СПИН-ИЗОСПИНОВЫЙ ОТКЛИК ЯДРА В РАМКАХ ФУНКЦИОНАЛА ФАЯНСА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлено эффективное приближение к полностью самосогласованным расчетам силовых функций \(\beta\)-распада. Оно базируется на описании основных состояний в рамках модифицированного энергетического функционала плотности Фаянса (DF3-f) и квазичастичного приближения случайной фазы в континууме (CQRPA). Уточнен изовекторный параметр \(h_{2}^{-}\) объемной части функционала, допустимый диапазон которого был определен нами ранее из ограничений на параметры уравнения состояния ядерной материи —  энергию симметрии и ее производную при равновесной плотности, полученные из совместного анализа величины ‘‘нейтронной шубы’’ \(\Delta Rnp\) ядер \({}^{208}\)Pb и \({}^{48}\)Ca, найденной в экспериментах PREX-II, CREX, результатов ab initio расчетов свойств основных состояний ядер с взаимодействием N3LO и систематики данных по массам нейтронных звезд из астрофизических наблюдений. Проведены новые расчеты гамов-теллеровских силовых функций для дважды магических ядер \({}^{208}\)Pb и \({}^{132}\)Sn. Оценена точность глобальных DF3-a \(+\) CQRPA-расчетов периодов бета-распада тяжелых (квази)сферических ядер с \(Z=81\)–83 и \(T_{1/2}<240\) с в предложенной модели. Экспериментальные времена жизни описываются с точностью до фактора 5.

Об авторах

И. Н. Борзов

Национальный исследовательский центр ‘‘Курчатовский институт’’; Лаборатория теоретической физики им. Н.Н. Боголюбова, ОИЯИ

Email: Borzov_IN@nrcki.ru
Россия, Москва; Россия, Дубна

С. В. Толоконников

Национальный исследовательский центр ‘‘Курчатовский институт’’; Московский физико-технический институт (нацио- нальный исследовательский университет)

Автор, ответственный за переписку.
Email: Tolokonnikov_SV@nrcki.ru
Россия, Москва; Россия, Долгопрудный

Список литературы

  1. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
  2. А. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер, 2-е изд. (Наука, Москва, 1981).
  3. P. Franzini and L. A. Radikati, Phys. Lett. 6, 322 (1963).
  4. J.-I. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965).
  5. S. I. Gabrakov, A. A. Kuliev, and N. I. Pyatov, Phys. Lett. B 36, 275 (1971).
  6. Ю. В. Гапонов, Ю. С. Лютостанский, Письма в ЖЭТФ 15, 173 (1972).
  7. R. R. Doering, A. Galonsky, D. M. Patterson, and G. F. Dertsch, Phys. Rev. Lett. 35, 1691 (1975).
  8. L. Shtul, in Proceedings of the 10th International Conference on Direct Reactions with Exotic Beams (DREBS2018), p. 102.
  9. R. Reifarth and Yu. A. Litvinov, Phys. Rev. ST Accel. Beams 17, 014701 (2014).
  10. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).
  11. Ю. В. Гапонов, Ю. С. Лютостанский, ЭЧАЯ 12, 1324 (1981).
  12. Н. И. Пятов, С. А. Фаянс, ЭЧАЯ 14, 953 (1983).
  13. Ю. В. Наумов, А. А. Быков, И. Н. Изосимов, ЭЧАЯ 14, 420 (1983).
  14. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).
  15. W. Kohn and L. J. Sham, Phys. Rev. 140, А1133 (1965).
  16. Energy Density Functional Methods for Atomic Nuclei, Ed. by Schunck (IOP Publ., Bristol, 2019).
  17. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
  18. T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66, 024306 (2002).
  19. D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021).
  20. J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and S. Surman, Phys. Rev. C 60, 014302 (1999).
  21. I. N. Borzov and S. Goriely, Phys. Rev. C 62, 035501 (2000).
  22. I. N. Borzov, Phys. Rev. C 67, 025802 (2003).
  23. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303 (2004).
  24. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and N. Van Giai, Phys. Rev. C 90, 044320 (2014).
  25. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).
  26. E. Litvinova, B. A. Brown, D.-L. Fang, T. Marketin, and R. G. T. Zegers, Phys. Lett. B 730, 307 (2014).
  27. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 82, 560 (2020).
  28. A. Bulgac and V. R. Shaginyan, Nucl. Phys. A 601, 103 (1996).
  29. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 86, no. 3 (2023).
  30. D. Adhikari et al. (PREX-II Collab.), Phys. Rev. Lett. 126, 172502 (2021).
  31. D. Adhikari et al. (CREX Collab.), Phys. Rev. Lett. 129, 042501 (2022).
  32. R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev. Lett. 127, 192701 (2021).
  33. R. Essick, P. Landry, A. Schwenk, and I. Tews, Phys. Rev. 104, 065804 (2021).
  34. J. M. Lattimer, Nuclear Matter Symmetry Energy From Experiment, Theory and Observation, in Workshop at INT S@INT Seminar, Seattle, November 9, 2021.
  35. P.-G. Reinhard, X. Roca-Maza, and W. Nazarewicz, Phys. Rev. Lett. 127, 232501 (2022).
  36. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).
  37. J. Margueron, S. Goriely, M. Grasso, G. Colò, and H. Sagawa, J. Phys. G: Nucl. Part. Phys. 36, 125103 (2009).
  38. A. B. Migdal, Rev. Mod. Phys. 50, 107 (1978).
  39. G. E. Brown, E. Osnes, and M. Rho, Phys. Lett. B 163, 41 (1985).
  40. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, G. Neyens, and N. Severijns, Eur. Phys. J. A 45, 159 (2010).
  41. G. F. Bertsch and R. A. Broglia, Oscillations in Finite Quantum Systems (Cambridge Univ. Press, Cambridge, 1994).
  42. I. N. Borzov, E. L. Trykov, and S. A. Fayans, Sov. J. Nucl. Phys. 52, 627 (1990).
  43. D. J. Horen, C. D. Goodman, C. C. Foster, C. A. Goulding, M. B. Greenfield, J. Rapaport, D. E. Bainum, E. Sugarbaker, T. G. Masterson, F. Petrovich, and W. G. Love, Phys. Lett. B 95, 27 (1980).
  44. A. Krasznahorkay, H. Akimune, M. Fujiwara, M. N. Harakeh, J. Jänecke, V. A. Rodin, M. H. Urin, and M. Yosoi, Phys. Rev. C 64, 067302 (2001).
  45. J. Yasuda, V. Sasanj, R. G. T. Zegers, et al., Phys. Rev. Lett. 121, 132501 (2018).
  46. I. N. Borzov, Phys. At. Nucl. 83, 700 (2020).
  47. R. Caballero-Folch et al., Phys. Rev. Lett. 121, 012501 (2016).
  48. T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).

© Pleiades Publishing, Ltd., 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах