Self-Assembly of Alkanethiols on an Oxide-Free Surface of a Copper Electrode from Alkaline Solutions under Electrochemical Control

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using voltammetry and chronoamperometry, the formation process and properties of insulating nanofilms of alkanethiols with different chain lengths (butane-, octane-, dodecanethiol) obtained on an oxide-free copper surface were studied. The electrochemical method for modifying the copper surface includes the removal of the oxide layer by its cathodic reduction, the adsorption of a thiol under electrochemical control, followed by studying the properties of the resulting nanofilm by voltammetry in one solution. It is shown that, with this approach, a dense thiol film is formed, with its blocking properties depending on the adsorption potential, the time of contact of the electrode with the thiol-containing solution, the thiol concentration, and the presence of dissolved oxygen in the solution. The introduction of ethanol into an aqueous alkali solution leads to a significant acceleration of the process of self-assembly of dodecanethiol, but greatly inhibits the process of self-assembly of butanethiol. The approach proposed in this work makes it possible to use aerated low-concentration thiol-containing solutions to obtain alkanethiol films on the Cu surface with good blocking properties.

Sobre autores

S. Ovchinnikova

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: ovchin@solid.nsc.ru
630128, Novosibirsk, Russia

T. Alexandrova

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Autor responsável pela correspondência
Email: taleks99@mail.ru
630128, Novosibirsk, Russia; 630073, Novosibirsk, Russia

Bibliografia

  1. Love J.C., Estroff L.A., Kriebel J.K. et al. // Chem. Rev. 2005. V. 105. P. 1103.
  2. Petta J.R., Slater S.K., Ralph D.C. // Phys. Rev. Lett. 2004. V. 93. P. 136601.
  3. Iost R.M., Crespilho F.N. // Biosens. Bioelectron. 2012. V. 31. P. 1.
  4. Newton L., Slater T., Clark N. et al. // J. Mater. Chem. C 2013. V. 1. P. 376.
  5. Devillers S., Hennart A., Delhalle J., Mekhalif Z. // Langmuir. 2011. V. 27. P. 14849.
  6. Hoerts P.G., Niskala J.R., Dai P. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 9763.
  7. Laibinis P.E., Whitesides G.M. // J. Am. Chem. Soc. 1992. V. 114. P. 1990.
  8. Овчинникова С.Н. // Электрохимия. 2016. Т. 52. С. 301.
  9. Raya D.G., Madueno R., Blazquez M. et al. // Langmuir. 2010. V. 26. P. 11790.
  10. Muglari M.I., Erbe A., Chen Y. et al. // Electrochimica Acta. 2013. V. 90. P. 17.
  11. Byloos M., Al-Maznai H., Morin M. // J. Phys. Chem. B. 2001. V. 105. P. 5900.
  12. Yang D.-F., Wilde C.P., Morin M. // Langmuir. 1997. V. 13. P. 243.
  13. Sadler J.E., Szumski D.S., Kierzkowska A. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 17987.
  14. Azzaroni O., Vela M.E., Fonticelli M. et al. // J. Phys. Chem. B. 2003. V. 107. P. 13446.
  15. Ovchinnikova S.N. // J. Sol. State Electrochem. 2020. V. 24. P. 987.
  16. Ovchinnikova S.N., Aleksandrova T.P. // Nanobiotechnology Reports. 2022. V. 17. P. 758.
  17. Volmer M., Stratmann M., Viefhaus H. // Surf. Interface Anal. 1990. V. 16. P. 278.
  18. Mekhalif Z., Riga J., Pireaux J-J. et al. // Langmuir. 1997. V. 13. P. 2285.
  19. Зелинский А.Г., Бек Р.Ю. // Электрохимия. 1985. Т. 21. С. 66.
  20. Ron H., Cohen H., Matlis S. et al. // J. Phys. Chem. B. 1998. V. 102. P. 9861.
  21. Sinapi F., Lejeune I., Delhalle J. et al. // Electrochem. Acta. 2007. V. 52. P. 5182.
  22. Meticos-Hukovic M., Babic R., Petrovic Z. et al. // J. Electrochem. Soc. 2007. V 154. P. 138.
  23. Dilimon V.S., Denayer J., Delhalle J. et al. // Langmuir. 2012. V. 28. P. 6857.
  24. Fonder G., Volcke C., Csoka B. et al. // Electrochem. Acta. 2010. V. 55. P. 1557.
  25. Calderon C.A., Ojeda C., Macagno V.A. et al. // J. Phys. Chem. C. 2010. V. 114. P. 3945.
  26. Jennings G., Munro J., Yong T. et al. // Langmuir. 1998. V. 14. P. 6130.
  27. Hosseinpour S., Magnus Johnson C., Leygard C. // J. Electrochem. Soc. 2013. V. 160. P. 270.
  28. Клетеник Ю.Б., Александрова Т.П. // ЖАХ. 1997. Т. 52. С. 752.
  29. Wu S., Chen Z., Qiu Y. et al. // J. Electrochem. Soc. 2012. V. 159. P. 277.
  30. Laiho T., Leiro J.A. // Appl. Surf. Sci. 2006. V. 252. P. 6304.
  31. Maho A., Denayer J., Delhalle J. et al. // Electrochim. Acta. 2011. V. 56. P. 3954.
  32. Salvarezza R.C., Carro P. // J. Electroanal. Chem. 2018. V. 819. P. 234.
  33. Kakiuchi T., Usui H., Hobara D. et al. // Langmuir. 2002. V. 18. P. 5231.
  34. Hatchett D., Uibel C.R., Stevenson K. et al. // J. Am. Chem. Soc. 1998. V. 120. P. 1062.
  35. Dai J., Li Z., Jin J. et al. // J. Electroanal. Chem. 2008. V. 624. P. 315.
  36. Mekhalif Z., Laffineur F., Couturier N. et al. // Langmuir. 2003. V. 19. P. 637.
  37. Никольский Б.П. Справочник химика. М.: Химия, 1965. 1006 с.
  38. Bowker M., Madix R. // J. Surf. Sci. 1982. V. 116. P. 549.
  39. Мурин В. И. и др. Технология переработки природного газа и конденсата. Справочник в 2 ч. М.: ООО “Недра-Бизнесцентр”, 2002. С. 517.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (95KB)
3.

Baixar (85KB)
4.

Baixar (64KB)
5.

Baixar (45KB)
6.

Baixar (101KB)
7.

Baixar (193KB)
8.

Baixar (126KB)

Declaração de direitos autorais © С.Н. Овчинникова, Т.П. Александрова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies