New hyperbranched zwitterionic sorbents for HPLC and methods for controlling their separation capacity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of sorbents based on silica gel with zwitterionic functional layers attached via a spacer based on 1,4-butanediol diglycidyl ether was synthesized. The influence of structural fragments of the stationary phase on chromatographic properties in hydrophilic interaction chromatography was studied, and the multifunctional separation capabilities for neutral polar, hydrophobic, and negatively charged compounds were demonstrated. Based on the identified patterns, a sorbent with high separation capacity for carboxylic acids was developed, enabling the separation of 13 organic acids in 25 minutes with a resolution of at least 1.0.

作者简介

A. Chernobrovkina

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

D. Kryzhanovskaya

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

A. Uzhel

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

N. Sobolev

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

G. Tsizin

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

O. Shpigun

Department of Chemistry, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: chernobrovkina@analyt.chem.msu.ru
Moscow, 119991, Russia

参考

  1. Buszewski B., Noga S. Hydrophilic interaction liquid chromatography (HILIC) – A powerful separation technique // Anal. Bioanal. Chem. 2012. V. 402. P. 231. https://doi.org/10.1007/s00216-011-5308-5
  2. Chester T.L. Recent developments in high-performance liquid chromatography stationary phases // Anal. Chem. 2013. V. 85. № 2. P. 579. https://doi.org/10.1021/ac303180y
  3. Li S., Li Z., Zhang F., Geng H., Yang B. A polymer-based zwitterionic stationary phase for hydrophilic interaction chromatography // Talanta. 2020. V. 216. Article 120927. https://doi.org/10.1016/j.talanta.2020.120927
  4. Guo H., Liu R., Yang J., Yang B., Liang X., Chu C. A novel click lysine zwitterionic stationary phase for hydrophilic interaction liquid chromatography // J. Chromatogr. A. 2012. V. 1223. P. 47. https://doi.org/10.1016/j.chroma.2011.12.033
  5. Nesterenko E.P., Nesterenko P.N., Paull B. Zwitterionic ion-exchangers in ion chromatography: A review of recent developments // Anal. Chim. Acta. 2009. V. 652. P. 3. https://doi.org/10.1016/j.aca.2009.06.010
  6. Jandera P., Janás P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review // Anal. Chim. Acta. 2017. V. 967. P. 12. https://doi.org/10.1016/j.aca.2017.01.060
  7. Wang X., Zhu T., Wang X., Peng H., Zhou G., Peng J. Preparation of two zwitterionic polymer functionalized stationary phases and comparative evaluation under mixed-mode of reversed phase/ hydrophilic interaction/ion exchange chromatography // J. Chromatogr. A. 2024. V. 1714. Article 464586. https://doi.org/10.1016/j.chroma.2023.464586
  8. Bo C., Wang X., Wang C., Wei Y. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers // J. Chromatogr. A. 2017. V. 1487. P. 201. https://doi.org/10.1016/j.chroma.2017.01.061
  9. Nesterenko P.N., Haddad P.R. Zwitterionic ion-exchangers in liquid chromatography // Anal. Sci. 2000. V. 16. P. 565. https://doi.org/10.2116/analsci.16.565
  10. Peng H., Wang X., Peng J., He Y., Chen Y., Chen F., Li S. Preparation and evaluation of surface-bonded phenylglycine zwitterionic stationary phase // Anal. Bioanal. Chem. 2018. V. 410. № 23. P. 5941. https://doi.org/10.1007/s00216-018-1211-7
  11. Чернобровкина А.В, Смоленков А.Д., Шпигун О.А. Гидрофильная хроматография – перспективный метод определения полярных веществ // Лаб. Про. 2018. № 4. С. 76. https://doi.org/10.32757/2619-0923.2018.4.4.76.92
  12. Kawase I., Wah L.L., Takeuchi T. Investigation of chromatographic performance of hyperbranched amine-modified stationary phases in ion chromatography // Chromatography. 2017. V. 38. № 1. P. 9. https://doi.org/10.15583/jpchrom.2016.018
  13. Popov A.S., Spiridonov K.A., Uzhel A.S., Smolenkov A.D., Chernobrovkina A.V., Zatirakha A.V. Prospects of using hyperbranched stationary phase based on poly(styrene-divinylbenzene) in mixed-mode chromatography // J. Chromatogr. A. 2021. V. 1642. P. 11. https://doi.org/10.1016/j.chroma.2021.462010
  14. Uzhel A.S., Zatirakha A.V., Smirnov K.N., Smolenkov A.D., Shpigun O.A. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography // J. Chromatogr. A. 2017. V. 1482. P. 56. https://doi.org/10.1016/j.chroma.2016.12.066
  15. Uzhel A.S., Gorbovskaya A.V., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Manipulating selectivity of covalently-bonded hyperbranched anion exchangers toward organic acids. Part I: Influence of primary amine substituents in the internal part of the functional layer // J. Chromatogr. A. 2019. V. 1589. P. 65. https://doi.org/10.1016/j.chroma.2018.12.052
  16. Uzhel A.S., Gorbovskaya A.V., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Manipulating selectivity of covalently-bonded hyperbranched anion exchangers toward organic acids. Part II: Effect of mono- and dicarboxylic amino acids in the internal part of the functional layer // J. Chromatogr. A. 2019. V. 1596. P. 117. https://doi.org/10.1016/j.chroma.2019.03.006
  17. Uzhel A.S., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Quantification of inorganic anions and organic acids in apple and orange juices using novel covalently-bonded hyperbranched anion exchanger with improved selectivity // J. Chromatogr. A. 2018. V. 1567. P. 130. https://doi.org/10.1016/j.chroma.2018.06.065
  18. Chikurova N.Yu., Shemiakina A.O., Shpigun O.A., Chernobrovkina A.V. Multicomponent Ugi reaction as a tool for fast and easy preparation of stationary phases for hydrophilic interaction liquid chromatography. Part I: The influence of attachment and spacing of the functional ligand obtained via the Ugi reaction // J. Chromatogr. A. 2022. V. 1666. Article 462804. https://doi.org/10.1016/j.chroma.2022.462804
  19. Kawachi Y., Ikegami T., Takubo H., Ikegami Y., Miyamoto M., Tanaka N. Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency // J. Chromatogr. A. 2011. V. 1218. № 35. P. 5903. https://doi.org/10.1016/j.chroma.2011.06.048

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».