METHODS FOR THE DETERMINATION OF SAXITOXIN AND RICIN. LITERATURE REVIEW

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The review examines publications devoted to the development and improvement of methods for determining ricin and saxitoxin using various combinations and modifications of biochemical, immunospecific methods, and liquid chromatography-mass spectrometry. Emphasis is placed on the importance of selecting an analysis strategy, optimizing sample preparation procedures, and operating modes of analytical instruments. Literature data on the selection of characteristic markers and methods for their determination are summarized.

Sobre autores

I. Kovalenko

27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky

Email: i0374061@yandex.ru
Moscow, Russia

A. Braun

27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky

Moscow, Russia

A. Grigoriev

27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky

Moscow, Russia

I. Rybalchenko

27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky

Moscow, Russia

V. Fateenkov

27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky

Moscow, Russia

Bibliografia

  1. Антонов Н. Химическое оружие на рубеже двух столетий. М.: Прогресс, 1994. 176 с.
  2. Millard B., LeClaire R.D. Ricin and related toxins: Review and perspective / Chemical Warfare Agents. 2nd Ed. / Eds. Romano J., Lukey B., Salem H. New York: CRC Press, 2008. P. 423. https://doi.org/10.1201/9781420046625.ch12
  3. Bradberry S.M., Dickers K.J., Rice P., Griffiths G.D., Vale J.A. Ricin poisoning // Toxicol. Rev. 2003. V. 22. № 1. P. 65. https://doi.org/10.2165/00139709-200322010-00007
  4. Конвенция о запрещении разработки, производства и применения химического оружия и о его уничтожении. (https://www.opcw.org/sites/default/files/documents/CWC/CWC_ru.pdf) (дата обращения 01.07.2025 г.)
  5. Hall S., Strichartz G., Moczydlowski E., Ravindran A., Reichardt P.B. The saxitoxins. Sources, chemistry, and pharmacology / Marine Toxins: Origin, Structure, and Molecular Pharmacology. ACS Symposium Series / Eds. Hall S., Strichartz G. Washington D.C.: American Chemical Society, 1990. № 418. P. 29. https://doi.org/10.1021/bk-1990-0418.ch003
  6. Супотницкий М.В. Биологическая война. Введение в эпидемиологию искусственных эпидемических процессов и биологических поражений. М.: Русская панорама. Кафедра, 2013. 1135 с.
  7. Raposo M.I.C., Gomes M.T.S.R., Botelho M.J. Rudnitskaya A. Paralytic shellfish toxins (PST)-transforming enzymes: A review // Toxins. 2020. V. 12. P. 1.
  8. Su Z., Sheets M., Ishida H., Li.F., Barry W.H. Saxitoxin blocks L-type ICa // J. Pharmacol. Exp. Ther. 2004. V. 308. P. 324. https://doi.org/10.1124/jpet.103.056564
  9. Stevens M., Peigneur S., Tytgat J. Neurotoxins and their binding areas on voltage-gated sodium channels // Front. Pharmacol. 2011. V. 2. P. 1. https://doi.org/10.3389/fphar.2011.00071
  10. Despeyroux D., Walker N., Pearce M., Fisher M., McDonnell M., Bailey S.C., Griffiths G.D., Watts P. Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror // Anal. Biochem. 2000. V. 279. № 1. P. 23. https://doi.org/10.1006/abio.1999.4423
  11. Olsnes S., Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis // Biochemistry 1973. V. 12. P. 3121. https://doi.org/10.1021/bi00740a028
  12. Simmons B.M., Stahl P.D., Russell J.H. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. multiple intracellular pathways for a chain translocation // J. Biol. Chem. 1986. V. 261. № 17. P. 7912. https://doi.org/10.1016/S0021-9258(19)57490-7
  13. Richardson P.T., Hussain K., Woodland H.R., Lord J.M., Roberts L.M. The effects of n-glycosylation on the lectin activity of recombinant ricin B chain // Carbohydr. Res. 1991. V. 213. P. 19. https://doi.org/10.1016/S0008-6215(00)90594-9
  14. Lord J. M., Roberts L.M. and Robertus J.D. Ricin: Structure, mode of action, and some current applications // FASEB J. 1994. V. 8. P. 201. https://doi.org/10.1096/fasebj.8.2.8119491
  15. Rutenber E., Katzin B.J., Ernst S., Collins E.J., Mlsna D., Ready M.P., Robertus J.D. Crystallographic refinement of ricin to 2.5 Å // Proteins. 1991. V. 10. P. 240. https://doi.org/10.1002/prot.340100308
  16. Crystallographic refinement of ricin to 2.5 Angstroms (PDB: 2AAI). Получена из базы данных RCSB PDB (http://www.rcsb.org/) (дата обращения 01.07.2025 г.)
  17. Montanaro L., Sperti S., Mattioli A., Testoni G., Stirpe F. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes // Biochem. J. 1975. V. 146. № 1. P. 127. https://doi.org/10.1042/bj1460127
  18. Chen X.Y., Link T.M., Schramm V.L. Ricin: kinetics, mechanism, and RNA stem loop inhibitors // Biochemistry. 1998. V. 37. P. 11605. https://doi.org/10.1021/bi980990p
  19. Falach R., Sapoznikov A., Gal Y., Israeli O., Leitner M., Seliger N., Ehrlich S., Kronman C., Sabo T. Quantitative profiling of the in vivo enzymatic activity of ricin disparate depurination of different pulmonary cell types // Toxicol. Lett. 2016. V. 258. P. 11. https://doi.org/10.1016/j.toxlet.2016.06.00
  20. Zheng J., Zhao C., Tian G., He L. Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy // Talanta. 2017. V. 162. P. 552. https://doi.org/10.1016/j.talanta.2016.10.052
  21. Falach R., Sapoznikov A., Alcalay R., Aftalion M., Ehrlich S., Makovitzki A., Agami A., Mimran A., Rosner A., Sabo T. Generation of highly efficient equine-derived antibodies for post-exposure treatment of ricin intoxications by vaccination with monomerized ricin // Toxins. 2018. V. 10. P. 466. https://doi.org/10.3390/toxins10110466
  22. Christian B., Luckas B. Determination of marine biotoxins relevant for regulations: From the mouse bioassay to coupled LC-MS methods // Anal. Bioanal. Chem. 2007. V. 391. P. 117. https://doi.org/10.1007/s00216-007-1778-x
  23. Jellett J.F., Marks L.J., Stewart J.E., Dorey M.L., Watson-Wright W., Lawrence J.F. Paralytic shellfish poison (saxitoxin family) bioassays: Automated endpoint determination and standardization of the in vitro tissue culture bioassay, and comparison with the standard mouse bioassay // Toxicon. 1992. V. 30. № 10. P. 1143. https://doi.org/10.1016/0041-0101(92)90430-d
  24. Inami G.B., Crandall C., Csuti D., Oshiro M., Brenden R.A. Feasibility of reduction in use of the mouse bioassay: presence/absence screening for saxitoxin in frozen acidified mussel and oyster extracts from the coast of california with in vitro methods // J. AOAC Int. 2004. V. 87. № 5. P. 1133. https://doi.org/10.1093/jaoac/87.5.1133
  25. Azman M.N., Norhana W. Detection of tetrodotoxin and saxitoxin in dried salted yellow puffer fish (Xenopterus naritus) eggs from Satok Market, Kuching, Sarawak // Int. Food Res. J. 2013. V. 20. № 5. P. 2963. (http://www.ifrj.upm.edu.my/20%20(05)%202013/58%20IFRJ%2020%20(05)%202013%20Norhana%20346.pdf) (дата обращения 01.07.2025 г.)
  26. Llewellyn L.E., Doyle J., Jellett J., Barrett R., Alison C., Bentz C., Quilliam M. Measurement of paralytic shellfish toxins in molluscan extracts: comparison of the microtitre plate saxiphilin and sodium channel radioreceptor assays with mouse bioassay, HPLC analysis and a commercially available cell culture assay // Food Addit Contam. 2001. V. 18. P. 970. https://doi.org/10.1080/02652030110048594
  27. Manual on harmful marine microalgae / Eds. G.M. Hallegraeff, Anderson D.M., A.D. Cembella. UNESCO, 2004. Printed in France. 793 p. https://doi.org/10.25607/OBP-1370
  28. Quilliam M.A., Janeček M., Lawrence J. F. Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry // Rapid Commun. Mass Spectrom. 1993. V. 7. № 6. P. 482. https://doi.org/10.1002/rcm.1290070616
  29. Quilliam M.A. The role of chromatography in the hunt for red tide toxins // J. Chromatogr. A. 2003. V. 1000. № 1-2. P. 527. https://doi.org/10.1016/s0021-9673(03)00586-7
  30. Oshima Y. Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins // J. AOAC Int. 1995. V. 78. № 2. P. 528. https://doi.org/10.1093/jaoac/78.2.528
  31. Lawrence J.F., Niedzwiadek B. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection // J. AOAC Int. 2001. V. 84. № 4. P. 1099. https://doi.org/10.1093/jaoac/84.4.1099
  32. Anon. Official method 2011.02 determination of paralytic shellfish poisoning toxins in mussels, clams, oysters and scallops. In Post-Column Oxidation Method (PCOX) / First Action 2011. Gaithersburg, MD USA: AOAC International, 2011.
  33. Зубков И.Н., Кузьмин А.В., Тихонова И.В., Белых О.И., Смирнов В.И., Иванов А.В., Шагун В.А., Грачев М.А., Федорова Г.А. Определение сакситоксина методом ВЭЖХ-МС с предколочночной дериватизацией 2,4-динитрофенилгидразино // Изв. вузов. Прикладная химия и биотехнология. 2018. Т. 8. № 3. С. 25. https://doi.org/0.21285/2227-2925-2018-8-3-25-32
  34. Fang X., Fan X., Tang Y., Chen J., Lu J. Liquid chromatography/quadrupole time-of-flight mass spectrometry for determination of saxitoxin and decarbamoylsaxitoxin in shellfish // J. Chromatogr. A. 2004. V. 1036. P. 233. https://doi.org/10.1016/j.chroma.2004.02.075
  35. Dell'Aversano C., Hess P., Quilliam M.A. Hydrophilic interaction liquid chromatography–mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins // J. Chromatogr. A. 2005. V. 1081. P. 190. https://doi.org/10.1016/j.chroma.2005.05.056
  36. Yue Y., Zhu B., Lun L., Xu N. Quantifications of saxitoxin concentrations in bivalves by high performance liquid chromatography-tandem mass spectrometry with the purification of immunoaffinity column // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020. V. 1147. Article 122133. https://doi.org/10.1016/j.jchromb.2020.122133
  37. Boundy M.J., Selwood A.I., Harwood D.T., McNabb P.S., Turner A.D. Development of a sensitive and selective liquid chromatography–mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction // J. Chromatogr. A. 2015. V. 1387. P. 1. https://doi.org/10.1016/j.chroma.2015.01.086
  38. Jansson D., Åstot C. Analysis of paralytic shellfish toxins, potential chemical threat agents, in food using hydrophilic interaction liquid chromatography–mass spectrometry // J. Chromatogr. A. 2015. V. 1417. P. 41. https://doi.org/10.1016/j.chroma.2015.09.029
  39. Bragg W.A., Lemire S.W., Coleman R.M., Hamelin E.I., Johnson R.C. Detection of human exposure to saxitoxin and neosaxitoxin in urine by online-solid phase extraction-liquid chromatography-tandem mass spectrometry // Toxicon. 2015. V. 99. P. 118. https://doi.org/10.1016/j.toxicon.2015.03.017
  40. Xu J.J., Cai Z.X., Zhang J., Chen Q., Han J.L. Fast and quantitative determination of saxitoxin and neosaxitoxin in urine by ultra performance liquid chromatography-triple quadrupole mass spectrometry based on the cleanup of solid phase extraction with hydrophilic interaction mechanism // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018. V. 1072. P. 267. https://doi.org/10.1016/j.jchromb.2017.11.032
  41. Johnson H.M., Frey P.A., Angelotti R., Campbell J.E., Lewis K.H. Haptenic properties of paralytic shellfish poison conjugated to proteins by formaldehyde treatment // Proc. Soc. Exp. Biol. Med. 1964. V. 117. P. 425. https://doi.org/10.3181/00379727-117-29599
  42. Chu F.S., Fan T.S.L. Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish // J. Assoc. Off. Anal. Chem. 1985. V. 68. P. 13. https://doi.org/10.1093/jaoac/68.1.13
  43. Usleber E., Dietrich R., Märtlbauer E., Terplan G. Effect of heterologous paralytic shellfish poisoning toxin‐enzyme conjugates on the cross‐reactivity of a saxitoxin enzyme immunoassay // Lett. Appl. Microbiol. 1994. V. 18. P. 337. https://doi.org/10.1111/j.1472-765X.1994.tb00883.x
  44. Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, U.S.A., 28 October-1 November 1991 / Eds. Smayda T., Shimizu Y. New York: Elsevier, 1993. 952 p.
  45. Mcleod C., Burrell S., Holland P. Review of the Currently Available Field Methods for Detection of Marine Biotoxins in Shellfish Flesh. Wiltshire, UK: Seafood Safety Assessment Ltd., 2015. 86 p. (https://www.foodstandards.gov.scot/downloads/Review_of_field_testing_methods_for_biotoxins_in_shellfish_-_Final_Report.pdf) (дата обращения 01.07.2025 г.)
  46. Wharton R.E., Feyereisen M.C., Gonzalez A.L., Abbott N.L., Hamelin E.I., Johnson R.C. Quantification of saxitoxin in human blood by ELISA // Toxicon. 2017. V. 133. P. 110. https://doi.org/10.1016/j.toxicon.2017.05.00
  47. Laycock M.V., Donovan M.A., Easy D.J. Sensitivity of lateral flow tests to mixtures of saxitoxins and applications to shellfish and phytoplankton monitoring // Toxicon. 2010. V. 55. P. 597. https://doi.org/10.1016/j.toxicon.2009.10.014
  48. Jawaid W., Campbell K., Melville K., Holmes S.J., Rice J., Elliott C.T. Development and validation of a novel lateral flow immunoassay (LFIA) for the rapid screening of paralytic shellfish toxins (PSTs) from shellfish extracts // Anal. Chem. 2015. V. 87. P. 5324. https://doi.org/10.1021/acs.analchem.5b00608
  49. Bates H.A. Rapoport H.A. Chemical assay for saxitoxin, the paralytic shellfish poison // J. Agric. Food Chem. 1975. V. 23. P. 237. https://doi.org/10.1021/jf60198a016
  50. Thomas K.M., Chung S., Ku J., Reeves K., Quilliam M.A. Analysis of PSP toxins by liquid chromatography with post column oxidation and fluorescence detection / Molluscan Shellfish Safety / Eds. Henshilwood K., McMahon B.D.T., Cusack C., Keaveney S., Silke J., O'Cinneide M., Lyons D., Hess P. Galway, Ireland: The Marine Institute: 2006. P. 63. (https://d1wqtxts1xzle7.cloudfront.net/43616778/Analysis_of_PSP_toxins_by_liquid_chromat20160311-6607-1r3v82d.pdf?1738300029=&response-content-disposition=inline%3B+filename%3DAnalysis_of_PSP_toxins_by_liquid_chromat.pdf&Expires=1750680242&Signature=BJPO09WVBZp9howRTeldMtwDbkEUDNeOsuq6SDWI5DfQyNkilUD6FzekinVQxv0LdGJE0OyP1nlwtgYgwFqKiR45eiRP754-yPT7wM2rC-SKiQycn6uzltUbE54vNNf3St48YPAYvXuVCkFEoHsBxXIBpNnO~Ef73Lmyfnij6gcmDeKeeXbCZ0fk9cyMYMCX4AtvEiF7YR0YVjexr57e7xZyBxzfYeJX51~hkbENaTLDKTgHn4pAEYPWvJm95JUkB7KQjhMPCEy25vZsbi6Cc0GZbNH~hgyoSKT8j1Ehc-yhzA9LqakFPx78ZngvUMsapjWlmvM7GLmT3KujlDG1oPQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA) (дата обращения 01.07.2025 г.)
  51. Rourke W.A., Murphy C.J., Pitcher G., Van de Riet J.M., Burns B.G., Thomas K.M., Quilliam M.A. Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue // J. AOAC Int. 2008. V. 91. P. 589. https://doi.org/10.1093/jaoac/91.3.589
  52. Rodríguez P., Alfonso A., Botana A.M., Vieytes M.R., Botana L.M. Comparative analysis of preand post-column oxidation methods for detection of paralytic shellfish toxins // Toxicon. 2010. V. 56. P. 448. https://doi.org/10.1016/j.toxicon.2010.04.014
  53. Lawrence J.F., Ménard C. Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation // J. Assoc. Off. Anal. Chem. 1991. V. 74. № 6. P. 1006. https://doi.org/10.1093/jaoac/74.6.1006
  54. Janeček M., Quilliam M.A., Lawrence J.F. Analysis of paralytic shellfish poisoning toxins by automated pre-column oxidation and microcolumn liquid chromatography with fluorescence detection // J. Chromatogr. A. 1993. V. 644. № 2. P. 321. https://doi.org/10.1016/0021-9673(93)80715-k
  55. Ben-Gigirey B., Rodriguez-Velasco M.L., Gago-Martinez. A. Extension of the validation of AOAC Official Method 2005.06 for dc-GTX2,3: Interlaboratory study // J. AOAC Int. 2012. V. 95. P. 111. https://doi.org/10.5740/jaoacint.10-446
  56. Turner A.D., Hatfield R.G., Rapkova-Dhanji M., Norton D.M., Algoet M., Lees D.N. Single-laboratory validation of a refined AOAC HPLC method 2005.06 for oysters, cockles, and clams in U.K. shellfish // J. AOAC Int. 2010. V. 93. P. 1482. https://doi.org/10.1093/jaoac/93.5.1482
  57. Turner A.D., Hatfield R.G. Refinement of AOAC Official Method 2005.06 liquid chromatography-fluorescence detection method to improve performance characteristics for the determination of paralytic shellfish toxins in king and queen scallops // J. AOAC Int. 2012. V. 95. P. 129. https://doi.org/10.5740/jaoacint.11-184
  58. Lawrence J.F., Wong B., Ménard C. Determination of decarbamoylsaxitoxin and its analogues in shellfish by prechromatographic oxidation and liquid chromatography with fluorescence detection // J. AOAC Int. 1996. V. 79. №. 5. P. 1111. https://doi.org/10.1093/jaoac/79.5.1111
  59. Lawrence J.F., Ménard C., Charbonneau C.F., Hall S. A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection // J. Assoc. Off. Anal. Chem. 1991. V. 74. № 2. P. 404. https://doi.org/10.1093/jaoac/74.2.404
  60. Stafford R.G., Hines H.B. Urinary elimination of saxitoxin after intravenous injection // Toxicon. 1995. V. 33. № 11. P. 1501. https://doi.org/10.1016/0041-0101(95)00081-V
  61. Sato S., Shimizu Y. Purification of a Fluorescent Product from the Bacterium Moraxella: A Neosaxitoxin Imposter. Paris: UNESCO, 1998. P. 465.
  62. Wils E.R.J., Hulst A.G. Determination of saxitoxin by liquid chromatography/thermospray-mass spectrometry // Rapid Commun. Mass Spectrom. 1993. V. 7. № 6. P. 413. https://doi.org/10.1002/rcm.1290070602
  63. Dell’Aversano C., Eaglesham G.K., Quilliam M.A. Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry // J. Chromatogr. A. 2004. V. 1028. № 1. P. 155. https://doi.org/10.1016/j.chroma.2003.11.083
  64. Halme M., Rapinoja M.L., Karjalainen M., Vanninen P. Verification and quantification of saxitoxin from algal samples using fast and validated hydrophilic interaction liquid chromatography-tandem mass spectrometry method // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2012. V. 880. P. 50. https://doi.org/10.1016/j.jchromb.2011.11.015
  65. Bosch-Orea C., Sanchís J., Farré M. Analysis of highly polar marine biotoxins in seawater by hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry // MethodsX. 2021. V. 8. Article 101370. https://doi.org/10.1016/j.mex.2021.101370
  66. Vo Duy S., Munoz G., Dinh Q.T., Zhang Y., Simon D.F., Sauvé S. Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS // Talanta. 2022. V. 241. Article 123267. https://doi.org/10.1016/j.talanta.2022.123267
  67. Johnson R.C., Zhou Y., Statler K., Thomas J., Cox F., Hall S., Barr J.R. Quantification of saxitoxin and neosaxitoxin in human urine utilizing isotope dilution tandem mass spectrometry // J. Anal. Toxicol. 2009. V. 33. № 1. P. 8. https://doi.org/10.1093/jat/33.1.8
  68. Peake R.W.A., Zhang V.Y., Azcue N., Hartigan C.E., Shkreta A., Prabhakara J., Berde C.B., Kellogg M.D. Measurement of neosaxitoxin in human plasma using liquid–chromatography tandem mass spectrometry: Proof of concept for a pharmacokinetic application // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2016. V. 1036–1037. P. 42. https://doi.org/10.1016/j.jchromb.2016.09.043
  69. Shyu H.F., Chiao D.J., Liu H.W., Tang S.S. Monoclonal antibody-based enzyme immunoassay for detection of ricin // Hybrid. Hybridomics. 2002. V. 21. P. 69. https://doi.org/10.1089/1536859025291766
  70. Guo J.W., Shen B.F., Feng J.N., Sun Y.X., Yu M., Hu M.R. A novel neutralizingmonoclonal antibody against both ricin toxin a and ricin toxin b, and application of a rapid sandwich enzyme-linked immunosorbent assay // Hybridoma. 2006. V. 25. № 4. P. 225. https://doi.org/10.1089/hyb.2006.25.225
  71. Chen H.Y., Tran H., Foo L.Y., Sew T.W., Loke W.K. Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples // Anal. Bioanal. Chem. 2014. V. 406. P. 5157. https://doi.org/10.1007/s00216-014-7934-1
  72. Shyu R.H., Shyu H.F., Liu H.W., Tang S.S. Colloidal gold-based immunochromatographic assay for detection of ricin // Toxicon. 2002. V. 40. P. 255. https://doi.org/10.1016/s0041-0101(01)00193-3
  73. Guglielmo-Viret V., Splettstoesser W., Thullier P. An immunochromatographic test for the diagnosis of ricin inhalational poisoning // Clin. Toxicol. 2007. V. 45. № 5. P. 505. https://doi.org/10.1080/15563650701354226
  74. Guglielmo-Viret V., Thullier P. Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B) // J. Immunol. Methods. 2007. V. 328. P. 70. https://doi.org/10.1016/j.jim.2007.08.003
  75. Brandon D.L., Korn A.M., Yang L.L. Detection of ricin contamination in liquid egg by electrochemiluminescence immunosorbent assay // J. Food Sci. 2011. V. 77. № 4. P. 83. https://doi.org/10.1111/j.1750-3841.2012.02627.x
  76. Brandon D.L. Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay // Toxins. 2011. V. 3. P. 398. https://doi.org/10.3390/toxins3040398
  77. Liang L.H., Cheng X., Yang Y., Yang L., Yu H.L., Du B., Liu C.C., Liu S.L. An in vitro detection method for depurination activity of ricin based on a novel RNA substrate and its application // Chin. J. Anal. Chem. 2021. V. 49. P. 1694
  78. Kaitlyn K.D., John R.B., Suzanne R.K. Mass spectrometric detection and differentiation of enzymatically active abrin and ricin combined with a novel affinity enrichment Technique // Chem. Res. Toxicol. 2024. V. 37. P. 1218. https://doi.org/10.1021/acs.chemrestox.4c00149
  79. Wang D., Baudys J., Barr J.R., Kalb S.R. Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF Mass Spectrometry // Anal. Chem. 2016. V. 88. № 13. P. 6867. https://doi.org/10.1021/acs.analchem.6b01486
  80. Becher F., Duriez E., Volland H., Tabet J.C., Ezan E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry // Anal. Chem. 2007. V. 79. P. 659. https://doi.org/10.1021/ac061498b
  81. Hoyt K., Barr J.R., Kalb S.R. Detection of ricin activity and structure by using novel galactose-terminated magnetic bead extraction coupled with mass spectrometric detection // Anal. Biochem. 2021. V. 631. Article 114364. https://doi.org/10.1016/j.ab.2021.114364
  82. Brinkworth C.S., Pigott E.J., Bourne D.J. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry // Anal. Chem. 2009. V. 81. № 4. P. 1529. https://doi.org/10.1021/ac802240f
  83. Ma X., Tang J., Li C., Liu Q., Chen J., Li H., Guo L., Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry // Anal. Bioanal. Chem. 2014. V. 406. P. 5147. https://doi.org/10.1007/s00216-014-7710-2
  84. Yan Y., Zhang S.Z., Tang J.J., Gu M.S., Feng J.L., Xie J.W. Application of peptide mass fingerprint in ricin identification with matrix-assisted laser desorption ionization time-of-flight-mass spectrometry // Chin. J. Anal. Chem. 2006. V. 34. P. 187.
  85. Ostin A., Bergstrom T., Fredriksson S.A., Nilsson C. Solvent-assisted trypsin digestion of ricin for forensic identification by LC-ESI MS/MS // Anal. Chem. 2007. V. 79. P. 6271. https://doi.org/10.1021/ac0701740
  86. Wang J., Gao S., Kang L., Jia Y., Wang J. Development of colloidal gold-based immunochromatographic assay for the rapid detection of ricin toxin in food samples // Food Agric. Immunol. 2011. V. 22. № 2. P. 185. https://doi.org/10.1080/09540105.2010.549213
  87. Garber E.A.E., O’Brien T.W. Detection of ricin in food using electrochemiluminescence-based technology // J. AOAC Int. 2008. V. 91. № 2. P. 376. https://doi.org/10.1093/jaoac/91.2.376
  88. Duriez E., Fenaille F., Tabet J.C., Lamourette P., Hilaire D., Becher F., Ezan E. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // J. Proteome Res. 2008. V. 7. № 9. P. 4154. https://doi.org/10.1021/pr8003437
  89. Braun A.V., Taranchenko V.F., Tikhomirov L.A., Grechukhin A.P., Rybalchenko I.V. Detection of ricin in plant extracts and soil using liquid chromatography–high-resolution mass spectrometry // J. Anal. Chem. 2018. V. 73. P. 786. https://doi.org/10.1134/S1061934818080026
  90. Liang L.H., Cheng X., Yu H.L., Yang Y., Mu X.H., Chen B., Li X.S., Wu J.N., Yan L., Liu C.C., Liu S.L. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatographytandem mass spectrometry // Anal. Bioanal. Chem. 2021. V. 413. P. 585. https://doi.org/10.1007/s00216-020-03030-8
  91. McGrath S.C., Schieltz D.M., McWilliams L.G., Pirkle J.L., Barr J.R. Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry // Anal. Chem. 2011. V. 83. P. 2897. https://doi.org/10.1021/ac102571f
  92. Fredriksson S.Å.; Artursson E.; Bergström T.; Östin A.; Nilsson C.; Åstot C. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LCMS // Anal. Chem. 2014. V. 87. P. 967. https://doi.org/10.1021/ac5032918
  93. Kanamori-Kataoka M., Kato H., Uzawa H., Ohta S., Takei Y., Furuno M., Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column // J Mass Spectrom. 2011. V. 46. P. 821. https://doi.org/10.1002/jms.1953
  94. Piquet P., Saadi J., Fenaille F., Kalb S.R., Becher F. Rapid detection of ricin at trace levels in complex matrices by asialofetuin-coated beads and bottom-up proteomics using high-resolution mass spectrometry // Anal. Bioanal. Chem. 2024. V. 416. P. 5145. https://doi.org/10.1007/s00216-024-05452-0
  95. Dupré M., Gilquin B., Fenaille F., Feraudet-Tarisse C., Dano J., Ferro M., Simon S., Junot C., Brun V., Becher F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry // Anal Chem. 2015. V. 87. P. 8473. https://doi.org/10.1021/acs.analchem.5b01900
  96. Wadkins R.M., Golden J.P., Pritsiolas L.M., Ligler F.S. Detection of multiple toxicagents using a planar array immunosensor // Biosens. Bioelectron. 1998. V. 13. № 3–4. P. 407. https://doi.org/10.1016/S0956-5663(97)00113-9
  97. Yu H., Raymonda J.W., McMahon T.M., Campagnari A.A. Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenicand electro-chemiluminescence // Biosens. Bioelectron. 2000. V. 14. № 10–11. P. 829. https://doi.org/10.1016/S0956-5663(99)00068-8
  98. Wang L., Cole K.D., Gaigalas A.K., Zhang Y.Z. Fluorescent nanometer microspheres as a reporter for sensitive detection of simulants of biological threats using multiplexed suspension arrays // Bioconjug. Chem. 2005. V. 16. № 1. P. 194. https://doi.org/10.1021/bc0498020
  99. Pinkerton S.D., Rolfe R., Auld D.L., Ghetie V., Lauterbach B.F. Selection of castor for divergent concentrations of ricin and ricinus communis agglutinin // Crop Sci. 1999. V. 39. № 2. P 353. h tt ps : // d oi . or g /1 0 .2 13 5/ c ro ps c i1 99 9. 0011183x003900020008x
  100. Garber E.A., Thole J. Application of microwave irradiation and heat to improve gliadin detection and ricin ELISA throughput with food samples // Toxins. 2015. V. 7. P. 2135. https://doi.org/10.3390/toxins7062135
  101. Jenko K.L., Zhang Y., Kostenko Y., Fan Y., Garcia-Rodriguez C., Lou J., Varnum S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins // Analyst. 2014. V. 139. P. 5093. https://doi.org/10.1039/C4AN01270D
  102. Garber E.A.E. Toxicity and detection of ricin and abrin in beverages // J. Food Prot. 2008. V. 71. № 9. P. 1875. https://doi.org/10.4315/0362-028X-71.9.1875
  103. Roberts L.M., Lamb F.I., Pappin D.J.C., Loard J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin // J. Biol. Chem. 1985. V. 260. P. 15682.
  104. Schieltz D.M., McWilliams L.G., Kuklenyik Z., Prezioso S.M., Carter A.J., Williamson Y.M., McGrath S.C., Morse S.A., Barr J.R. Quantification of ricin, rca and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry // Toxicon. 2015. V. 95. P. 72. https://doi.org/10.1016/j.toxicon.2015.01.003
  105. Worbs S., Kohler K., Pauly D., Avondet M.A., Schaer M., Dorner M.B., Dorner B.G. Ricinus communis intoxications in human and veterinary medicine – A summary of real cases // Toxins. 2011. V. 3. P. 1332. https://doi.org/10.3390/toxins3101332
  106. Worbs S., Skiba M., Soderstrom M., Rapinoja M.L., Zeleny R., Russmann H., Schimmel H., Vanninen P., Fredriksson S.A., Dorner B.G. Characterization of ricin and r. communis agglutinin reference materials // Toxins. 2015. V. 7. P. 4906. https://doi.org/10.3390/toxins7124856
  107. Kumar O., Pradhan S., Sehgal P., Singh Y., Vijayaraghavan R. Denatured ricin can be detected as native ricin by immunological methods, but nontoxic in vivo // J. Forensic Sci. 2010. V. 55. № 3. P. 801. https://doi.org/10.1111/j.1556-4029.2009.01290.x
  108. Baldoni A.B., de Carvalho M.H., Sousa N.L., Nobrega M.B.D., Milani M., Aragao F.J.L. Variability of ricin content inmature seeds of castor bean // Pesq. Agropec. Bras. 2011. V. 46. P. 776. https://doi.org/10.1590/S0100-204X2011000700015
  109. Andersson S., Sundberg M., Pristovsek N., Ibrahim A., Jonsson P., Katona B., Clausson C.M., Zieba A., Soderberg R.M. Insufficient antibody validation challenges oestrogen receptor beta research // Nat. Commun. 2017. V. 8. P. 15840. https://doi.org/10.1038/ncomms15840
  110. Baker M. Reproducibility crisis: Blame it on the antibodies // Nature. 2015. V. 521. P. 274. https://doi.org/10.1038/521274a
  111. Bevilacqua A.V.L.H., Nilles J.M., Rice J.S., Connell T.R., Schenning A.M., Reilly L.M., Durst H.D. Ricin activity assay by direct analysis in real time mass spectrometry detection of adenine release // Anal. Chem. 2010. V. 82. P. 798. https://doi.org/10.1021/ac9025972
  112. Hines C.H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography–mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain // Anal. Biochem. 2004. V. 330. P. 119. https://doi.org/10.1016/j.ab.2004.03.046
  113. Heisler I., Keller J., Tauber R., Sutherland M., Fuchs H. A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins // Anal. Biochem., 2002. V. 302. № 1. P. 114. https://doi.org/10.1006/abio.2001.5527
  114. Sturm M.B., Schramm V.L. Detecting ricin: Sensitive luminescent assay for ricin a-chain ribosome depurination kinetics // Anal. Chem. 2009. V. 81. № 8. P. 2847. https://doi.org/10.1021/ac8026433
  115. Zamboni M., Brigotti M., Rambelli F., Montanaro L., Sperti S. High-pressure-liquid-chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin // Biochem. J. 1989. V. 259. № 3. P. 639. https://doi.org/10.1042/bj2590639
  116. Dong L., Liu T., Li J., Wang C., Lv J., Wang J., Wang J., Gao S., Kang L., Xin W. Establishment and comparison of detection methods for ricin and abrin based on their depurination activities // Toxins. 2025. V. 17. № 4. P. 177. https://doi.org/10.3390/toxins17040177
  117. Brzezinski J.L., Craft D.L. Evaluation of an in vitro bioassay for the detection of purified ricin and castor bean in beverages and liquid food matrices // J. Food Prot. 2007. V. 70. № 10. P. 2377. https://doi.org/10.4315/0362-028X-70.10.2377
  118. Pauly D., Worbs S., Kirchner S., Shatohina O., Dorner M.B., Dorner B.G. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices // PLoS One. 2012. V. 7. № 4. P. 35360. https://doi.org/10.1371/journal.pone.0035360
  119. Куценко С.А., Бутомо Н.В., Гребенюк А.Н., Ивницкий Ю.Ю., Мельничук В.П., Преображенская Т.Н., Рыбалко В.М., Саватеев Н.В. Военная токсикология, радиобиология и медицинская защита: Учебник для слушателей и курсантов военно-медицинских вузов / Под ред. Куценко С.А. СПб: Изд-во Военно-медицинской академии, 2003. 266 с.
  120. Darby S.M., Miller M.L., Allen R.O. Forensic determination of ricin and the alkaloid marker ricinine from castor bean extracts // J. Forensic Sci. 2001. V. 46. P. 1033.
  121. Johnson R.C., Lemire S.W., Woolfitt A.R., Ospina M., Preston K.P., Olson C.T., Barr J.R. Quantification of ricinine in rat and human urine: A biomarker for ricin exposure // J. Anal. Toxicol. 2005. V. 29. P. 149. https://doi.org/10.1093/jat/29.3.149
  122. Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning. A comprehensive review // J. Am. Med. Assoc. 2005. V. 18 P. 2343. https://doi.org/10.1001/jama.294.18.2342
  123. Калекин Р.А., Волкова А.А., Орлова А.М., Акимова В.Д., Барсегян С.С. Судебно-химическое и химико-токсикологическое исследование методом ВЭЖХ-МС/МС при отравлении рицином // Судебно-медицинская экспертиза. 2023. Т. 66. № 3. С. 34.
  124. Swiner D. J., Durisek G.R., Osae H., Badu-Tawiah A.K. A proof-of-concept, two-tiered approach for ricin detection using ambient mass spectrometry // RSC Adv. 2020. V. 10. P. 17045. https://doi.org/10.1039/D0RA03317K
  125. Lin T.S., Li S.L. Purification and physicochemical properties of ricins and agglutinins from ricinus communis // Eur. J. Biochem. 1980. V. 105 № 3. P. 453. https://doi.org/10.1111/j.1432-1033.1980.tb04520.x
  126. Fredriksson S.A., Hulst A.G., Artursson E., de Jong A.L., Nilsson C., van Baar. Forensic identification of neat ricin and of ricin from crude castor bean extracts by mass spectrometry // Anal. Chem. 2005. V. 77. № 6. P. 1545. https://doi.org/10.1021/ac048756u
  127. Worbs S., Skiba M., Bender J., Zeleny R., Schimmel H., Luginbühl W., Dorner B. An international proficiency test to detect, identify and quantify ricin in complex matrices // Toxins. 2015. V. 7. P. 4987. https://doi.org/10.3390/toxins7124859
  128. Schieltz D.M., McGrath S.C., McWilliams L.G., Rees J., Bowen M.D., Kools J.J., Dauphin L.A., Gomez-Saladin E., Newton B.N., Stang H.L., Vick M.J., Thomas J., Pirkle J.L., Barr J.R. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation // Forensic Sci. Int. 2011. V. 209. № 1–3. P. 70. https://doi.org/10.1016/j.forsciint.2010.12.013
  129. Kalb S.R., Barr J.R. Mass spectrometric detection of ricin and its activity in food and clinical samples // Anal. Chem. 2009. V. 81. № 6. P. 2037. https://doi.org/10.1021/ac802769s
  130. Brinkworth C.S. Identification of ricin in crude and purified extracts from castor beans using on-target tryptic digestion and MALDI mass spectrometry // Anal. Chem. 2010. V. 82. № 12. P. 5246. https://doi.org/10.1021/ac100650g
  131. Kull S., Pauly D., Stormann B., Kirchner S., Stammler M., Dorner M.B., Lasch P., Naumann D., Dorner B.G. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry // Anal. Chem. 2010. V. 82. № 7. P. 2916. https://doi.org/10.1021/ac902909r
  132. Van Baar B.L.M., Hulst A.G., Roberts B., Wils E.R.J. Characterization of tetanus toxin, neat and in culture supernatant, by electrospray mass spectrometry // Anal. Biochem. 2002. V. 301. № 2. P. 278. https://doi.org/10.1006/abio.2001.5496
  133. Liang L.-H., Liu C.-C., Chen B., Yan L., Yu H.-L., Yang Y., Liu S.-L. LC-HRMS screening and identification of novel peptide markers of ricin based on multiple protease digestion strategies // Toxins. 2019. V. № 7. P. 393. https://doi.org/10.3390/toxins11070393
  134. Orsini D.M.L, Avril A, Prigent J., Dano J., Rouaix A., Worbs S., Dorner B.G., Rougeaux C., Becher F., Fenaille F., Livet S., Volland H., Tournier J.N., Simon S. Ricin antibodies' neutralizing capacity against different ricin isoforms and cultivars // Toxins (Basel). 2021. V. 13. P. 100. https://doi.org/10.3390/toxins13020100
  135. Feldberg L., Schuster O., Elhanany E., Laskar O., Yitzhaki S., Gura S. Rapid and sensitive identification of ricin in environmental samples based on lactamyl agarose beads using LC-MS/MS (MRM) // J. Mass Spectrom. JMS. 2020. V. 55. P. 4482. https://doi.org/10.1002/jms.4482
  136. Selvaprakash K., Chen Y.C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes // Biosens. Bioelectron. 2017. V. 92. P. 410. https://doi.org/10.1016/j.bios.2016.10.086
  137. Liu C.C., Liang L.H., Yang Y., Yu H.L., Yan L., Li X.S., Chen B., Liu S.L., Xi H.L. Direct acetonitrile-assisted trypsin digestion method combined with LC–MS/MS-targeted peptide analysis for unambiguous identification of intact ricin // J. Proteome Res. 2021. V. 20. № 1. P. 369. https://doi.org/10.1021/acs.jproteome.0c00458
  138. Feldberg L., Elhanany E., Laskar O., Schuster O. Rapid, sensitive and reliable ricin identification in serum samples using LC-MS/MS // Toxins (Basel). 2021. V. 13. P. 43. https://doi.org/10.3390/toxins13020079
  139. Respaud R., Marchand D., Pelat T., TchouWong K.M., Roy C.J., Parent C., Cabrera M., Guillemain J., Mac Loughlin R., Levacher E. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin // J. Control. Release Off. J. Control. Release Soc. 2016. V. 234. P. 21. https://doi.org/10.1016/j.jconrel.2016.05.018
  140. Liu S.L., Liu C.C., Liang L.H., Tang J.J., Brinkworth C.S. Ch. VII. Analysis of ricin: LC-MS/MS / Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament. 2017 Ed. / Ed. Vanninen P. University of Helsinki, 2017. P. 615.
  141. Guidelines for the third biotoxin sample analysis exercise. The Organisation for Prohibition of the Chemical Weapons (OPCW) Technical Secretariat. 2018. P. 1
  142. Chen D., Bryden W.A, Fenselau C. Rapid analysis of ricin using hot acid digestion and MALDI-TOF mass spectrometry // J. Mass Spectrom. 2018. V. 53. № 10. P. 1013
  143. Swatkoski S., Russell S.C., Edwards N., Fenselau C. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores // Anal. Chem. 2006. V. 78. P. 181. https://doi.org/10.1021/ac051521d
  144. Li J., Shefcheck K., Callahan J., Fenselau C. Extension of microwave-accelerated residue-specific acid cleavage to proteins with carbohydrate side chains and disulfide linkages // Int. J. Mass Spectrom. 2008. V. 278. P. 109. https://doi.org/10.1016/j.ijms.2008.04.030
  145. Swatkoski S., Gutierrez P., Wynne C., Petrov A., Dinman J.D., Edwards N., Fenselau C. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications // J. Proteome Res. 2008. V. 7. P. 579. https://doi.org/10.1021/pr070502c
  146. Fenselau C., Laine O., Swatkoski S. Microwave assisted acid cleavage for denaturation and proteolysis of intact human adenovirus // Int. J. Mass Spectrom. 2011. V. 301. P. 7. https://doi.org/10.1016/j.ijms.2010.05.026

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».