Removal of Lead Ions from Aqueous Media by a Cryogel Based on Graphene Oxide Modified with Lignosulfonate: A Kinetic Study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper studies the kinetics of adsorption of lead ions from aqueous solutions under static conditions on a new nanocomposite material—graphene oxide/lignosulfonate (GO/LS). The adsorption capacity of the nanocomposite with respect to lead ions was 179 mg/g at a extraction time of 20 min. The experimental kinetic dependences were processed in the coordinates of the Elovich pseudo-first- and -second-order models, as well as the Morris and Weber diffusion models and the Boyd model. The performed calculations led to the conclusion that the pseudo-second-order model most accurately describes the adsorption of Pb2+ ions on GO/LS (R2 = 0.999). In this case, the calculated adsorption capacity was 182.52 mg/g. According to diffusion models, sorption is not limited by diffusion, but the rate of the process is limited by diffusion through the film formed on the surface of the sorbent. Thus, we can conclude that the film-diffusion mechanism of adsorption of Pb2+ ions on GO/LS with a contribution to the overall rate of the process of sorbate–sorbate interaction. The results obtained allow us to state that the GO/LS nanocomposite is a promising sorbent in the processes of removing heavy-metal ions from polluted hydrogeosystems and can be considered an effective solution for ensuring the environmental safety of the environment.

Sobre autores

E. Mkrtchyan

Tambov State Technical University, 392000, Tambov, Russia

Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

O. Ananyeva

Tambov State Technical University, 392000, Tambov, Russia

Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

I. Burakova

Tambov State Technical University, 392000, Tambov, Russia

Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

A. Memetova

Tambov State Technical University, 392000, Tambov, Russia

Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

A. Burakov

Tambov State Technical University, 392000, Tambov, Russia

Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

A. Tkachev

Tambov State Technical University, 392000, Tambov, Russia

Autor responsável pela correspondência
Email: iris_tamb68@mail.ru
Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2

Bibliografia

  1. Francis M. // Political Geography. 2022. № 97. 102627. https://doi.org/10.1016/j.polgeo.2022.102627
  2. Mkrtchyan F.A., Shapovalov S.M. // Russian J. Earth Sciences. 2018. V. 18. № 4. ES4001-10. https://doi.org/10.2205/2018ES000624
  3. Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E. et al. // Ecotoxicology and Environmental Safety. 2018. № 148. P. 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034
  4. Horikawa T., Okamoto M., Kuroki-Matsumoto A., Yoshida K. // Carbon. 2022. V. 196. P. 575–588. https://doi.org/10.1016/j.carbon.2022.05.031
  5. Mishra Sh., Tripathi A. // Environmental Nanotechnology, Monitoring and Manайagement. 2022. V. 17. 100632. https://doi.org/10.1016/j.enmm.2021.100632
  6. Barus D.A., Humaidi S., Ginting R.T., Sitepu J. // Environmental Nanotechnology, Monitoring and Management. 2022. № 17. 100650. https://doi.org/10.1016/j.enmm.2022.100650
  7. Dotto G.L., Pinto L.A.A. // Carbohydrate Polymers. 2011. V. 84. № 1. P. 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
  8. Menazea A.A., Ezzat H.A., Omara W., Basyouni O.H. et al. // Computational and Theoretical Chemistry. 2020. № 1189. 112980. https://doi.org/10.1016/j.comptc.2020.112980
  9. Aung W.M., Marchenko M.V., Troshkina I.D., Burakova I.V. et al. // Advanced materials and technologies. 2019. V. 16. № 4. P. 58–65. https://doi.org/10.17277/amt.2019.04.pp.058-065
  10. Yang J., Yu M., Chen W. // J. Industrial and Engineering Chemistry. 2015. V. 21. P. 414–422. https://doi.org/10.1016/j.jiec.2014.02.054
  11. Chidi O., Kelvin R. // Chemistry International. 2018. № 4. P. 221–229.
  12. Cheung C.W., Porter J.F., McKay G. // Separation and Purification Technology. 2000. № 19. P. 55–64. https://doi.org/10.1016/S1383-5866(99)00073-8
  13. Kumar K.V. // J. Hazardous Materials. 2006. № 137. P. 1538–1544. https://doi.org/10.1016/j.jhazmat.2006.04.036
  14. Fu B., Ferronato C., Fine L., Meunier F. et al. // Chemical Engineering J. 2021. V. 405. 127016. https://doi.org/10.1016/j.cej.2020.127016
  15. Ngah W.S.W., Kamari A., Koay Y. // International J. Biological Macromolecules. 2004. V. 34. P. 155–161. https://doi.org/10.1016/j.ijbiomac.2004.03.001
  16. Cheung C.W., Porter J.F., McKay G. // J. Chemical Technology and Biotechnology. 2000. V. 75. № 11. P. 963–970. https://doi.org/10.1002/1097-4660(200011)75:11<963: :AID-JCTB302>3.0.CO;2-Z
  17. López-Luna J., Ramírez-Montes L.E., Martinez-Vargas S., Martínez A.I. et al. // SN Applied Sciences. 2019. № 1. P. 1–19. https://doi.org/10.1007/s42452-019-0977-3
  18. Weber W.J., Morris J.C. // J. Sanitary Engineering Division. 1963. V. 89. P. 31–59. https://doi.org/10.1061/jsedai.0000430
  19. Tran H.N., You S.J., Hosseini-Bandegharaei A., Chao H.P. // Water Research. 2017. V. 120. P. 88–116. https://doi.org/10.1016/j.watres.2017.04.014
  20. Boyd G.E., Schubert J., Adamson A.W. // J. American Chemical Society. 1947. V. 69. № 11. P. 2818–2829. https://doi.org/10.1021/ja01203a064
  21. Cáceres-Jensen L., Rodríguez-Becerra J., Parra-Rivero J., Escudey M. et al. // J. Hazardous Materials. 2013. V. 261. P. 602–613. https://doi.org/10.1016/j.jhazmat.2013.07.073
  22. Reichenberg D. // J. American Chemical Society. 1953. V. 75. № 3. P. 589–597. https://doi.org/10.1021/ja01099a022
  23. Khan T.A., Chaudhry S.A., Ali I. // J. Molecular Liquids. 2015. V. 202. P. 165–175. https://doi.org/10.1016/j.molliq.2014.12.021
  24. Jain M., Yadav M., Kohout T., Lahtinen M. et al. // Water Resources and Industry. 2018. V. 20. P. 54–74. https://doi.org/10.1016/j.wri.2018.10.001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (47KB)
3.

Baixar (68KB)
4.

Baixar (60KB)

Declaração de direitos autorais © Э.С. Мкртчян, О.А. Ананьева, И.В. Буракова, А.Е. Меметова, А.Е. Бураков, А.Г. Ткачев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies