности сверхпроводника (19), принятое в теории Гинзбурга–Ландау, является следствием результата, полученного Де Женом

$$\partial_R \Psi_s = -\frac{1}{L} \Psi_s, \tag{71}$$

где Ψ_s — значение параметра порядка на поверхности образца. Величина L для границы сверхпроводник—вакуум [8]

$$L \sim \frac{\xi_0^2}{a_0},$$
 (72)

где a_0 обозначает межатомное расстояние, а ξ_0 — длина когерентности при T=0, роль которой в теории Гинзбурга—Ландау выполняет величина

$$\xi_0 = \sqrt{\frac{g}{\alpha T_c}}. (73)$$

Граничное условие Де Жена в приближении Гинзбурга—Ландау можно получить [7], сопоставив границе сверхпроводника дополнительную свободную энергию

$$F_s = \Lambda_s |\Psi_s|^2. \tag{74}$$

Величину Λ_S , соответствующую (71), в обозначениях (1) можно выразить как

$$\Lambda_s \sim a_0 \cdot \alpha T_c.$$
 (75)

Обычно, L много больше размеров образца, поэтому естественно положить $L=\infty$ и, соответственно, $\Lambda_s=0$, что и лежит в основе граничного условия (19) теории Гинзбурга–Ландау.

Отметим, что для теории Гинзбурга–Ландау важна не сама величина L, которая не зависит от температуры, а ее отношение к корреляционной длине $\xi(T)$, поэтому роль поверхностной энергии растет по мере приближения к T_c . Если перейти к безразмерным единицам этой работы и выразить поверхностную свободную энергию

$$E_s = \lambda_s \, |\psi_s|^2,\tag{76}$$

где

$$\lambda_s = \frac{\xi(T)}{L} \sim \frac{a_0}{\xi_0} \frac{1}{\sqrt{|\tau|}}, \quad \tau = \frac{T - T_c}{T_c}, \quad (77)$$

то можно видеть, что вблизи сверхпроводящего перехода существует характерная приведенная температура

$$\tau_s \sim \left(\frac{a_0}{\xi_0}\right)^2 \tag{78}$$

такая, что при $|\tau|\lesssim \tau_s$ поверхностной свободной энергией пренебрегать нельзя. Более того, если $\lambda_s<0$, то отрицательная поверхностная свободная энергия понижает энергию сверхпроводящего состояния, и сверхпроводимость существует выше T_c .

Для классических сверхпроводников I рода сдвиг температуры перехода τ_s очень мал, но с ростом \varkappa он увеличивается и, например, для свинца [2] составляет $\tau_s \approx 0.25 \, mK/T_c$.

Отметим, что из-за малости отношения a_0/ξ_0 в поверхностной свободной энергии необходимо также учитывать инварианты четвертой степени по Ψ_s [9], которые при $|\tau| \lesssim \tau_s$ могут иметь тот же порядок величины, что и (74). Граничные условия в этом случае определяются 4 параметрами, с помощью которых удается аппроксимировать наблюдаемое поле неустойчивости нормальной фазы вблизи T_c .

Нужно заметить, что возмущения, приводящие к потере устойчивости, полученные в данной работе, сосредоточены вблизи n-s границы и, по-видимому, слабо чувствительны к условиям на поверхности образца. Поэтому нет оснований полагать, что учет поверхностной свободной энергии приведет к существенному изменению кривой намагничивания.

5.2. Дислокационная сверхпроводимость

Другой механизм, который может приводить к увеличению температуры сверхпроводящего перехо-

да — это дислокационная сверхпроводимость [10]. Этот механизм также способствует удержанию магнитного потока в нулевом поле благодаря пиннингу вихрей на дислокациях. Отметим, что дислокационная сверхпроводимость должна проявляться на кривой намагничивания уже при небольшом количестве дислокаций, которые неизбежно присутствуют в образце, но еще не сказываются на других его свойствах. Поэтому дислокационная сверхпроводимость является хорошим кандидатом для описания экспериментальных результатов [2] и их отличия от результатов теории Гинзбурга—Ландау, полученных в данной работе.

Следует отметить, что существующая методика измерения магнитного момента не обладает пространственным разрешением, поэтому указать, связаны наблюдаемые эффекты с поверхностью образца или с дислокациями в его объеме, нельзя.

Благодарности. Автор выражает глубокую признательность В. И. Марченко за многочисленные полезные обсуждения. Также свою искреннюю благодарность автор выражает О. Р. Подоляк за помощь при работе над текстом статьи.

ЛИТЕРАТУРА

- B.J. Baelus, D. Sun, and F.M. Peeters, Phys.Rev. B 75, 174523 (2007).
- **2**. И. Н. Хлюстиков, ЖЭТФ **149**, 378 (2016); И. Н. Хлюстиков, ЖЭТФ **159** (2021).
- **3**. Е. М. Лифшиц, Л. П. Питаевский, *Статистическая физика*, ч.2, Москва, ФМЛ (2000).
- **4**. Е. Р. Подоляк, ЖЭТФ **153**, (2018).
- **5**. http://pdesolutions.com
- **6**. В. Л. Гинзбург, ЖЭТФ **34**, 113 (1958).
- **7**. Е. А. Андрюшин, В. Л. Гинзбург, А. П. Силин УФН **163**, 113 (1993).
- 8. П. де Жен, Сверхпроводимость металлов и сплавов, Мир, Москва (1968).
- 9. Е. Р. Подоляк, ЖЭТФ 140, 1185 (2011).
- **10**. Е. Р. Подоляк, ЖЭТФ **156(1)**, 118 (2019).