METHODS FOR THE DETERMINATION OF SAXITOXIN AND RICIN. LITERATURE REVIEW
- Autores: Kovalenko I.I1, Braun A.V1, Grigoriev A.M1, Rybalchenko I.V1, Fateenkov V.N1
-
Afiliações:
- 27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky
- Edição: Volume 80, Nº 12 (2025)
- Páginas: 1287-1310
- Seção: REVIEWS
- ##submission.dateSubmitted##: 03.12.2025
- URL: https://journals.rcsi.science/0044-4502/article/view/355764
- DOI: https://doi.org/10.7868/S3034512X25120023
- ID: 355764
Citar
Resumo
Sobre autores
I. Kovalenko
27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. Zelinsky
Email: i0374061@yandex.ru
Moscow, Russia
A. Braun
27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. ZelinskyMoscow, Russia
A. Grigoriev
27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. ZelinskyMoscow, Russia
I. Rybalchenko
27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. ZelinskyMoscow, Russia
V. Fateenkov
27th Scientific Center of the Russian Ministry of Defense named after Academician N. D. ZelinskyMoscow, Russia
Bibliografia
- Антонов Н. Химическое оружие на рубеже двух столетий. М.: Прогресс, 1994. 176 с.
- Millard B., LeClaire R.D. Ricin and related toxins: Review and perspective / Chemical Warfare Agents. 2nd Ed. / Eds. Romano J., Lukey B., Salem H. New York: CRC Press, 2008. P. 423. https://doi.org/10.1201/9781420046625.ch12
- Bradberry S.M., Dickers K.J., Rice P., Griffiths G.D., Vale J.A. Ricin poisoning // Toxicol. Rev. 2003. V. 22. № 1. P. 65. https://doi.org/10.2165/00139709-200322010-00007
- Конвенция о запрещении разработки, производства и применения химического оружия и о его уничтожении. (https://www.opcw.org/sites/default/files/documents/CWC/CWC_ru.pdf) (дата обращения 01.07.2025 г.)
- Hall S., Strichartz G., Moczydlowski E., Ravindran A., Reichardt P.B. The saxitoxins. Sources, chemistry, and pharmacology / Marine Toxins: Origin, Structure, and Molecular Pharmacology. ACS Symposium Series / Eds. Hall S., Strichartz G. Washington D.C.: American Chemical Society, 1990. № 418. P. 29. https://doi.org/10.1021/bk-1990-0418.ch003
- Супотницкий М.В. Биологическая война. Введение в эпидемиологию искусственных эпидемических процессов и биологических поражений. М.: Русская панорама. Кафедра, 2013. 1135 с.
- Raposo M.I.C., Gomes M.T.S.R., Botelho M.J. Rudnitskaya A. Paralytic shellfish toxins (PST)-transforming enzymes: A review // Toxins. 2020. V. 12. P. 1.
- Su Z., Sheets M., Ishida H., Li.F., Barry W.H. Saxitoxin blocks L-type ICa // J. Pharmacol. Exp. Ther. 2004. V. 308. P. 324. https://doi.org/10.1124/jpet.103.056564
- Stevens M., Peigneur S., Tytgat J. Neurotoxins and their binding areas on voltage-gated sodium channels // Front. Pharmacol. 2011. V. 2. P. 1. https://doi.org/10.3389/fphar.2011.00071
- Despeyroux D., Walker N., Pearce M., Fisher M., McDonnell M., Bailey S.C., Griffiths G.D., Watts P. Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror // Anal. Biochem. 2000. V. 279. № 1. P. 23. https://doi.org/10.1006/abio.1999.4423
- Olsnes S., Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis // Biochemistry 1973. V. 12. P. 3121. https://doi.org/10.1021/bi00740a028
- Simmons B.M., Stahl P.D., Russell J.H. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. multiple intracellular pathways for a chain translocation // J. Biol. Chem. 1986. V. 261. № 17. P. 7912. https://doi.org/10.1016/S0021-9258(19)57490-7
- Richardson P.T., Hussain K., Woodland H.R., Lord J.M., Roberts L.M. The effects of n-glycosylation on the lectin activity of recombinant ricin B chain // Carbohydr. Res. 1991. V. 213. P. 19. https://doi.org/10.1016/S0008-6215(00)90594-9
- Lord J. M., Roberts L.M. and Robertus J.D. Ricin: Structure, mode of action, and some current applications // FASEB J. 1994. V. 8. P. 201. https://doi.org/10.1096/fasebj.8.2.8119491
- Rutenber E., Katzin B.J., Ernst S., Collins E.J., Mlsna D., Ready M.P., Robertus J.D. Crystallographic refinement of ricin to 2.5 Å // Proteins. 1991. V. 10. P. 240. https://doi.org/10.1002/prot.340100308
- Crystallographic refinement of ricin to 2.5 Angstroms (PDB: 2AAI). Получена из базы данных RCSB PDB (http://www.rcsb.org/) (дата обращения 01.07.2025 г.)
- Montanaro L., Sperti S., Mattioli A., Testoni G., Stirpe F. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes // Biochem. J. 1975. V. 146. № 1. P. 127. https://doi.org/10.1042/bj1460127
- Chen X.Y., Link T.M., Schramm V.L. Ricin: kinetics, mechanism, and RNA stem loop inhibitors // Biochemistry. 1998. V. 37. P. 11605. https://doi.org/10.1021/bi980990p
- Falach R., Sapoznikov A., Gal Y., Israeli O., Leitner M., Seliger N., Ehrlich S., Kronman C., Sabo T. Quantitative profiling of the in vivo enzymatic activity of ricin disparate depurination of different pulmonary cell types // Toxicol. Lett. 2016. V. 258. P. 11. https://doi.org/10.1016/j.toxlet.2016.06.00
- Zheng J., Zhao C., Tian G., He L. Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy // Talanta. 2017. V. 162. P. 552. https://doi.org/10.1016/j.talanta.2016.10.052
- Falach R., Sapoznikov A., Alcalay R., Aftalion M., Ehrlich S., Makovitzki A., Agami A., Mimran A., Rosner A., Sabo T. Generation of highly efficient equine-derived antibodies for post-exposure treatment of ricin intoxications by vaccination with monomerized ricin // Toxins. 2018. V. 10. P. 466. https://doi.org/10.3390/toxins10110466
- Christian B., Luckas B. Determination of marine biotoxins relevant for regulations: From the mouse bioassay to coupled LC-MS methods // Anal. Bioanal. Chem. 2007. V. 391. P. 117. https://doi.org/10.1007/s00216-007-1778-x
- Jellett J.F., Marks L.J., Stewart J.E., Dorey M.L., Watson-Wright W., Lawrence J.F. Paralytic shellfish poison (saxitoxin family) bioassays: Automated endpoint determination and standardization of the in vitro tissue culture bioassay, and comparison with the standard mouse bioassay // Toxicon. 1992. V. 30. № 10. P. 1143. https://doi.org/10.1016/0041-0101(92)90430-d
- Inami G.B., Crandall C., Csuti D., Oshiro M., Brenden R.A. Feasibility of reduction in use of the mouse bioassay: presence/absence screening for saxitoxin in frozen acidified mussel and oyster extracts from the coast of california with in vitro methods // J. AOAC Int. 2004. V. 87. № 5. P. 1133. https://doi.org/10.1093/jaoac/87.5.1133
- Azman M.N., Norhana W. Detection of tetrodotoxin and saxitoxin in dried salted yellow puffer fish (Xenopterus naritus) eggs from Satok Market, Kuching, Sarawak // Int. Food Res. J. 2013. V. 20. № 5. P. 2963. (http://www.ifrj.upm.edu.my/20%20(05)%202013/58%20IFRJ%2020%20(05)%202013%20Norhana%20346.pdf) (дата обращения 01.07.2025 г.)
- Llewellyn L.E., Doyle J., Jellett J., Barrett R., Alison C., Bentz C., Quilliam M. Measurement of paralytic shellfish toxins in molluscan extracts: comparison of the microtitre plate saxiphilin and sodium channel radioreceptor assays with mouse bioassay, HPLC analysis and a commercially available cell culture assay // Food Addit Contam. 2001. V. 18. P. 970. https://doi.org/10.1080/02652030110048594
- Manual on harmful marine microalgae / Eds. G.M. Hallegraeff, Anderson D.M., A.D. Cembella. UNESCO, 2004. Printed in France. 793 p. https://doi.org/10.25607/OBP-1370
- Quilliam M.A., Janeček M., Lawrence J. F. Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry // Rapid Commun. Mass Spectrom. 1993. V. 7. № 6. P. 482. https://doi.org/10.1002/rcm.1290070616
- Quilliam M.A. The role of chromatography in the hunt for red tide toxins // J. Chromatogr. A. 2003. V. 1000. № 1-2. P. 527. https://doi.org/10.1016/s0021-9673(03)00586-7
- Oshima Y. Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins // J. AOAC Int. 1995. V. 78. № 2. P. 528. https://doi.org/10.1093/jaoac/78.2.528
- Lawrence J.F., Niedzwiadek B. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection // J. AOAC Int. 2001. V. 84. № 4. P. 1099. https://doi.org/10.1093/jaoac/84.4.1099
- Anon. Official method 2011.02 determination of paralytic shellfish poisoning toxins in mussels, clams, oysters and scallops. In Post-Column Oxidation Method (PCOX) / First Action 2011. Gaithersburg, MD USA: AOAC International, 2011.
- Зубков И.Н., Кузьмин А.В., Тихонова И.В., Белых О.И., Смирнов В.И., Иванов А.В., Шагун В.А., Грачев М.А., Федорова Г.А. Определение сакситоксина методом ВЭЖХ-МС с предколочночной дериватизацией 2,4-динитрофенилгидразино // Изв. вузов. Прикладная химия и биотехнология. 2018. Т. 8. № 3. С. 25. https://doi.org/0.21285/2227-2925-2018-8-3-25-32
- Fang X., Fan X., Tang Y., Chen J., Lu J. Liquid chromatography/quadrupole time-of-flight mass spectrometry for determination of saxitoxin and decarbamoylsaxitoxin in shellfish // J. Chromatogr. A. 2004. V. 1036. P. 233. https://doi.org/10.1016/j.chroma.2004.02.075
- Dell'Aversano C., Hess P., Quilliam M.A. Hydrophilic interaction liquid chromatography–mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins // J. Chromatogr. A. 2005. V. 1081. P. 190. https://doi.org/10.1016/j.chroma.2005.05.056
- Yue Y., Zhu B., Lun L., Xu N. Quantifications of saxitoxin concentrations in bivalves by high performance liquid chromatography-tandem mass spectrometry with the purification of immunoaffinity column // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020. V. 1147. Article 122133. https://doi.org/10.1016/j.jchromb.2020.122133
- Boundy M.J., Selwood A.I., Harwood D.T., McNabb P.S., Turner A.D. Development of a sensitive and selective liquid chromatography–mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction // J. Chromatogr. A. 2015. V. 1387. P. 1. https://doi.org/10.1016/j.chroma.2015.01.086
- Jansson D., Åstot C. Analysis of paralytic shellfish toxins, potential chemical threat agents, in food using hydrophilic interaction liquid chromatography–mass spectrometry // J. Chromatogr. A. 2015. V. 1417. P. 41. https://doi.org/10.1016/j.chroma.2015.09.029
- Bragg W.A., Lemire S.W., Coleman R.M., Hamelin E.I., Johnson R.C. Detection of human exposure to saxitoxin and neosaxitoxin in urine by online-solid phase extraction-liquid chromatography-tandem mass spectrometry // Toxicon. 2015. V. 99. P. 118. https://doi.org/10.1016/j.toxicon.2015.03.017
- Xu J.J., Cai Z.X., Zhang J., Chen Q., Han J.L. Fast and quantitative determination of saxitoxin and neosaxitoxin in urine by ultra performance liquid chromatography-triple quadrupole mass spectrometry based on the cleanup of solid phase extraction with hydrophilic interaction mechanism // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018. V. 1072. P. 267. https://doi.org/10.1016/j.jchromb.2017.11.032
- Johnson H.M., Frey P.A., Angelotti R., Campbell J.E., Lewis K.H. Haptenic properties of paralytic shellfish poison conjugated to proteins by formaldehyde treatment // Proc. Soc. Exp. Biol. Med. 1964. V. 117. P. 425. https://doi.org/10.3181/00379727-117-29599
- Chu F.S., Fan T.S.L. Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish // J. Assoc. Off. Anal. Chem. 1985. V. 68. P. 13. https://doi.org/10.1093/jaoac/68.1.13
- Usleber E., Dietrich R., Märtlbauer E., Terplan G. Effect of heterologous paralytic shellfish poisoning toxin‐enzyme conjugates on the cross‐reactivity of a saxitoxin enzyme immunoassay // Lett. Appl. Microbiol. 1994. V. 18. P. 337. https://doi.org/10.1111/j.1472-765X.1994.tb00883.x
- Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, U.S.A., 28 October-1 November 1991 / Eds. Smayda T., Shimizu Y. New York: Elsevier, 1993. 952 p.
- Mcleod C., Burrell S., Holland P. Review of the Currently Available Field Methods for Detection of Marine Biotoxins in Shellfish Flesh. Wiltshire, UK: Seafood Safety Assessment Ltd., 2015. 86 p. (https://www.foodstandards.gov.scot/downloads/Review_of_field_testing_methods_for_biotoxins_in_shellfish_-_Final_Report.pdf) (дата обращения 01.07.2025 г.)
- Wharton R.E., Feyereisen M.C., Gonzalez A.L., Abbott N.L., Hamelin E.I., Johnson R.C. Quantification of saxitoxin in human blood by ELISA // Toxicon. 2017. V. 133. P. 110. https://doi.org/10.1016/j.toxicon.2017.05.00
- Laycock M.V., Donovan M.A., Easy D.J. Sensitivity of lateral flow tests to mixtures of saxitoxins and applications to shellfish and phytoplankton monitoring // Toxicon. 2010. V. 55. P. 597. https://doi.org/10.1016/j.toxicon.2009.10.014
- Jawaid W., Campbell K., Melville K., Holmes S.J., Rice J., Elliott C.T. Development and validation of a novel lateral flow immunoassay (LFIA) for the rapid screening of paralytic shellfish toxins (PSTs) from shellfish extracts // Anal. Chem. 2015. V. 87. P. 5324. https://doi.org/10.1021/acs.analchem.5b00608
- Bates H.A. Rapoport H.A. Chemical assay for saxitoxin, the paralytic shellfish poison // J. Agric. Food Chem. 1975. V. 23. P. 237. https://doi.org/10.1021/jf60198a016
- Thomas K.M., Chung S., Ku J., Reeves K., Quilliam M.A. Analysis of PSP toxins by liquid chromatography with post column oxidation and fluorescence detection / Molluscan Shellfish Safety / Eds. Henshilwood K., McMahon B.D.T., Cusack C., Keaveney S., Silke J., O'Cinneide M., Lyons D., Hess P. Galway, Ireland: The Marine Institute: 2006. P. 63. (https://d1wqtxts1xzle7.cloudfront.net/43616778/Analysis_of_PSP_toxins_by_liquid_chromat20160311-6607-1r3v82d.pdf?1738300029=&response-content-disposition=inline%3B+filename%3DAnalysis_of_PSP_toxins_by_liquid_chromat.pdf&Expires=1750680242&Signature=BJPO09WVBZp9howRTeldMtwDbkEUDNeOsuq6SDWI5DfQyNkilUD6FzekinVQxv0LdGJE0OyP1nlwtgYgwFqKiR45eiRP754-yPT7wM2rC-SKiQycn6uzltUbE54vNNf3St48YPAYvXuVCkFEoHsBxXIBpNnO~Ef73Lmyfnij6gcmDeKeeXbCZ0fk9cyMYMCX4AtvEiF7YR0YVjexr57e7xZyBxzfYeJX51~hkbENaTLDKTgHn4pAEYPWvJm95JUkB7KQjhMPCEy25vZsbi6Cc0GZbNH~hgyoSKT8j1Ehc-yhzA9LqakFPx78ZngvUMsapjWlmvM7GLmT3KujlDG1oPQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA) (дата обращения 01.07.2025 г.)
- Rourke W.A., Murphy C.J., Pitcher G., Van de Riet J.M., Burns B.G., Thomas K.M., Quilliam M.A. Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue // J. AOAC Int. 2008. V. 91. P. 589. https://doi.org/10.1093/jaoac/91.3.589
- Rodríguez P., Alfonso A., Botana A.M., Vieytes M.R., Botana L.M. Comparative analysis of preand post-column oxidation methods for detection of paralytic shellfish toxins // Toxicon. 2010. V. 56. P. 448. https://doi.org/10.1016/j.toxicon.2010.04.014
- Lawrence J.F., Ménard C. Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation // J. Assoc. Off. Anal. Chem. 1991. V. 74. № 6. P. 1006. https://doi.org/10.1093/jaoac/74.6.1006
- Janeček M., Quilliam M.A., Lawrence J.F. Analysis of paralytic shellfish poisoning toxins by automated pre-column oxidation and microcolumn liquid chromatography with fluorescence detection // J. Chromatogr. A. 1993. V. 644. № 2. P. 321. https://doi.org/10.1016/0021-9673(93)80715-k
- Ben-Gigirey B., Rodriguez-Velasco M.L., Gago-Martinez. A. Extension of the validation of AOAC Official Method 2005.06 for dc-GTX2,3: Interlaboratory study // J. AOAC Int. 2012. V. 95. P. 111. https://doi.org/10.5740/jaoacint.10-446
- Turner A.D., Hatfield R.G., Rapkova-Dhanji M., Norton D.M., Algoet M., Lees D.N. Single-laboratory validation of a refined AOAC HPLC method 2005.06 for oysters, cockles, and clams in U.K. shellfish // J. AOAC Int. 2010. V. 93. P. 1482. https://doi.org/10.1093/jaoac/93.5.1482
- Turner A.D., Hatfield R.G. Refinement of AOAC Official Method 2005.06 liquid chromatography-fluorescence detection method to improve performance characteristics for the determination of paralytic shellfish toxins in king and queen scallops // J. AOAC Int. 2012. V. 95. P. 129. https://doi.org/10.5740/jaoacint.11-184
- Lawrence J.F., Wong B., Ménard C. Determination of decarbamoylsaxitoxin and its analogues in shellfish by prechromatographic oxidation and liquid chromatography with fluorescence detection // J. AOAC Int. 1996. V. 79. №. 5. P. 1111. https://doi.org/10.1093/jaoac/79.5.1111
- Lawrence J.F., Ménard C., Charbonneau C.F., Hall S. A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection // J. Assoc. Off. Anal. Chem. 1991. V. 74. № 2. P. 404. https://doi.org/10.1093/jaoac/74.2.404
- Stafford R.G., Hines H.B. Urinary elimination of saxitoxin after intravenous injection // Toxicon. 1995. V. 33. № 11. P. 1501. https://doi.org/10.1016/0041-0101(95)00081-V
- Sato S., Shimizu Y. Purification of a Fluorescent Product from the Bacterium Moraxella: A Neosaxitoxin Imposter. Paris: UNESCO, 1998. P. 465.
- Wils E.R.J., Hulst A.G. Determination of saxitoxin by liquid chromatography/thermospray-mass spectrometry // Rapid Commun. Mass Spectrom. 1993. V. 7. № 6. P. 413. https://doi.org/10.1002/rcm.1290070602
- Dell’Aversano C., Eaglesham G.K., Quilliam M.A. Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry // J. Chromatogr. A. 2004. V. 1028. № 1. P. 155. https://doi.org/10.1016/j.chroma.2003.11.083
- Halme M., Rapinoja M.L., Karjalainen M., Vanninen P. Verification and quantification of saxitoxin from algal samples using fast and validated hydrophilic interaction liquid chromatography-tandem mass spectrometry method // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2012. V. 880. P. 50. https://doi.org/10.1016/j.jchromb.2011.11.015
- Bosch-Orea C., Sanchís J., Farré M. Analysis of highly polar marine biotoxins in seawater by hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry // MethodsX. 2021. V. 8. Article 101370. https://doi.org/10.1016/j.mex.2021.101370
- Vo Duy S., Munoz G., Dinh Q.T., Zhang Y., Simon D.F., Sauvé S. Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS // Talanta. 2022. V. 241. Article 123267. https://doi.org/10.1016/j.talanta.2022.123267
- Johnson R.C., Zhou Y., Statler K., Thomas J., Cox F., Hall S., Barr J.R. Quantification of saxitoxin and neosaxitoxin in human urine utilizing isotope dilution tandem mass spectrometry // J. Anal. Toxicol. 2009. V. 33. № 1. P. 8. https://doi.org/10.1093/jat/33.1.8
- Peake R.W.A., Zhang V.Y., Azcue N., Hartigan C.E., Shkreta A., Prabhakara J., Berde C.B., Kellogg M.D. Measurement of neosaxitoxin in human plasma using liquid–chromatography tandem mass spectrometry: Proof of concept for a pharmacokinetic application // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2016. V. 1036–1037. P. 42. https://doi.org/10.1016/j.jchromb.2016.09.043
- Shyu H.F., Chiao D.J., Liu H.W., Tang S.S. Monoclonal antibody-based enzyme immunoassay for detection of ricin // Hybrid. Hybridomics. 2002. V. 21. P. 69. https://doi.org/10.1089/1536859025291766
- Guo J.W., Shen B.F., Feng J.N., Sun Y.X., Yu M., Hu M.R. A novel neutralizingmonoclonal antibody against both ricin toxin a and ricin toxin b, and application of a rapid sandwich enzyme-linked immunosorbent assay // Hybridoma. 2006. V. 25. № 4. P. 225. https://doi.org/10.1089/hyb.2006.25.225
- Chen H.Y., Tran H., Foo L.Y., Sew T.W., Loke W.K. Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples // Anal. Bioanal. Chem. 2014. V. 406. P. 5157. https://doi.org/10.1007/s00216-014-7934-1
- Shyu R.H., Shyu H.F., Liu H.W., Tang S.S. Colloidal gold-based immunochromatographic assay for detection of ricin // Toxicon. 2002. V. 40. P. 255. https://doi.org/10.1016/s0041-0101(01)00193-3
- Guglielmo-Viret V., Splettstoesser W., Thullier P. An immunochromatographic test for the diagnosis of ricin inhalational poisoning // Clin. Toxicol. 2007. V. 45. № 5. P. 505. https://doi.org/10.1080/15563650701354226
- Guglielmo-Viret V., Thullier P. Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B) // J. Immunol. Methods. 2007. V. 328. P. 70. https://doi.org/10.1016/j.jim.2007.08.003
- Brandon D.L., Korn A.M., Yang L.L. Detection of ricin contamination in liquid egg by electrochemiluminescence immunosorbent assay // J. Food Sci. 2011. V. 77. № 4. P. 83. https://doi.org/10.1111/j.1750-3841.2012.02627.x
- Brandon D.L. Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay // Toxins. 2011. V. 3. P. 398. https://doi.org/10.3390/toxins3040398
- Liang L.H., Cheng X., Yang Y., Yang L., Yu H.L., Du B., Liu C.C., Liu S.L. An in vitro detection method for depurination activity of ricin based on a novel RNA substrate and its application // Chin. J. Anal. Chem. 2021. V. 49. P. 1694
- Kaitlyn K.D., John R.B., Suzanne R.K. Mass spectrometric detection and differentiation of enzymatically active abrin and ricin combined with a novel affinity enrichment Technique // Chem. Res. Toxicol. 2024. V. 37. P. 1218. https://doi.org/10.1021/acs.chemrestox.4c00149
- Wang D., Baudys J., Barr J.R., Kalb S.R. Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF Mass Spectrometry // Anal. Chem. 2016. V. 88. № 13. P. 6867. https://doi.org/10.1021/acs.analchem.6b01486
- Becher F., Duriez E., Volland H., Tabet J.C., Ezan E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry // Anal. Chem. 2007. V. 79. P. 659. https://doi.org/10.1021/ac061498b
- Hoyt K., Barr J.R., Kalb S.R. Detection of ricin activity and structure by using novel galactose-terminated magnetic bead extraction coupled with mass spectrometric detection // Anal. Biochem. 2021. V. 631. Article 114364. https://doi.org/10.1016/j.ab.2021.114364
- Brinkworth C.S., Pigott E.J., Bourne D.J. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry // Anal. Chem. 2009. V. 81. № 4. P. 1529. https://doi.org/10.1021/ac802240f
- Ma X., Tang J., Li C., Liu Q., Chen J., Li H., Guo L., Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry // Anal. Bioanal. Chem. 2014. V. 406. P. 5147. https://doi.org/10.1007/s00216-014-7710-2
- Yan Y., Zhang S.Z., Tang J.J., Gu M.S., Feng J.L., Xie J.W. Application of peptide mass fingerprint in ricin identification with matrix-assisted laser desorption ionization time-of-flight-mass spectrometry // Chin. J. Anal. Chem. 2006. V. 34. P. 187.
- Ostin A., Bergstrom T., Fredriksson S.A., Nilsson C. Solvent-assisted trypsin digestion of ricin for forensic identification by LC-ESI MS/MS // Anal. Chem. 2007. V. 79. P. 6271. https://doi.org/10.1021/ac0701740
- Wang J., Gao S., Kang L., Jia Y., Wang J. Development of colloidal gold-based immunochromatographic assay for the rapid detection of ricin toxin in food samples // Food Agric. Immunol. 2011. V. 22. № 2. P. 185. https://doi.org/10.1080/09540105.2010.549213
- Garber E.A.E., O’Brien T.W. Detection of ricin in food using electrochemiluminescence-based technology // J. AOAC Int. 2008. V. 91. № 2. P. 376. https://doi.org/10.1093/jaoac/91.2.376
- Duriez E., Fenaille F., Tabet J.C., Lamourette P., Hilaire D., Becher F., Ezan E. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry // J. Proteome Res. 2008. V. 7. № 9. P. 4154. https://doi.org/10.1021/pr8003437
- Braun A.V., Taranchenko V.F., Tikhomirov L.A., Grechukhin A.P., Rybalchenko I.V. Detection of ricin in plant extracts and soil using liquid chromatography–high-resolution mass spectrometry // J. Anal. Chem. 2018. V. 73. P. 786. https://doi.org/10.1134/S1061934818080026
- Liang L.H., Cheng X., Yu H.L., Yang Y., Mu X.H., Chen B., Li X.S., Wu J.N., Yan L., Liu C.C., Liu S.L. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatographytandem mass spectrometry // Anal. Bioanal. Chem. 2021. V. 413. P. 585. https://doi.org/10.1007/s00216-020-03030-8
- McGrath S.C., Schieltz D.M., McWilliams L.G., Pirkle J.L., Barr J.R. Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry // Anal. Chem. 2011. V. 83. P. 2897. https://doi.org/10.1021/ac102571f
- Fredriksson S.Å.; Artursson E.; Bergström T.; Östin A.; Nilsson C.; Åstot C. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LCMS // Anal. Chem. 2014. V. 87. P. 967. https://doi.org/10.1021/ac5032918
- Kanamori-Kataoka M., Kato H., Uzawa H., Ohta S., Takei Y., Furuno M., Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column // J Mass Spectrom. 2011. V. 46. P. 821. https://doi.org/10.1002/jms.1953
- Piquet P., Saadi J., Fenaille F., Kalb S.R., Becher F. Rapid detection of ricin at trace levels in complex matrices by asialofetuin-coated beads and bottom-up proteomics using high-resolution mass spectrometry // Anal. Bioanal. Chem. 2024. V. 416. P. 5145. https://doi.org/10.1007/s00216-024-05452-0
- Dupré M., Gilquin B., Fenaille F., Feraudet-Tarisse C., Dano J., Ferro M., Simon S., Junot C., Brun V., Becher F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry // Anal Chem. 2015. V. 87. P. 8473. https://doi.org/10.1021/acs.analchem.5b01900
- Wadkins R.M., Golden J.P., Pritsiolas L.M., Ligler F.S. Detection of multiple toxicagents using a planar array immunosensor // Biosens. Bioelectron. 1998. V. 13. № 3–4. P. 407. https://doi.org/10.1016/S0956-5663(97)00113-9
- Yu H., Raymonda J.W., McMahon T.M., Campagnari A.A. Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenicand electro-chemiluminescence // Biosens. Bioelectron. 2000. V. 14. № 10–11. P. 829. https://doi.org/10.1016/S0956-5663(99)00068-8
- Wang L., Cole K.D., Gaigalas A.K., Zhang Y.Z. Fluorescent nanometer microspheres as a reporter for sensitive detection of simulants of biological threats using multiplexed suspension arrays // Bioconjug. Chem. 2005. V. 16. № 1. P. 194. https://doi.org/10.1021/bc0498020
- Pinkerton S.D., Rolfe R., Auld D.L., Ghetie V., Lauterbach B.F. Selection of castor for divergent concentrations of ricin and ricinus communis agglutinin // Crop Sci. 1999. V. 39. № 2. P 353. h tt ps : // d oi . or g /1 0 .2 13 5/ c ro ps c i1 99 9. 0011183x003900020008x
- Garber E.A., Thole J. Application of microwave irradiation and heat to improve gliadin detection and ricin ELISA throughput with food samples // Toxins. 2015. V. 7. P. 2135. https://doi.org/10.3390/toxins7062135
- Jenko K.L., Zhang Y., Kostenko Y., Fan Y., Garcia-Rodriguez C., Lou J., Varnum S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins // Analyst. 2014. V. 139. P. 5093. https://doi.org/10.1039/C4AN01270D
- Garber E.A.E. Toxicity and detection of ricin and abrin in beverages // J. Food Prot. 2008. V. 71. № 9. P. 1875. https://doi.org/10.4315/0362-028X-71.9.1875
- Roberts L.M., Lamb F.I., Pappin D.J.C., Loard J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin // J. Biol. Chem. 1985. V. 260. P. 15682.
- Schieltz D.M., McWilliams L.G., Kuklenyik Z., Prezioso S.M., Carter A.J., Williamson Y.M., McGrath S.C., Morse S.A., Barr J.R. Quantification of ricin, rca and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry // Toxicon. 2015. V. 95. P. 72. https://doi.org/10.1016/j.toxicon.2015.01.003
- Worbs S., Kohler K., Pauly D., Avondet M.A., Schaer M., Dorner M.B., Dorner B.G. Ricinus communis intoxications in human and veterinary medicine – A summary of real cases // Toxins. 2011. V. 3. P. 1332. https://doi.org/10.3390/toxins3101332
- Worbs S., Skiba M., Soderstrom M., Rapinoja M.L., Zeleny R., Russmann H., Schimmel H., Vanninen P., Fredriksson S.A., Dorner B.G. Characterization of ricin and r. communis agglutinin reference materials // Toxins. 2015. V. 7. P. 4906. https://doi.org/10.3390/toxins7124856
- Kumar O., Pradhan S., Sehgal P., Singh Y., Vijayaraghavan R. Denatured ricin can be detected as native ricin by immunological methods, but nontoxic in vivo // J. Forensic Sci. 2010. V. 55. № 3. P. 801. https://doi.org/10.1111/j.1556-4029.2009.01290.x
- Baldoni A.B., de Carvalho M.H., Sousa N.L., Nobrega M.B.D., Milani M., Aragao F.J.L. Variability of ricin content inmature seeds of castor bean // Pesq. Agropec. Bras. 2011. V. 46. P. 776. https://doi.org/10.1590/S0100-204X2011000700015
- Andersson S., Sundberg M., Pristovsek N., Ibrahim A., Jonsson P., Katona B., Clausson C.M., Zieba A., Soderberg R.M. Insufficient antibody validation challenges oestrogen receptor beta research // Nat. Commun. 2017. V. 8. P. 15840. https://doi.org/10.1038/ncomms15840
- Baker M. Reproducibility crisis: Blame it on the antibodies // Nature. 2015. V. 521. P. 274. https://doi.org/10.1038/521274a
- Bevilacqua A.V.L.H., Nilles J.M., Rice J.S., Connell T.R., Schenning A.M., Reilly L.M., Durst H.D. Ricin activity assay by direct analysis in real time mass spectrometry detection of adenine release // Anal. Chem. 2010. V. 82. P. 798. https://doi.org/10.1021/ac9025972
- Hines C.H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography–mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain // Anal. Biochem. 2004. V. 330. P. 119. https://doi.org/10.1016/j.ab.2004.03.046
- Heisler I., Keller J., Tauber R., Sutherland M., Fuchs H. A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins // Anal. Biochem., 2002. V. 302. № 1. P. 114. https://doi.org/10.1006/abio.2001.5527
- Sturm M.B., Schramm V.L. Detecting ricin: Sensitive luminescent assay for ricin a-chain ribosome depurination kinetics // Anal. Chem. 2009. V. 81. № 8. P. 2847. https://doi.org/10.1021/ac8026433
- Zamboni M., Brigotti M., Rambelli F., Montanaro L., Sperti S. High-pressure-liquid-chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin // Biochem. J. 1989. V. 259. № 3. P. 639. https://doi.org/10.1042/bj2590639
- Dong L., Liu T., Li J., Wang C., Lv J., Wang J., Wang J., Gao S., Kang L., Xin W. Establishment and comparison of detection methods for ricin and abrin based on their depurination activities // Toxins. 2025. V. 17. № 4. P. 177. https://doi.org/10.3390/toxins17040177
- Brzezinski J.L., Craft D.L. Evaluation of an in vitro bioassay for the detection of purified ricin and castor bean in beverages and liquid food matrices // J. Food Prot. 2007. V. 70. № 10. P. 2377. https://doi.org/10.4315/0362-028X-70.10.2377
- Pauly D., Worbs S., Kirchner S., Shatohina O., Dorner M.B., Dorner B.G. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices // PLoS One. 2012. V. 7. № 4. P. 35360. https://doi.org/10.1371/journal.pone.0035360
- Куценко С.А., Бутомо Н.В., Гребенюк А.Н., Ивницкий Ю.Ю., Мельничук В.П., Преображенская Т.Н., Рыбалко В.М., Саватеев Н.В. Военная токсикология, радиобиология и медицинская защита: Учебник для слушателей и курсантов военно-медицинских вузов / Под ред. Куценко С.А. СПб: Изд-во Военно-медицинской академии, 2003. 266 с.
- Darby S.M., Miller M.L., Allen R.O. Forensic determination of ricin and the alkaloid marker ricinine from castor bean extracts // J. Forensic Sci. 2001. V. 46. P. 1033.
- Johnson R.C., Lemire S.W., Woolfitt A.R., Ospina M., Preston K.P., Olson C.T., Barr J.R. Quantification of ricinine in rat and human urine: A biomarker for ricin exposure // J. Anal. Toxicol. 2005. V. 29. P. 149. https://doi.org/10.1093/jat/29.3.149
- Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning. A comprehensive review // J. Am. Med. Assoc. 2005. V. 18 P. 2343. https://doi.org/10.1001/jama.294.18.2342
- Калекин Р.А., Волкова А.А., Орлова А.М., Акимова В.Д., Барсегян С.С. Судебно-химическое и химико-токсикологическое исследование методом ВЭЖХ-МС/МС при отравлении рицином // Судебно-медицинская экспертиза. 2023. Т. 66. № 3. С. 34.
- Swiner D. J., Durisek G.R., Osae H., Badu-Tawiah A.K. A proof-of-concept, two-tiered approach for ricin detection using ambient mass spectrometry // RSC Adv. 2020. V. 10. P. 17045. https://doi.org/10.1039/D0RA03317K
- Lin T.S., Li S.L. Purification and physicochemical properties of ricins and agglutinins from ricinus communis // Eur. J. Biochem. 1980. V. 105 № 3. P. 453. https://doi.org/10.1111/j.1432-1033.1980.tb04520.x
- Fredriksson S.A., Hulst A.G., Artursson E., de Jong A.L., Nilsson C., van Baar. Forensic identification of neat ricin and of ricin from crude castor bean extracts by mass spectrometry // Anal. Chem. 2005. V. 77. № 6. P. 1545. https://doi.org/10.1021/ac048756u
- Worbs S., Skiba M., Bender J., Zeleny R., Schimmel H., Luginbühl W., Dorner B. An international proficiency test to detect, identify and quantify ricin in complex matrices // Toxins. 2015. V. 7. P. 4987. https://doi.org/10.3390/toxins7124859
- Schieltz D.M., McGrath S.C., McWilliams L.G., Rees J., Bowen M.D., Kools J.J., Dauphin L.A., Gomez-Saladin E., Newton B.N., Stang H.L., Vick M.J., Thomas J., Pirkle J.L., Barr J.R. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation // Forensic Sci. Int. 2011. V. 209. № 1–3. P. 70. https://doi.org/10.1016/j.forsciint.2010.12.013
- Kalb S.R., Barr J.R. Mass spectrometric detection of ricin and its activity in food and clinical samples // Anal. Chem. 2009. V. 81. № 6. P. 2037. https://doi.org/10.1021/ac802769s
- Brinkworth C.S. Identification of ricin in crude and purified extracts from castor beans using on-target tryptic digestion and MALDI mass spectrometry // Anal. Chem. 2010. V. 82. № 12. P. 5246. https://doi.org/10.1021/ac100650g
- Kull S., Pauly D., Stormann B., Kirchner S., Stammler M., Dorner M.B., Lasch P., Naumann D., Dorner B.G. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry // Anal. Chem. 2010. V. 82. № 7. P. 2916. https://doi.org/10.1021/ac902909r
- Van Baar B.L.M., Hulst A.G., Roberts B., Wils E.R.J. Characterization of tetanus toxin, neat and in culture supernatant, by electrospray mass spectrometry // Anal. Biochem. 2002. V. 301. № 2. P. 278. https://doi.org/10.1006/abio.2001.5496
- Liang L.-H., Liu C.-C., Chen B., Yan L., Yu H.-L., Yang Y., Liu S.-L. LC-HRMS screening and identification of novel peptide markers of ricin based on multiple protease digestion strategies // Toxins. 2019. V. № 7. P. 393. https://doi.org/10.3390/toxins11070393
- Orsini D.M.L, Avril A, Prigent J., Dano J., Rouaix A., Worbs S., Dorner B.G., Rougeaux C., Becher F., Fenaille F., Livet S., Volland H., Tournier J.N., Simon S. Ricin antibodies' neutralizing capacity against different ricin isoforms and cultivars // Toxins (Basel). 2021. V. 13. P. 100. https://doi.org/10.3390/toxins13020100
- Feldberg L., Schuster O., Elhanany E., Laskar O., Yitzhaki S., Gura S. Rapid and sensitive identification of ricin in environmental samples based on lactamyl agarose beads using LC-MS/MS (MRM) // J. Mass Spectrom. JMS. 2020. V. 55. P. 4482. https://doi.org/10.1002/jms.4482
- Selvaprakash K., Chen Y.C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes // Biosens. Bioelectron. 2017. V. 92. P. 410. https://doi.org/10.1016/j.bios.2016.10.086
- Liu C.C., Liang L.H., Yang Y., Yu H.L., Yan L., Li X.S., Chen B., Liu S.L., Xi H.L. Direct acetonitrile-assisted trypsin digestion method combined with LC–MS/MS-targeted peptide analysis for unambiguous identification of intact ricin // J. Proteome Res. 2021. V. 20. № 1. P. 369. https://doi.org/10.1021/acs.jproteome.0c00458
- Feldberg L., Elhanany E., Laskar O., Schuster O. Rapid, sensitive and reliable ricin identification in serum samples using LC-MS/MS // Toxins (Basel). 2021. V. 13. P. 43. https://doi.org/10.3390/toxins13020079
- Respaud R., Marchand D., Pelat T., TchouWong K.M., Roy C.J., Parent C., Cabrera M., Guillemain J., Mac Loughlin R., Levacher E. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin // J. Control. Release Off. J. Control. Release Soc. 2016. V. 234. P. 21. https://doi.org/10.1016/j.jconrel.2016.05.018
- Liu S.L., Liu C.C., Liang L.H., Tang J.J., Brinkworth C.S. Ch. VII. Analysis of ricin: LC-MS/MS / Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament. 2017 Ed. / Ed. Vanninen P. University of Helsinki, 2017. P. 615.
- Guidelines for the third biotoxin sample analysis exercise. The Organisation for Prohibition of the Chemical Weapons (OPCW) Technical Secretariat. 2018. P. 1
- Chen D., Bryden W.A, Fenselau C. Rapid analysis of ricin using hot acid digestion and MALDI-TOF mass spectrometry // J. Mass Spectrom. 2018. V. 53. № 10. P. 1013
- Swatkoski S., Russell S.C., Edwards N., Fenselau C. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores // Anal. Chem. 2006. V. 78. P. 181. https://doi.org/10.1021/ac051521d
- Li J., Shefcheck K., Callahan J., Fenselau C. Extension of microwave-accelerated residue-specific acid cleavage to proteins with carbohydrate side chains and disulfide linkages // Int. J. Mass Spectrom. 2008. V. 278. P. 109. https://doi.org/10.1016/j.ijms.2008.04.030
- Swatkoski S., Gutierrez P., Wynne C., Petrov A., Dinman J.D., Edwards N., Fenselau C. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications // J. Proteome Res. 2008. V. 7. P. 579. https://doi.org/10.1021/pr070502c
- Fenselau C., Laine O., Swatkoski S. Microwave assisted acid cleavage for denaturation and proteolysis of intact human adenovirus // Int. J. Mass Spectrom. 2011. V. 301. P. 7. https://doi.org/10.1016/j.ijms.2010.05.026
Arquivos suplementares
