Foreign experience in determining the group hydrocarbon composition of petroleum feedstock and petroleum products

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Determination of the group hydrocarbon composition (saturated and aromatic hydrocarbons, resins, asphaltenes) of petroleum dispersed systems is predominantly carried out using chromatographic analysis methods: liquid adsorption chromatography, high-performance liquid chromatography, thin-layer chromatography with flame ionization detection. The specificity of standard methods developed for the analysis of petroleum feedstock and petroleum products using a particular method often results in the incompatibility of results both in terms of the nomenclature of the identified hydrocarbon groups and the determined concentration values. This review provides a comparative assessment of chromatographic methods for analyzing the group hydrocarbon composition of petroleum feedstock and petroleum products, their features, advantages, and disadvantages. The main options for modifying standard methods aimed at achieving correlation between the results obtained by different analysis methods are described.

Sobre autores

D. Panyukova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science

Autor responsável pela correspondência
Email: daria.paniukova@gmail.com
Rússia, Moscow

E. Savonina

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science

Email: daria.paniukova@gmail.com
Rússia, Moscow

К. Ossipov

Strata Solutions

Email: daria.paniukova@gmail.com
Rússia, Dolgoprudny

T. Maryutina

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science

Email: daria.paniukova@gmail.com
Rússia, Moscow

Bibliografia

  1. Speight J.G. Handbook of Petroleum Product Analysis. Hoboken, New Jersey USA: John Wiley & Sons, Inc., 2015. 368 p. doi: 10.1002/9781118986370
  2. Philp R.P. Composition and properties of petroleum / Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology / Ed. Wilkes H. Cham, Switzerland: Springer Nature Switzerland AG, 2020. Ch. 13. P. 269. doi: 10.1007/978-3-319-90569-3_13
  3. Speight J.G. The Сhemistry and Technology of Petroleum (Chemical Industries). 5th Ed. USA: CRC Press, 2014. 953 p. doi: 10.1201/b16559
  4. Bisht H., Reddy M., Malvanker M., Patil R.C., Gupta A., Hazarika B., Das A.K. Efficient and quick method for saturates, aromatics, resins, and asphaltenes analysis of whole crude oil by thin-layer chromatography–flame ionization detector // Energy Fuels. 2013. V. 27. № 6. P. 3006. doi: 10.1021/ef4002204
  5. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с.
  6. Karevan A., Zirrahi M., Hassanzadeh H. Standardized high-performance liquid chromatography to replace conventional methods for determination of saturate, aromatic, resin, and asphaltene (SARA) fractions // ACS Omega. 2022. V. 7. № 22. P. 18897. doi: 10.1021/acsomega.2c01880
  7. Barman B.N., Cebolla V.L., Membrado L. Chromatographic techniques for petroleum and related products // Crit. Rev. Anal. Chem. 2000. V. 30. № 2. 3. P. 75. doi: 10.1080/10408340091164199
  8. Ali M.A., Hassan A. Hydrocarbon type analysis of petroleum products: A comparative evaluation of HPLC and TLC analytical performance // Pet. Sci. Technol. 2002. V. 20. № 7. 8. P. 751. doi: 10.1081/LFT-120003709
  9. Sieben V.J., Stickel A.J., Obiosa-Maife C., Rowbotham J., Memon A., Hamed N., Ratulowski J., Mostowfi F. Optical measurement of saturates, aromatics, resins, and asphaltenes in crude oil // Energy Fuels. 2017. V. 31. № 4. P. 3684. doi: 10.1021/acs.energyfuels.6b03274
  10. Bissada K.K. (Adry), Tan J., Szymczyk E., Darnell M., Mei M. Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA) // Org. Geochem. 2016. V. 95. P. 21. doi: 10.1016/j.orggeochem.2016.02.007
  11. Pereira V.J., Setaro L.L.O., Costa G.M.N., Vieira de Melo S.A.B. Evaluation and improvement of screening methods applied to asphaltene precipitation // Energy Fuels. 2017. V. 31. № 4. P. 3380. doi: 10.1021/acs.energyfuels.6b02348
  12. Панюкова Д.И., Магомедов Р.Н., Савонина Е.Ю., Марютина Т.А. Влияние состава и молекулярной структуры асфальтенов на свойства тяжелого нефтяного сырья на примере тяжелой нефти Ашальчинского месторождения и двух образцов гудронов // Нефтехимия. 2021. Т. 61. № 3. С. 328. (Panyukova D.I., Magomedov R.N., Savonina E. Yu., Maryutina T.A. Effects of the composition and molecular structure of asphaltenes on the properties of heavy petroleum feedstock represented by heavy oil from the Ashalchinskoye field and two vacuum residue samples // J. Pet. Chem. 2021. V. 61. № 4. P. 438.) doi: 10.31857/S0028242121030047
  13. Vela J., Cebolla V.L., Membrado L., Andrés J.M. Quantitative hydrocarbon group type analysis of petroleum hydroconversion products using an improved TLC-FID system // J. Chromatogr. Sci. 1995. V. 33. № 8. P. 417. doi: 10.1093/chromsci/33.8.417
  14. Sakib N., Bhasin A. Measuring polarity-based distributions (SARA) of bitumen using simplified chromatographic techniques // Int. J. Pavement. Eng. 2018. V. 20. № 12. P. 1. doi: 10.1080/10298436.2018.1428972
  15. Fan T., Wang J., Buckley J.S. Evaluating crude oils by SARA analysis / SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA. 13–17 April 2002. USA: Society of Petroleum Engineers Inc., 2002. P. 1. doi: 10.2118/75228-MS
  16. Fan T., Buckley J.S. Rapid and accurate SARA analysis of medium gravity crude oils // Energy Fuels. 2002. V. 16. № 6. P. 1571. doi: 10.1021/EF0201228
  17. Barman B.N. Hydrocarbon-type analysis of base oils and other heavy distillates by thin-layer chromatography with flame-ionization detection and by the clay-gel method // J. Chromatogr. Sci. 1996. V. 34. № 5. P. 219. doi: 10.1093/chromsci/34.5.219
  18. Rezaee S., Doherty R., Tavakkoli M., Vargas F.M. Improved chromatographic technique for crude oil maltenes fractionation // Energy Fuels. 2019. V. 33. № 2. P. 708. doi: 10.1021/acs.energyfuels.8b03328
  19. Rezaee S., Tavakkoli M., Doherty R., Vargas F.M. A new experimental method for a fast and reliable quantification of saturates, aromatics, resins, and asphaltenes in crude oils // Pet. Sci. Technol. 2020. V. 38. № 21. P. 955. doi: 10.1080/10916466.2020.1790598
  20. Shishkova I., Stratiev D., Venkov Kolev I., Nenov S., Nedanovski D., Atanassov K., Ivanov V., Ribagin S. Challenges in petroleum characterization – A Review // Energies. 2022. V. 15. № 20. P. 7765. doi: 10.3390/en15207765
  21. Keshmirizadeh E., Shobeiria S., Memariani M. Determination of saturates, aromatics, resins and asphaltenes (SARA) fractions in Iran cude oil sample with chromatography methods: Study of the geochemical parameters // J. Appl. Chem. Res. 2013. V. 7. № 4. P. 15.
  22. CONCAWE Guidance to registrants on methods for the characterisation of petroleum UVCB substances for REACH registration purposes. Belgium, 2020. 29 p.
  23. ASTM D2007-16. Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method. ASTM International, 2016. 8 p.
  24. ASTM D4124-09. Standard test method for separation of asphalt into four fractions. ASTM International, 2009. 8 p.
  25. ASTM D4124-01. Standard test method for separation of asphalt into four fractions. ASTM International, 2001. 7 p.
  26. ГОСТ 32269-2013. Битумы нефтяные. Метод разделения на четыре фракции. М.: Стандартинформ, 2014. 20 с.
  27. EN12916:2019. Petroleum products – Determination of aromatic hydrocarbon types in middle distillates – high performance liquid chromatography method with refractive index detection. CEN, 2019. 20 p.
  28. ASTM D6379-11. Standard test method for determination of aromatic hydrocarbon types in aviation fuels and petroleum distillates – high performance liquid chromatography method with refractive index detection. ASTM International, 2011. 6 p.
  29. ASTM D6591-11. Standard test method for determination of aromatic hydrocarbon types in middle distillates – high performance liquid chromatography method with refractive index detection. ASTM International, 2011. 9 p.
  30. ASTM D7419-13. Standard test method for determination of total aromatics and total saturates in lube basestocks by high performance liquid chromatography (HPLC) with refractive index detection. ASTM International, 2013. 10 p.
  31. IP 368. Determination of hydrocarbon types in lubricating oil basestocks – Preparative high performance liquid chromatography method. Energy Institute (Institute of Petroleum), 2001. 10 p.
  32. IP 391. Petroleum products. Determination of aromatic hydrocarbon types in middle distillates – High performance liquid chromatography method with refractive index detection. Energy Institute (Institute of Petroleum), 2006. 10 p.
  33. IP 436. Determination of aromatic hydrocarbon types in aviation fuels and petroleum distillates – High performance liquid chromatography method with refractive index detection. Energy Institute (Institute of Petroleum), 2011. 6 p.
  34. IP 469. Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection. Energy Institute (Institute of Petroleum), 2006. 6 p.
  35. IP 548. Determination of aromatic hydrocarbon types in middle distillates – High performance liquid chromatography method with refractive index detection. Energy Institute (Institute of Petroleum), 2007. 9 p.
  36. ГОСТ Р 54268-2010. Топлива авиационные и нефтяные дистилляты. Определение типов ароматических углеводородов методом высокоэффективной жидкостной хроматографии с детектированием по коэффициенту рефракции. М.: Стандартинформ, 2012. 14 с.
  37. ГОСТ 33912-2016. Топливо авиационное и нефтяные дистилляты. Определение типов ароматических углеводородов методом высокоэффективной жидкостной хроматографии с рефрактометрическим детектором. М.: Стандартинформ, 2017. 16 с.
  38. ГОСТ EN12916-2017. Нефтепродукты. Определение типов ароматических углеводородов в средних дистиллятах. Метод высокоэффективной жидкостной хроматографии с обнаружением по показателю преломления. М.: Стандартинформ, 2018. 20 с.
  39. Kharrat A.M., Zacharia J., Cherian V.J., Anyatonwu A. Issues with comparing SARA methodologies // Energy Fuels. 2007. V. 21. № 6. P. 3618. doi: 10.1021/ef700393a
  40. Wu W., Saidian M., Gaur S., Prasad M. Errors and repeatability in VSARA analysis of heavy oils / SPE Heavy Oil Conference Canada. Calgary, Alberta, Canada. 12–14 June 2012. Canada: Society of Petroleum Engineers Inc., 2012. P. 1. doi: 10.2118/146107-MS
  41. Kamínski M., Kartanowicz R., Gilgenast E., Namieśnik J. High-performance liquid chromatography in group-type separation and technical or process analytics of petroleum products // Crit. Rev. Anal. Chem. 2005. V. 35. № 3. P. 193. doi: 10.1080/10408340500304024
  42. Santos J.M., Vetere A., Wisniewski A., Eberlin M.N., and Schrader W. Modified SARA method to unravel the complexity of resin fraction(s) in crude oil // Energy Fuels. 2020. V. 34. № 12. P. 16006. doi: 10.1021/acs.energyfuels.0c02833
  43. Youtcheff J. Automated high-performance liquid chromatography saturate, aromatic, resin, and asphaltene separation. U.S. Department of Transportation Fede-ral Highway Administration, 2016. P. 1.
  44. Wojewódka D., Dyguła P., Przyjazny A., Kamiński M. Improved conditions for analysis of the group composition of asphaltenes and asphaltenes-containing materials by TLC as a pilot separation technique and TLC-FID as a quantitative analysis method with stepwise development of the chromatogram // SSRN Electronic J. 2022. P. 1. doi: 10.2139/ssrn.4169533
  45. Jiang C., Larter S.R., Noke K.J., Snowdon L.R. TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples // Org. Geochem. 2008. V. 39. № 8. P. 1210. doi: 10.1016/j.orggeochem.2008.01.013
  46. Corbett L.W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization // Anal. Chem. 1969. V. 41. № 4. P. 576. doi: 10.1021/ac60273a004
  47. Jewell D.M., Weber J.H., Bunger J.W., Plancher H., Latham D.R. Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates // Anal. Chem. 1972. V. 44. № 8. P. 1391. doi: 10.1021/ac60316a003
  48. Suatoni J.C., Swab R.E. Rapid hydrocarbon group-type analysis by high performance liquid chromatography // J. Chromatogr. Sci. 1975. V. 13. № 8. P. 361. doi: 10.1093/chromsci/13.8.361
  49. Pei P., Britton J., Hsu S. Hydrocarbon type separation of lubricating base oil in multigram quantity by preparative HPLC // J. Liq. Chromatogr. 1983. V. 6. № 4. P. 627. doi: 10.1080/01483918308076073
  50. Pearson C.D., Gharfeh S.G. Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residues using a flame ionization detector // Anal. Chem. 1986. V. 58. № 2. P. 307. doi: 10.1021/AC00293A010
  51. Березкин В.Г., Гавричев В.С. Применение методов термосканирования с использованием газовых детекторов для количественной оценки результатов разделения в тонкослойной хроматографии // Успехи химии. 1989. Т. 58. № 2. С. 334. (Berezkin V.G., Gavrichev V.S. Application of thermoscanning methods using gas detectors in the quantitative assessment of the results of separation in thin layer chromatography // Russ. Chem. Rev. 1989. V. 58. № 2. P. 200.) doi: 10.1070/RC1989v058n02ABEH003435
  52. Anyakudo F., Adams E., Schepdael A.V. Thin-Layer chromatography-flame ionization detection // Chromatographia. 2020. V. 83. № 2. P. 149. doi: 10.1007/s10337-019-03849-z
  53. Shantha N.C. Thin-layer chromatography-flame ionization detection Iatroscan system // J. Chromatogr. A. 1992. V. 624. № 1-2. P. 21. doi: 10.1016/0021-9673(92)85672-G
  54. Bharati S., Postum G.A., Loberg R. Calibration and standardization of Iatroscan (TLC-FID) using standards derived from crude oils // Org. Geochem. 1994. V. 22. № 3–5. P. 835. doi: 10.1016/0146-6380(94)90143-0
  55. Stephens F.L. Thin layer chromatography – Flame ionization detection analysis of in-situ petroleum biodegradation. Master of Science. Thesis, Texas: Texas A&M University, 2004. 118 p.
  56. Khan S.A., Sarfraz S., Price D. TLC-FID calibration and accurate weight determination of SARA fractions in heavy crude oil // Pet. Sci. Technol. 2012. V. 30. № 23. P. 2401. doi: 10.1080/10916466.2010.518188
  57. IP 143. Determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products. Energy Institute (Institute of Petroleum), 2004. 13 p.
  58. ASTM D6560-12. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products. ASTM International, 2012. 6 p.
  59. ASTM D3279-12. Standard test method for n-heptane insolubles. ASTM International, 2012. 4 p.
  60. Yusoff M.H.B. Characterization of waxy and asphaltenic crude oil using SARA analysis. Bachelor of Enginee- ring. Thesis, Perak: Universiti Teknologi PETRONAS, 2013. 69 p.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies