MEASUREMENT OF CROSS-SECTION OF THE 7Li(𝑑, 𝑛)8Be REACTIONS AT THE DEUTERON ENERGIES FROM0.4 to 2.1 MeV

Capa

Citar

Texto integral

Resumo

Obtaining intense neutron fluxes are required for production of radioactive isotopes, radiation testing of promising materials, neutron diffraction, neutron capture therapy and other applications. The interaction of deuterons with lithium is characterized by a high neutron yield, a wide variety of reactions, but the available experimental data on the reaction cross-section are scarce and contradictory, which does not allow reliable estimation of the yield and spectrum of generated neutrons. In this work, effective partial cross-sections of the nuclear reactions 7Li(𝑑, 𝑛)8Be with the formation of the Be nucleus in the ground and first excited states at deuteron energies from 0.4 to 2.1 MeV were measured at accelerator based neutron source VITA using developed RBN-A1 fast neutron spectrometric radiometer. It is shown that measurements by the fast detector radiometer with two diamond spectrometric detectors provide a number of advantages over the traditionally used measuring path scintillation detector. Analysis of the high-energy part of the amplitude spectra of diamond detectors, determined by the reactions 12C(𝑛, α)9Be and 12C(𝑛, α)9Be*, made it possible to measure the effective partial cross sections of the nuclear reaction 7Li(𝑑, 𝑛)8Be with the formation of the Be nucleus in the ground and especially in the first excited state.

Sobre autores

S. Meshchaninov

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Email: S.Meshaninov@iterrf.ru
Moscow, Russia

A. Krasilnikov

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

N. Rodionov

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

Y. Kashchuk

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

S. Obudovsky

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

A. Dzhurik

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

T. Kormilitsyn

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

R. Rodionov

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

V. Amosov

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

G. Nemtsev

Institution “Project Center ITER”, State Atomic Energy Corporation “Rosatom”

Moscow, Russia

M. Bikchurina

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

T. Bykov

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

G. Verkhovod

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

D. Kasatov

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

Ia. Kolesnikov

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

G. Ostreinov

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

E. Sokolova

Budker Institute of Nuclear Physics; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

S. Taskaev

Budker Institute of Nuclear Physics; Novosibirsk State University; Joint Institute for Nuclear Research

Email: taskaev@inp.nsk.su
Novosibirsk, Russia; Novosibirsk, Russia; Dubna, Russia

Bibliografia

  1. С. Ю. Таскаев, Ускорительный источник нейтронов VITA (Физматлит, Москва, 2024).
  2. S. Taskaev, E. Berendeev, M. Bikchurina, T. Bykov, D. Kasatov, I. Kolesnikov, A. Koshkarev, A. Makarov, G. Ostreinov, V. Porosev, S. Savinov, I. Shchudlo, E. Sokolova, I. Sorokin, T. Sycheva, and G. Verkhovod, Biology 10, 350 (2021).
  3. https://www.bergoz.com/products/npct/
  4. P. de Groot, Handbook of Stable Isotope Analytical Techniques (Elsevier, 2009), Vol. II.
  5. K. Lieberman et al., Experientia 42, 985 (1986).
  6. D. Kasatov, Ia. Kolesnikov, A. Koshkarev, A. Makarov, E. Sokolova, I. Shchudlo, and S. Taskaev, J. Instrum. 15, P10006 (2020).
  7. S. Taskaev, M. Bikchurina, T. Bykov, D. Kasatov, Ia. Kolesnikov, A. Makarov, G. Ostreinov, S. Savinov, and E. Sokolova, Nucl. Instrum. Methods Phys. Res. B 525, 55 (2022).
  8. S. Taskaev, M. Bikchurina, T. Bykov, D. Kasatov, Ia. Kolesnikov, G. Ostreinov, S. Savinov, and E. Sokolova, Nucl. Instrum. Methods Phys. Res. B 554, 1654460 (2024).
  9. https://fgis.gost.ru/fundmetrology/registry/4/items /1414010
  10. А. В. Красильников, Н. Б. Родионов, А. П. Большаков, В. Г. Ральченко, С. К. Вартапетов, Ю. Е. Сизов, С. А. Мещанинов, А. Г. Трапезников, В. П. Родионова, В. Н. Амосов, Р. А. Хмельницкий, А. Н. Кириченко, ЖТФ 92, 596 (2022).
  11. D. Rigamonti, L. Giacomelli, G. Gorini, M. Nocente, M. Rebai, M. Tardocchi, M. Angelone, P. Batistoni, A. Cufar, Z. Ghani, S. Jednorog, A. Klix, E. Laszynska, S. Loreti, M. Pillon, S. Popovichev, N. Roberts, D. Thomas and JET Contributors, Meas. Sci. Technol. 29, 045502 (2018), https://doi.org/10.1088/1361-6501/aaa675
  12. А. В. Красильников, В. Б. Квасков, Природные алмазы России (Полярон, Москва, 1997), с. 131.
  13. S. A. Kuvin, H. Y. Lee, B. DiGiovine, A. Georgiadou, S. Mosby, D. Votaw, M. White, and L. Zavorka, Phys. Rev. C 104, 014603 (2021), https://doi.org/10.1103/PhysRevC.104.014603
  14. D. Rigamonti, A. Dal Molin, A. Muraro, M. Rebai, L. Giacomelli, G. Gorini, M. Nocente, E. Perelli Cippo, S. Conroy, G. Ericsson, J. Eriksson, V. Kiptily, Z. Ghani, Z. Stancar, M. Tardocchi and JET Contributors, Nucl. Fusion 64, 016016 (2024), https://doi.org/10.1088/1741-4326/ad0a49
  15. Glenn F. Knoll, Radiation Detection and Measurement (WILEY John Wiley & Sons, 2010), 4th ed.
  16. Ю. М. Широков, Н. П. Юдин, Ядерная физика (Наука, Москва, 1980).
  17. https://skisickness.com/2020/02/kinematics/
  18. О. В. Бочкарев, В. А. Вуколов, Е. А. Колтыдин и др., Препринт Нейтроны из реакции 7Li + D в интервале энергии дейтронов 0.7–12.1 МэВ (РНЦ “Курчатовский институт”, Москва, 1994).
  19. Dai Nengxiong, Qi Bujia, Mao Yajun, Zhuang Fei, Yao Jinzhang, and Wang Xiaozhong, Chin. J. Nucl. Phys. 9, 103 (1987).
  20. C. Nussbaum, Helvetica Phys. Acta 42, 361 (1969), https://doi.org/10.5169/seals-114072
  21. Г. М. Осетинский, Б. Сикора, Я. Тыкэ, Б. Фрыщин, Исследование реакции 7Li( , )8Be (Дубна, 1970).
  22. https://www-nds.iaea.org/exfor/ibandl.htm
  23. C. H. Johnson and C. C. Trail, Phys. Rev. 133, B1183 (1964), https://doi.org/10.1103/PhysRev.133.B1183
  24. Yan Chen, Sun Hancheng, Na Xiangyin, Ma Weiyi, Cui Yunfeng, and Hu Xuanwen, Chin. J. Nucl. Phys. 2, 137 (1980).
  25. C. Milone and R. Potenza, Nucl. Phys. 84(1),
  26. (1966), https://doi.org/10.1016/0029-5582(66)90430-5
  27. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016), https://doi.org/10.1016/j.nima.2016.06.125
  28. С. А. Мещанинов, Н. Б. Родионов, А. В. Красильников, В. О. Сабуров, Е. И. Казаков, А. А. Лычагин, С. Р. Корякин, Ю. А. Кащук, Р. Н. Родионов, В. Н. Амосов, А. С. Джурик, Исследование характеристик поля 14.7 МэВ нейтронов алмазным детектором, ПТЭ (2024) (в печати).
  29. J. Juna and K. Konecny, Zentralinst. f. Kernforschung, Rossendorf Reports 122, 195 (1966).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).