Chemical sample preparation of plant materials in tunnel-type microwave digestion systems for elemental analysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Analyzing plant materials is essential for environmental monitoring, analytical control of food products, and medicinal raw materials. A review of global practices has shown that there are still no standard proceedings for chemical sample preparation suitable for all plant types without restrictions on the range of elements determined. Creating a standardized scheme for plants is feasible, as the macro composition of any plants consists of at least 90% organic compounds (cellulose, protein, lipids, etc.), whose mineralization results in the formation of water and a gaseous phase. In this study, certified plant samples were mineralized in a tunnel-type microwave digestion system MultiVIEW (SPC SCIENCE, Canada) with variations in analytical sample sizes, composition and volume of reagents, options for adding the reaction mixture, and vessel heating modes for simultaneous determination of a wide range of elements using inductively coupled plasma atomic emission spectrometry. The completeness of dissolution (the degree of correspondence between found and certified contents) was used as one of the criteria for the optimality of sample preparation conditions. It was shown that with a three-stage heating regime of the vessels (heating rate at the first stage 2.76 оC/min) with a sample weight of 0.5 g and separate sequential addition of the reaction mixture (4 ml HNO3, 1.5 ml H2O2, 1 ml HCl, and 0.05 ml HF), it is possible to reliably determine typical plant contents of Si, Al, Mg, Ca, Fe, Na, K, Ba, Sr, Rb, P, B, Mn, Ti, Ni, V, Cu, Zn.

作者简介

E. Shabanova

Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shev@igc.irk.ru
俄罗斯联邦, Irkutsk

A. Zak

Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences

Email: shev@igc.irk.ru
俄罗斯联邦, Irkutsk

I. Vasil’eva

Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences

Email: shev@igc.irk.ru
俄罗斯联邦, Irkutsk

参考

  1. Васильева И.Е., Шабанова Е.В. Стандартные образцы растительных материалов – инструмент обеспечения единства химических измерений // Журн. аналит. химии. 2021. Т. 76. № 2. С. 99. https://doi.org/10.31857/s0044450221020146 (Vasil’eva I.E., Shabanova E.V. Plant-matrix certified reference materials as a tool for ensuring the uniformity of chemical measurements // J. Anal. Chem. 2021. V. 76. № 2. P. 137. https://doi.org/10.1134/S1061934821020143)
  2. НСАМ № 512-МС Определение элементного состава образцов растительного происхождения (травы, листья) атомно-эмиссионным и масс-спектральным методами анализа. М.: Изд-во ФНМЦ ВИМС, 2011. 50 с.
  3. Васильева И.Е. Шабанова Е.В. Определение микроэлементов в растениях методом дуговой атомно-эмиссионной спектрометрии // Аналитика и контроль. 2019. Т. 23. № 3. С. 298. https://doi.org/10.15826/analitika.2019.23.3.011
  4. Baffi C., Bettinelli M., Beone G.M., Spezia S. Comparison of different analytical procedures in the determination of trace elements in lichens // Chemosphere. 2002. V. 48. № 3. P. 299. https://doi.org/10.1016/S0045-6535(02)00094-2
  5. Sucharová J., Suchara I. Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: Comparison of microwave digestions assisted by three types of digestion mixtures // Anal. Chim. Acta. 2006. V. 576. № 2. P. 163. https://doi.org/10.1016/j.aca.2006.06.004
  6. Enamorado-Báez S.M., Abril J.M., Gómez-Guzmán J.M. Determination of 25 trace element concentrations in biological reference materials by ICP-MS following different microwave-assisted acid digestion methods based on scaling masses of digested samples // ISRN Anal. Chem. V. 2013. Article 851713. https://doi.org/10.1155/2013/851713
  7. Nóbrega J.A., Pirola C., Fialho L.L., Rota G., De Campos Jordão CEKMA, Pollo F. Microwave-assisted digestion of organic samples: How simple can it become? // Talanta. 2012. V. 98. № 8. P. 272. https://doi.org/10.1016/j.talanta.2012.06.079
  8. Кубракова И.В., Торопченова Е.С. Микроволновая подготовка проб в геохимических и экологических исследованиях // Журн. аналит. химии. 2013. Т. 68, № 6. С. 524. https://doi.org/10.7868/S0044450213060091 (Kubrakova I.V., Toropchenova E.S. Microwave sample preparation for geochemical and ecological studies // J. Anal. Chem. 2013. V. 68. № 6. P. 467. https://doi.org/10.1134/S1061934813060099)
  9. Rocha D.L., Batista A.D., Rocha F.R.P., Donati G.L., Nóbrega J.A. Greening sample preparation in inorganic analysis // Trends Anal. Chem. 2013. V. 45. № 4. P. 79. https://doi.org/10.1016/j.trac.2012.12.015
  10. Deaker M., Maher W. Determination of arsenic in arsenic compounds and marine biological tissues using low volume microwave digestion and electrothermal atomic absorption spectrometry // J. Anal. At. Spectrom. 1999. V. 14. P. 1193. https://doi.org/10.1039/a903790j
  11. Vasil’eva I.E., Shabanova E.V., Byambasuren T., Khuukhenkhuu B. Elemental profiles of wild Thymus L. plants growing in different soil and climate conditions // Appl. Sci. 2022. V. 12. № 8. Article 3904. https://doi.org/10.3390/APP12083904
  12. Momen A.A., Zachariadis G.A., Anthemidis A.N., Stratis J.A. Optimization and comparison of two digestion methods for multi-element analysis of certified reference plant materials by ICP-AES. Application of Plackett-Burman and central composite designs // Microchim. Acta. 2008. V. 160. P. 397. https://doi.org/10.1007/s00604-007-0776-1
  13. Hoenig M. Preparation steps in environmental trace element analysis – facts and traps // Talanta. 2001. V. 54. № 6. P. 1021. https://doi.org/10.1016/S0039-9140(01)00329-0
  14. Todolí J.L., Mermet J.M. Acid interferences in atomic spectrometry: Analyte signal effects and subsequent reduction // Spectrochim. Acta B. 1999. V. 54. № 6. P. 895. https://doi.org/10.1016/S0584-8547(99)00041-5
  15. Ohlsson K.E.A. Uncertainty budget for multi-elemental analysis of plant nutrients in conifer foliar material using inductively coupled plasma atomic emission spectrometry (ICP-AES) // Accreditation. Qual. Assur. 2012. V. 17. № 3. P. 301. https://doi.org/10.1007/s00769-011-0859-x
  16. Николаева И.В., Кравченко А.А., Палесский С.В., Нечепуренко С.Ф., Семенова Д.В. Элементный анализ растительных стандартных образцов методами масс-спектрометрии и атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой // Заводск. лаборатория. Диагностика материалов. 2019. Т. 85. № 6. С. 11. https://doi.org/10.26896/1028-6861-2019-85-6-11-24
  17. Huang L., Bell R.W., Dell B., Woodward J. Rapid nitric acid digestion of plant material with an open-vessel microwave system // Commun. Soil Sci. Plant Anal. 2004. V. 35. № 3-4. P. 427. https://doi.org/10.1081/CSS-120029723
  18. Zengin M., Ozcan M.M., Cetin U., Gezgin S. Mineral contents of some aromatic plants, their growth soils and infusions // J. Sci. Food Agric. 2008. V.88. № 4. P. 581. https://doi.org/10.1002/jsfa.3120
  19. Thodhal Yoganandham S., Raguraman V., Muniswamy G.K., Sathyamoorthy G., Rajan Renuka R., Chidambaram J., Rajendran T., Chandrasekaran K., Santha Ravindranath R.R. Mineral and trace metal concentrations in seaweeds by microwave-assisted digestion method followed by quadrupole inductively coupled plasma mass spectrometry // Biol. Trace Elem. Res. 2019. V. 187. № 2. P. 579. https://doi.org/10.1007/s12011-018-1397-8
  20. Barin J.S., Pereira J.S.F., Mello P.A., Knorr C.L., Moraes D.P., Mesko M.F., Nóbrega J.A., Korn M.G.A., Flores E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS // Talanta. 2012. V. 94. № 5. P. 308. https://doi.org/10.1016/j.talanta.2012.03.048
  21. Hansen T. H., Laursen K. H., Persson D. P., Pedas P., Husted S., Schjoerring J. K. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis // Plant Methods. 2009. V. 5. № 12. P. 1. https://doi.org/10.1186/1746-4811-5-12
  22. Bocca B., Conti M.E., Pino A., Mattei D., Forte G., Alimonti A. Simple, fast, and low-contamination microwave-assisted digestion procedures for the determination of chemical elements in biological and environmental matrices by sector field ICP-MS // Int. J. Environ. Anal. Chem. 2007. V. 87. №. 15. P. 1111. https://doi.org/10.1080/03067310701485416
  23. Araújo G.C.L, Gonzalez M.H., Ferreira A.G., Nogueira A.R.A., Nóbrega J.A. Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials // Spectrochim. Acta B. 2002. V. 57. № 12. P. 2121. https://doi.org/10.1016/S0584-8547(02)00164-7
  24. Bressy F.C., Brito G.B., Barbosa I.S., Teixeira L.S.G., Korn M.G.A. Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion // Microchem. J. 2013. V. 109. № 7. P. 145. https://doi.org/10.1016/j.microc.2012.03.010
  25. Alnaimat A.S., Barciela-Alonso M.C., Herbello-Hermelo P., Domínguez-González R., Bermejo-Barrera P. In vitro assessment of major and trace element bioaccessibility in tea samples // Talanta. 2021. V. 225. № 4. Article 122083. https://doi.org/10.1016/j.talanta.2021.122083
  26. Feng X., Wu S., Wharmby A., Wittmeier A. Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry / J. Anal. At. Spectrom. 1999. V. 14. № 6. P. 939. https://doi.org/10.1039/a804683b
  27. Konieczynski P., Wesolowski M., Radecka I., Rafalski P. Bioavailable inorganic forms of essential elements in medicinal plants from Northern Poland // Chem. Speciat. Bioavailab. 2011. V. 23. № 2. P. 61. https://doi.org/10.3184/095422911X13026925862779
  28. US-EPA, Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. Washington, DC USA: United States Environmental Protection Agency, 1996.
  29. Krachler M., Mohl C., Emons H., Shotyk W. Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry // Spectrochim. Acta B. 2002. V. 57. № 8. P. 1277. https://doi.org/10.1016/S0584-8547(02)00068-X
  30. Väisänen A., Laatikainen P., Ilander A., Renvall S. Determination of mineral and trace element concentrations in pine needles by ICP-OES: evaluation of different sample pre-treatment methods // Int. J. Environ. Anal. Chem. 2008. V. 88. № 14. P. 1005. https://doi.org/10.1080/03067310802308483
  31. Domínguez-González R., Moreda-Piñeiro A., Bermejo-Barrera A., Bermejo-Barrera P. Application of ultrasound-assisted acid leaching procedures for major and trace elements determination in edible seaweed by inductively coupled plasma-optical emission spectrometry // Talanta. 2005. V. 66. № 4. P. 937. https://doi.org/10.1016/j.talanta.2004.12.051
  32. Helaluddin A., Khalid R.S., Alaama M., Abbas S.A. Main analytical techniques used for elemental analysis in various matrices // Trop. J. Pharm. Res. 2016. V. 15. P. 427. https://doi.org/10.4314/tjpr.v15i2.29
  33. Shabanova E.V., Vasil’eva I.E., Tausenev D.S., Scherbarth S., Pierau U. Features of the “Plants” cluster in the collection of reference materials of Vinogradov institute of geochemistry SB RAS / Reference Materials in Measurement and Technology. Cham, Switzerland: Springer International Publishing, 2022. P. 161. https://doi.org/10.1007/978-3-031-06285-8_13

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##