Белковые молекулы: шаблоны и матрицы в молекулярном импринтинге

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В обзоре рассмотрены вопросы молекулярного импринтинга с участием белковых молекул. Проведен анализ работ, опубликованных за последние пять лет в области биоимпринтинга и посвященных определению биомолекул, а также усилению ферментативной активности. Основное внимание уделено импринтингу белковых молекул как методу модификации структуры белковой молекулы за счет образования сайтов связывания в присутствии субстратов (белковыми молекулами с молекулярным отпечатками или импринтированными белками). Показана перспективность импринтинга белковых молекул при решении аналитических задач. Обсуждена неоднозначная трактовка термина “биоимпринтинг” при решении различных задач.

Sobre autores

П. Пиденко

Саратовский государственный университет им. Н.Г. Чернышевского, Институт химии

Email: naburmistrova@mail.ru
Россия, 410012, Саратов, ул. Астраханская, 83

К. Пресняков

Саратовский государственный университет им. Н.Г. Чернышевского, Институт химии

Email: naburmistrova@mail.ru
Россия, 410012, Саратов, ул. Астраханская, 83

Н. Бурмистрова

Саратовский государственный университет им. Н.Г. Чернышевского, Институт химии

Autor responsável pela correspondência
Email: naburmistrova@mail.ru
Россия, 410012, Саратов, ул. Астраханская, 83

