DETERMINATION OF DOXORUBICIN BASED ON QUENCHING OF LUMINESCENCE OF ALLOYED QUANTUM DOTS
- Autores: Koganova D.G1, Tsyupka D.V1, Drozd D.D1, Mescheriakova S.A1, Pidenko P.S1, Kornilov D.A1, Goryacheva O.A1, Goryacheva I.Y.1
-
Afiliações:
- Saratov State University named after N. G. Chernyshevsky
- Edição: Volume 80, Nº 12 (2025)
- Páginas: 1319-1330
- Seção: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 03.12.2025
- URL: https://journals.rcsi.science/0044-4502/article/view/355766
- DOI: https://doi.org/10.7868/S3034512X25120048
- ID: 355766
Citar
Resumo
Palavras-chave
Sobre autores
D. Koganova
Saratov State University named after N. G. Chernyshevsky
Email: Koganovadara43@gmail.com
Saratov, Russia
D. Tsyupka
Saratov State University named after N. G. ChernyshevskySaratov, Russia
D. Drozd
Saratov State University named after N. G. ChernyshevskySaratov, Russia
S. Mescheriakova
Saratov State University named after N. G. ChernyshevskySaratov, Russia
P. Pidenko
Saratov State University named after N. G. ChernyshevskySaratov, Russia
D. Kornilov
Saratov State University named after N. G. ChernyshevskySaratov, Russia
O. Goryacheva
Saratov State University named after N. G. ChernyshevskySaratov, Russia
I. Goryacheva
Saratov State University named after N. G. ChernyshevskySaratov, Russia
Bibliografia
- Sikora T., Szczepanek K., Korona-Głowniak I., Barbasz A., Czyżowska A., Kazik V., Barbasz J. Application of optical methods for determination of concentration of doxorubicin in blood and plasma // Pharmaceuticals. 2022. V. 15. № 2. P. 112. https://doi.org/10.3390/ph15020112
- Tsyupka D.V., Yakovlev A.V., Goryacheva I. Yu., Drozd D.D., Ponomaryova T.S., Goryacheva O.A. Luminescence behavior of colloid quantum dots in the presence anthracycline antibiotic mitoxantrone: Surface interaction and luminescence quenching, size and composition dependence, potential for clinical study // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 671. Article 131648. https://doi.org/10.1016/j.colsurfa.2023.131648
- Tasca E., Lynch A.M., O’Reilly E.J., Gunnlaugsson T. The self-association equilibria of doxorubicin at high concentration and ionic strength characterized by fluorescence spectroscopy and molecular dynamics simulations // Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 577. P. 517. https://doi.org/10.1016/j.colsurfa.2019.06.005
- Skalová S., Navrátil T., Šestáková I., Jaklová Dytvová J. Doxorubicin determination using two novel voltammetric approaches: A comparative study // Electrochim. Acta. 2020. V. 330. Article 135180. https://doi.org/10.1016/j.electacta.2019.135180
- Shinozawa S., Oda T. Determination of adriamycin (doxorubicin) and related fluorescent compounds in rat lymph and gall by high-performance liquid chromatography // J. Chromatogr. A. 1981. V. 212. № 3. P. 323. https://doi.org/10.1016/S0021-9673(01)84045-0
- Álvarez-Cedrón L., Sayalero M.L., Lanao J.M. High-performance liquid chromatographic validated assay of doxorubicin in rat plasma and tissues // J. Chromatogr. B: Biomed. Sci. Appl. 1999. V. 721. № 2. P. 271. https://doi.org/10.1016/S0378-4347(98)00475-7
- Порфирьев А.В., Хуснушинов З.Ф., Евтюшин Г.А. Электрохимический ДНК-сенсор для докосроубицина на основе оксида графена, электрополимеризованного азура А и композитов метилленового зеленого // Журн. аналит. химии. 2024. Т. 79. № 6. С. 760.
- Kappo D., Рогfir’eva A.V., Kiseleva N.S., Shakirova F.M., Evtyugin G.A. Voltammetric DNA sensor based on redox-active dyes for determining doxorubicin // J. Anal. Chem. 2022. V. 77. № 3. P. 388. https://doi.org/10.1134/S1061934822100075
- Маланина А.Н., Кузин Ю.Н., Иванов А.Н., Заяпова Г.К., Шурин Д.Н., Стойков И.Н., Евтюшин Г.А. Полиэлектролитные комплексы полиэтиленомини—ДНК в составе волнаминерометрических сенсоров для определения повреждений ДНК // Журн. аналит. химии. 2022. Т. 77. № 2. С. 185.
- Карпенко Е.Н., Глущенко Н.Н., Королева И.В., Шаповалова В.М. Сравнительная характеристика микробиологического и спектрофотометрического методов количественного определения докосроубицина в полимерных пленках и модельных смесях / Сб. 68-й итоговой науч. сессии КГМУ и отделения мас.-биол. наук Центр.-Чернозем. науч. центра РАМН: В 2-х ч. Ч. 2. Курск, 2002. С. 226.
- Yang X., Zhang Y., Wang F., Wang Y., Liu Y., Yang P. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method // Mater. Res. Bull. 2015. V. 66. P. 169. https://doi.org/10.1016/j.materresbull.2015.02.050
- Panikar S.S., Cialla-May D., De la Rosa E., Popp J., Campos A.M.B. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum // Talanta. 2020. V. 218. Article 121138. https://doi.org/10.1016/j.talanta.2020.121138
- Yang M., Li H., Liu J., Cai Z., Huang J. Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect // Opt. Mater. 2021. V. 112. Article 110743. https://doi.org/10.1016/j.optmat.2020.110743
- Huang K.Y., Jing Y., Lin H.C., Wu P.W., Huang Y.F. Gold nanocluster-based fluorescence turn-off probe for sensing of doxorubicin by photoinduced electron transfer // Sens. Actuators B: Chem. 2019. V. 296. Article 126656. https://doi.org/10.1016/j.snb.2019.126656
- Castro R.C., Raposo M.M.M., Costa S.P.G. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels // Coord. Chem. Rev. 2021. V. 448. Article 214181. https://doi.org/10.1016/j.ccr.2021.214181
- Абрамова А.М., Горячева О.А., Дрозд Д.Д., Новикова А.С., Пономарева Т.С., Строкин П.Д., Горячева И.Ю. Люминесценция полупроводниковых квантовых точек в химическом анализе // Журн. аналит. химии. 2021. T. 76. C. 273.
- Пономарева Т.С., Новикова А.С., Абрамова А.М., Горячева О.А., Дрозд Д.Д., Строкин П.Д., Горячева И.Ю. Малогоксичные квантовые точки I–III–VI2 нового поколения в химическом анализе // Журн. аналит. химии. 2022. T. 77. № 4. C. 402.
- Bailey R.E., Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size // J. Am. Chem. Soc. 2003. V. 125. № 23. P. 7100. https://doi.org/10.1021/ja035000o
- Susumu K., Oh E., Delehanty J.B., Medintz L.L. Purple-, blue-, and green-emitting multishell alloyed quantum dots: synthesis, characterization, and application for ratiometric extracellular pH sensing // Chem. Mater. 2017. V. 29. № 17. P. 7330. https://doi.org/10.1021/acs.chemmater.7b02174
- Chen X., Zhang Y., Wang F., Wang Y., Liu Y. Highly efficient and stable CdZnSeS/ZnSeS quantum dots for application in white light-emitting diode // Front. Chem. 2022. V. 10. Article 845206. https://doi.org/10.3389/fchem.2022.845206
- Sahu J., Sahoo H., Patra G.K., Mishra A.K. A review on alloyed quantum dots and their applications as photocatalysts // Int. J. Hydrogen Energy. 2023. V. 48. № 75. P. 29097. https://doi.org/10.1016/j.ijhydene.2023.04.109
- Speranskaya E.S., Goryacheva I.Yu., Sukhanov P.T., Goryacheva O.A. Enzyme modulation of quantum dot luminescence: Application in bioanalysis // TrAC, Trends Anal. Chem. 2020. V. 127. Article 115897. https://doi.org/10.1016/j.trac.2020.115897
- Raichlin S., Katz E., Willner I. Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: A versatile system for the optical detection of DNA, aptamer–substrate complexes and telomerase activity // Biosens. Bioelectron. 2011. V. 26. № 12. P. 4681. https://doi.org/10.1016/j.bios.2011.05.016
- Drozd D.D., Goryacheva I.Yu., Ponomaryova T.S., Goryacheva O.A. Luminescent alloyed quantum dots for turn-off enzyme-based assay // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4471. https://doi.org/10.1007/s00216-022-04016-4
- Goryacheva O.A., Ponomaryova T.S., Drozd D.D., Goryacheva I.Yu. Silanized luminescent quantum dots for the simultaneous multicolor lateral flow immunoassay of two mycotoxins // ACS Appl. Mater. Interfaces. 2020. V. 12. № 22. P. 24575. https://doi.org/10.1021/acsami.0c05099
- Goryacheva O.A., Drozd D.D., Ponomaryova T.S., Goryacheva I.Yu. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4427. https://doi.org/10.1007/s00216-022-04005-7
- Wei G., Ding P.T., Zheng J.M., Lu W.Y. Improved HPLC method for doxorubicin quantification in rat plasma to study the pharmacokinetics of micelle-encapsulated and liposome–encapsulated doxorubicin formulations // Biomed. Chromatogr. 2008. V. 22. № 11. P. 1252. https://doi.org/10.1002/bmc.1054
- Mescheryakova S.A., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Doxorubicin detection in plasma and blood using a luminescence turn-off nanosensor based on alloyed CdZnSeS/ZnS quantum dots // Microchim. Acta. 2025. V. 192. P. 416. https://doi.org/10.1007/s00604-025-07283-x
- Savla R., Taratula O., Garbuzenko O., Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer // J. Control. Release. 2011. V. 153. № 1. P. 16. https://doi.org/10.1016/j.jconrel.2011.02.015
- Gao X., Li X., Li L., Zhou J., Ma H. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system // J. Fluoresc. 2012. V. 22. P. 103. https://doi.org/10.1007/s10895-011-0934-z
- Mescheryakova S.A., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Fluorescent alloyed CdZnSeS/ZnS nanosensor for doxorubicin detection // Biosensors. 2023. V. 13. № 6. P. 596. https://doi.org/10.3390/bios13060596
- Bagalkot V., Zhang L., Levy-Nissenbaum E., Jon S., Kantoff P.W., Langer R., Farokhzad O.C. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer // Nano Lett. 2007. V. 7. № 10. Р. 3065. https://doi.org/10.1021/nl071546n
- Tsyupka D.V., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Anthracycline antibiotics detection using turn-off luminescent nanosensors // TrAC, Trends Anal. Chem. 2024. V. 177. Article 117774. https://doi.org/10.1016/j.trac.2024.117774
- Shah S., Liu Y., Hu W., Gao J. Fluorescence properties of doxorubicin in PBS buffer and PVA films // J. Photochem. Photobiol. B: Biol. 2017. V. 170. Р. 65. https://doi.org/10.1016/j.jphotobiol.2017.03.024
- Changenet-Barret P., Gustavsson T., Spiegelman A., Markovitsi D. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy // Phys. Chem. Chem. Phys. 2013. V. 15. № 8. Р. 2937. https://doi.org/10.1039/C2CP44056C
- Porfireva A., Tikhonova S., Evuzyn G. Electrochemical sensor based on poly(Azure B)-DNA composite for doxorubicin determination // Sensors. 2019. V. 19. № 9. Р. 2085. https://doi.org/10.3390/s19092085
- Hamada A., Kawaguchi T., Nakano M. Clinical pharmacokinetics of cytarabine formulations // Clin. Pharmacokinet. 2002. V. 41. Р. 705. https://doi.org/10.2165/00003088-200241100-00002
- Афанасьев М.Е., Князева В.Б., Сотников А.Н. Токсирубицин: вклад в современную противоопухолевую терапию // Эффективная фармакотерапия. 2010. № 22. С. 46.
- Liao Q., Li Y., Huang C. CdS quantum dots as fluorescence probes for detection of adriamycin hydrochloride // Chem. Res. Chin. Univ. 2007. V. 23. № 2. Р. 138. https://doi.org/10.1016/S1005-9040(07)60029-4
- Li P., Li S., Wang Y., Zhang Y., Han H. A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 392. № 1. Р. 7. https://doi.org/10.1016/j.colsurfa.2011.08.037
- Li Z., Wang Y., Ni Y., Kokot S. Ratiometric fluorescence detection of doxorubicin by R-CQDs based on the inner filter effect and fluorescence resonance energy transfer // New J. Chem. 2023. V. 47. № 7. Р. 3541. https://doi.org/10.1039/D2NJ06172D
- Zhang L., Wang Y., Li P., Huang C. 11-Mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection // ACS Appl. Nano Mater. 2021. V. 4. № 12. Р. 13734. https://doi.org/10.1021/acsanm.1c03141
Arquivos suplementares