Bibliografia

  1. Korbakis D., Schiza C., Brinc D., Soosaipillai A., Karakosta T D., Légaré C., Sullivan R., Mullen B., Jarvi K., Diamandis E.P., Drabovich A.P. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility // BMC Medicine. 2017. V. 15. № 1. P. 1. https://doi.org/10.1186/s12916-017-0817-5
  2. Chau C.H., Strope J.D., Figg W.D. COVID-19 clinical diagnostics and testing technology // Pharmacotherapy. 2020. V. 40. № 8. P. 857. https://doi.org/10.1002/phar.2439
  3. Saushkin N.Y., Samsonova J.V., Osipov A.P., Kondakov S.E. Strip-dried blood sampling: applicability for bovine leukemia virus detection with ELISA and real-time PCR // J. Virol. Methods. 2019. V. 263. P. 101. https://doi.org/10.1016/j.jviromet.2018.11.004
  4. Поляков М.В. Адсорбционные свойства силикагеля и его структура // Журн. физ. химии. 1931. Т. 2. № 6. С. 799.
  5. Belbruno J.J. Molecularly imprinted polymers // Chem. Rev. 2019. V. 119. № 1. P. 94. https://doi.org/10.1021/acs.chemrev.8b00171
  6. Гендриксон О.Д., Жердев А.В., Дзантиев Б.Б. Молекулярно импринтированные полимеры и их применение в биохимическом анализе // Успехи биол. химии 2006. Т. 46. С. 149.
  7. Mosbach K. Molecular imprinting // Trends Biochem. Sci. 1994. V. 19. № 1. P. 9.
  8. Sellergren B. Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry. (Techniques and Instrumentation in Analytical Chemistry. Netherlands: Elsevier, 2001. 558 p.
  9. Spivak D.A., Shea K.J. Binding of nucleotide bases by imprinted polymers // Macromolecules. 1998. V. 31. № 7. P. 2160. https://doi.org/10.1021/ma971310d
  10. Mingarro I., Abad C., Braco L. Interfacial activation-based molecular bioimprinting of lipolytic enzymes // Proc. Natl. Acad. Sci. USA. 1995. V. 92. № 8. P. 3308. https://doi.org/10.1073/pnas.92.8.3308
  11. Peißker F., Fischer L. Crosslinking of imprinted proteases to maintain a tailor-made substrate selectivity in aqueous solutions // Bioorg. Med. Chem. 1999. V. 7 № 10. P. 2231. https://doi.org/10.1016/S0968-0896(99)00156-X
  12. González-Navarro H., Braco L. Improving lipase activity in solvent-free media by interfacial activation-based molecular bioimprinting // J. Mol. Catal. B: Enzym. 1997. V. 3. № 1. P. 111. https://doi.org/10.1016/S1381-1177(96)00038-0
  13. Fishman A., Cogan U. Bio-imprinting of lipases with fatty acids // J. Mol. Catal. B: Enzym. 2003. V. 22. № 3–4. P. 193. https://doi.org/10.1016/S1381-1177(03)00032-8
  14. Gutierrez A.V., Hedström M., Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor // Biotechnol. Rep. 2016. V. 11. P. 12. https://doi.org/10.1016/j.btre.2016.05.006
  15. Mujahid A., Iqbal N., Afzal A. Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond // Biotechnol. Adv. 2013. V. 31. № 8. P. 1435. https://doi.org/10.1016/j.biotechadv.2013.06.008
  16. Sardaremelli S., Razmi H., Hasanzadeh M., Shadjou N. A novel bioassay for the monitoring of hydrogen peroxide in human plasma samples based on binding of horseradish peroxidase-conjugated prostate specific antigen to poly (toluidine blue) as imprinted polymer receptor // Int. J. Biol. Macromol. 2020. V. 145. P. 311. https://doi.org/10.1016/j.ijbiomac.2019.12.195
  17. Piletsky S., Canfarotta F., Poma A., Bossi A.M., Piletsky S. Molecularly imprinted polymers for cell recognition // Trends Biotechnol. 2020. V. 38. № 4. P. 368. https://doi.org/10.1016/j.tibtech.2019.10.002
  18. Hasanzadeh M., Shadjou N., de la Guardia M. Cytosensing of cancer cells using antibody-based molecular imprinting: A short-review // Trends Anal. Chem. 2018. V. 99. P. 129. https://doi.org/10.1016/j.trac.2017.12.010
  19. Bai W., Spivak D.A. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract // Angew. Chem. Int. Ed. Engl. 2014. V. 53. № 8. P. 2095. https://doi.org/10.1002/anie.201309462
  20. Shoja Y., Kermanpur A., Karimzadeh F., Ghodsi J., Rafati A.A., Adhami S. Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shell silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of Gemcitabine as a lung cancer chemotherapy medication // Biosens. Bioelectron. 2019. V. 145. Article 111611. https://doi.org/10.1016/j.bios.2019.111611
  21. Rezaei B., Boroujeni M.K., Ensafi A.A. Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer // Sens. Actuators B: Chem. 2016. V. 222. P. 849. https://doi.org/10.1016/j.snb.2015.09.017
  22. Rezaei B., Boroujeni M.K., Ensafi A.A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine // Biosens. Bioelectron. 2015. V. 66. P. 490. https://doi.org/10.1016/j.bios.2014.12.009
  23. Qi P., Wan Y., Zhang D. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection // Biosens. Bioelectron. 2013. V. 39. № 1. P. 282. https://doi.org/10.1016/j.bios.2012.07.078
  24. Beloglazova N., Lenain P., Tessier M., Goryacheva I., Hens Z., De Saeger S. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone // Talanta. 2019. V. 192. P. 169. https://doi.org/10.1016/j.talanta.2018.09.042
  25. Sakamoto S., Minami K., Nuntawong P., Yusakul G., Putalun W., Tanaka H., Fujii S., Morimoto S. Bioimprinting as a receptor for detection of kwakhurin // Biomolecules. 2022. V. 12. № 8. Article 1064. https://doi.org/10.3390/biom12081064
  26. Liu J., Zhang K., Ren X., Luo G., Shen J. Bioimprinted protein exhibits glutathione peroxidase activity // Anal. Chim. Acta. 2004. V. 504. № 1. P. 185. https://doi.org/10.1016/S0003-2670(03)00763-3
  27. Gao J., Yin L., Feng K., Zhou L., Ma L., He Y., Wang L., Jiang Y. Lipase Immobilization through the combination of bioimprinting and cross-linked protein-coated microcrystal technology for biodiesel production // Ind. Eng. Chem. Res. 2016. V. 55 № 42. P. 11037. https://doi.org/10.1021/acs.iecr.6b03273
  28. Mukherjee J., Gupta M.N. Dual bioimprinting of Ther-momyces lanuginosus lipase for synthesis of biodiesel // Biotechnol. Rep. 2016. V. 10. P. 38. https://doi.org/10.1016/j.btre.2016.02.005
  29. Fan Y., Ke C., Su F., Li K., Yan Y. Various types of lipases immobilized on dendrimer-functionalized magnetic nanocomposite and application in biodiesel preparation // Energy and Fuels. 2017. V. 31. № 4. P. 4372. https://doi.org/10.1021/acs.energyfuels.7b00036
  30. Keyes M.H., Albert D.E., Saraswathi S. Enzyme semisynthesis by conformational modification of proteins // Ann. N.Y. Acad. Sci. 1987. V. 501 № 1. P. 201. https://doi.org/10.1111/j.1749-6632.1987.tb45709.x
  31. Russell A.J., Klibanov A.M. Inhibitor-induced enzyme activation in organic solvents // J. Biol. Chem. 1988. V. 263. № 24. P. 11624. https://doi.org/10.1016/s0021-9258(18)37828-1
  32. Ohya Y., Miyaoka J., Ouchi T. Recruitment of enzyme activity in albumin by molecular imprinting // Macromol. Rapid Commun. 1996. V. 17. № 12. P. 871. https://doi.org/10.1002/marc.1996.030171205
  33. Slade C.J., Vulfson E.N. Induction of catalytic activity in proteins by lyophilization in the presence of a transition state analogue // Biotechnol. Bioeng. 1998. V. 57. № 2. P. 211. https://doi.org/10.1002/(SICI)1097-0290(19980120)57: 2<211::AID-BIT9>3.0.CO;2-Q
  34. Дмитриенко Е.В., Пышная И.А., Мартьянов О.Н., Пышный Д.В. Молекулярно импринтированные полимеры для биомедицинских и биотехнологических применений // Успехи химии. 2016. Т. 85. № 5. С. 513. https://doi.org/10.1070/RCR4542
  35. Medlock J., Das A.A.K., Madden L.A., Allsup D.J., Paunov V.N. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment // Chem. Soc. Rev. 2017. V. 46. № 16. P. 5110. https://doi.org/10.1039/c7cs00179g
  36. Filby B.W., Hardman M.J., Paunov V.N. Antibody-free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria // Nano Select. 2020. V. 1. № 6. P. 673. https://doi.org/10.1002/nano.202000113
  37. Remaud P., Medlock J., Das A.A.K., Allsup D.J., Madden L.A., Nees D., Weldrick P.J., Paunov V.N. Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints // Mater. Chem. Front. 2020. V. 4. № 1. P. 197. https://doi.org/10.1039/c9qm00531e
  38. Sardaremelli S., Hasanzadeh M., Razmi H. Chemical binding of horseradish peroxidase enzyme with poly beta-cyclodextrin and its application as molecularly imprinted polymer for the monitoring of H2O2 in human plasma samples // J. Mol. Recognit. 2021. V. 34. № 5. Article e2884. https://doi.org/10.1002/jmr.2884
  39. Cai W., Li H.H., Lu Z.X., Collinson M.M. Bacteria assisted protein imprinting in sol-gel derived films // Analyst. 2018. V. 143. № 2. P. 555. https://doi.org/10.1039/c7an01509g
  40. Pelle M., Das A.A.K., Madden L.A., Paunov V.N. Bioimprint mediated label-free isolation of pancreatic tumor cells from a healthy peripheral blood cell population // Adv. Biosyst. 2020. V. 4. № 11. P. 1. https://doi.org/10.1002/adbi.202000054
  41. Sarwar M., Evans J.J. Bioimprinting: bringing together 2D and 3D in dissecting cancer biology // BioTechniques. 2021. V. 71. № 5. P. 543. https://doi.org/10.2144/btn-2021-0058
  42. Hashemi A., Nock V., Alkaisi M., Ali A. Enhancing the resolution of bioimprinted casein microdevices // Int. J. Nanotechnol. 2018. V. 15. № 8. P. 676–682. https://doi.org/10.1504/IJNT.2018.098433
  43. Ansari S., Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: current progress and future implications // Trends Anal Chem. 2019. V. 114. P. 29. https://doi.org/10.1016/j.trac.2019.02.008
  44. Abbasy L., Mohammadzadeh A., Hasanzadeh M., Razmi N. Development of a reliable bioanalytical method based on prostate specific antigen trapping on the cavity of molecular imprinted polymer towards sensing of PSA using binding affinity of PSA-MIP receptor: A novel biosensor // J. Pharm. Biomed. Anal. 2020. V. 188. Article 113447. https://doi.org/10.1016/j.jpba.2020.113447
  45. Teke M., Sezgintürk M.K., Dinçkaya E., Telefoncu A. A bio-imprinted urease biosensor: Improved thermal and operational stabilities // Talanta. 2008. V. 74. № 4. P. 661. https://doi.org/10.1016/j.talanta.2007.06.031
  46. Piletsky S. Molecular Imprinting of Polymers. CRC Press, 2006. https://doi.org/10.1201/9781498713542
  47. Whitty A. Cooperativity and biological complexity // Nat. Chem. Biol. 2008. V. 4. № 8. P. 435. https://doi.org/10.1038/nchembio0808-435
  48. Brandão L.M.S., Barbosa M.S., Souza R.L., Pereira M.M., Lima Á.S., Soares C.M. Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site // Biotechnol. Prog. 2021. V. 37 № 1. P. 1. https://doi.org/10.1002/btpr.3064
  49. Pauling L. A theory of the formation of antibodies // J. Am. Chem. Soc. 1940. V. 372. № 62. P. 2643.
  50. Pauling L., Campbell D.H. The production of antibodies in vitro // Science. 1942. V. 95. № 2469. P. 440. https://doi.org/10.1126/science.95.2469.440
  51. Pauling L., Campbell D.H. The manufacture of antibodies in vitro // J. Exp. Med. 1942. V. 76. № 2. P. 211. https://doi.org/10.1084/jem.76.2.211
  52. Dickey F.H. The preparation of specific adsorbents. // Proc. Natl. Acad. Sci. USA. 1949.V. 35. № 5. P. 227. https://doi.org/10.1073/pnas.35.5.227
  53. Li Z., Liu H., Zhao G., Wang P., Wang L., Wu H., Fang X., Sun X., Wu X., Zheng Z. Enhancing the performance of a phospholipase A1 for oil degumming by bio-imprinting and immobilization // J. Mol. Catal. B: Enzym. 2016. V. 123. P. 122. https://doi.org/10.1016/j.molcatb.2015.11.018
  54. Pidenko P., Presnyakov K., Beloglazova N., Burmistrova N. Imprinted proteins for determination of ovalbumin // Anal. Bioanal. Chem. 2022. P. 1. https://doi.org/10.1007/s00216-022-04009-3
  55. Pidenko P., Zhang H., Lenain P., Goryacheva I., De Saeger S., Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone // Anal. Chim. Acta. 2018. V. 1040. P. 99. https://doi.org/10.1016/j.aca.2018.07.062
  56. Yin Y., Dong Z., Luo Q., Liu J. Biomimetic catalysts designed on macromolecular scaffolds // Prog. Polym. Sci. 2012. V. 37. № 11. P. 1476. https://doi.org/10.1016/j.progpolymsci.2012.04.001
  57. Klibanov A.M. Improving enzymes by using them in organic solvents // Nature. 2001. V. 409. № 6817. P. 241. https://doi.org/10.1038/35051719
  58. Zaks A., Klibanov A.M. Enzyme-catalyzed processes in organic solvents // Proc. Natl. Acad. Sci. USA. 1985. V. 82. № 10. Article 31923196. https://doi.org/10.1073/pnas.82.10.3192
  59. Zaks A., Klibanov A.M. Enzymatic catalysis in nonaqueous solvents // J. Biol. Chem. 1988. V. 263. № 7. P. 3194. https://doi.org/10.1016/s0021-9258(18)69054-4
  60. Sánchez D.A., Alnoch R.C., Tonetto G.M., Krieger N., Ferreira M.L. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12 // J. Biotechnol. 2021. V. 342. P. 13. https://doi.org/10.1016/j.jbiotec.2021.09.022
  61. Mustafa A., Niikura F., Pastore C., Allam H.A., Hassan O.B., Mustafa M., Inayat A., Salah S.A., Salam A.A., Mohsen R. Selective synthesis of alpha monoglycerides by a clean method: Techno-economic and environmental assessment // Sustain. Chem. Pharm. 2022. V. 27. Article 100690. https://doi.org/10.1016/j.scp.2022.100690
  62. Almeida F.L.C., Castro M.P.J., Travália B.M., Forte M.B.S. Trends in lipase immobilization: Bibliometric review and patent analysis // Process Biochem. 2021. V. 110. P. 37. https://doi.org/10.1016/j.procbio.2021.07.005
  63. Joyce P., Gustafsson H., Prestidge C.A. Engineering intelligent particle-lipid composites that control lipase-mediated digestion // Adv. Colloid Interface Sci. 2018. V. 260. P. 1. https://doi.org/10.1016/j.cis.2018.08.001
  64. Bordes F., Cambon E., Dossat-Létisse V., An dré I., Croux C., Nicaud J.M., Narty A. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site // Chem Bio Chem 2009. V. 10. № 10. P. 1705. https://doi.org/10.1002/cbic.200900215
  65. Yan Y., Zhang X., Chen D. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids // Bioresour. Technol. 2013. V. 131. P. 179. https://doi.org/10.1016/j.biortech.2012.12.092
  66. Matsumoto M., Matsui E. Enhanced activities and thermostability of lipase pretreated with carboxylic and perflurocarboxylic acids in transesterification // J. Chem. Technol. Biotechnol. 2018. V. 93. № 11. P. 3219. https://doi.org/10.1002/jctb.5678
  67. Matsumoto M., Nakao K., Tahara Y. Effects of imprinting and water activity on transesterification and thermostability with lipases in ionic liquid // Chem. Biochem. Eng. Q. 2021. V. 35. № 1. P. 57. https://doi.org/10.15255/CABEQ.2020.1899
  68. Matsumoto M., Hasegawa Y. Enzymatic kinetics of solvent-free esterification with bio-imprinted lipase // Chem. Biochem. Eng. Q. 2020. V. 33. № 4. P. 495. https://doi.org/10.15255/CABEQ.2019.1692
  69. Li B., Duan D., Wang J., Li H., Zhang X., Zhao B. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol // J. Biotechnol. 2018. V. 281. P. 67. https://doi.org/10.1016/j.jbiotec.2018.06.343
  70. Mateo C., Palomo J.M., Fernandez-Lorente G., Guisan J.M., Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques // Enzyme Microb. Technol. 2007. V. 40. № 6. P. 1451. https://doi.org/10.1016/j.enzmictec.2007.01.018
  71. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Zacharevich A.M., Skibina Y.S., Beloglazova N.V., Goryacheva I.Y. Soft glass multi-channel capillaries as a platform for bioimprinting // Talanta. 2020. V. 208. Article 120445. https://doi.org/10.1016/j.talanta.2019.120445
  72. Sampath C., Belur P.D., Iyyasami R. Enhancement of n-3 polyunsaturated fatty acid glycerides in sardine oil by a bioimprinted cross-linked Candida rugosa lipase // Enzyme Microb. Technol. 2018. V. 110. P. 20. https://doi.org/10.1016/j.enzmictec.2017.12.003
  73. Kahveci D., Xu X. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil // Biotechnol. Lett. 2011. V. 33. № 10. P. 2065. https://doi.org/10.1007/s10529-011-0671-z
  74. Sheldon R.A., van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how // Chem. Soc. Rev. 2013. V. 42. № 15. P. 6223. https://doi.org/10.1039/c3cs60075k
  75. Cui J.D., Zhang S., Sun L.M. Cross-Linked enzyme aggregates of phenylalanine ammonia lyase: Novel biocatalysts for synthesis of L-phenylalanine // Appl. Biochem. Biotechnol. 2012. V. 167. № 4. P. 835. https://doi.org/10.1007/s12010-012-9738-0
  76. Diaz-Vidal T., Armenta-Perez V.P., Rosales-Rivera L.C., Mateos-Díaz J.C., Rodríguez J.A. Cross-linked enzyme aggregates of recombinant Candida antarctica lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue // Biotechnol. Prog. 2019. V. 35. № 4. P. 1. https://doi.org/10.1002/btpr.2807
  77. Li K., Wang J., He Y., Cui G., Abdulrazaq M.A., Yan Y. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles // Chem. Eng. J. 2018. V. 351. P. 258. https://doi.org/10.1016/j.cej.2018.06.086
  78. Murtaza G., Rizvi A.S., Irfan M., Yan D., Khan R.U., Rafique B., Xue M., Meng Z.S. Glycated albumin based photonic crystal sensors for detection of lipopolysaccharides and discrimination of gram-negative bacteria // Anal. Chim. Acta. 2020. V. 1117. P. 1. https://doi.org/10.1016/j.aca.2020.04.018

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (886KB)
3.

Baixar (593KB)
4.

Baixar (944KB)
5.

Baixar (171KB)

Declaração de direitos autorais © П.С. Пиденко, К.Ю. Пресняков, Н.А. Бурмистрова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies