Dependence of the Results of Nucleosynthesis on the Equation of State for Neutron-Star Matter

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of calculations of nucleosynthesis of heavy elements during the explosion of a low-mass neutron star are presented. The low-mass neutron star is formed as a result of the exchange of matter in the last stages of the evolution of a close binary system of neutron stars with a large initial mass asymmetry. Two variants of the scenario, which use different approximations of the equation of state of neutron star matter: BSk22 and BSk25, are considered. Their usage lead to different expansion dynamics of the shells of a low-mass neutron star. It is shown that the character of shock wave propagation and the abundance of heavy elements formed in the inner layers of the outer crust with 0.29 < Ye < 0.45, for these two scenarios are different, although the composition of the outer crust before the explosion differs insignificantly. These differences in the scenarios result in a noticeable difference in the calculated abundances of heavy elements both in these layers and in the entire examined part of the outer crust.

Sobre autores

A. Ignatovskiy

National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Email: Lirts@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

I. Panov

National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Email: Igor.Panov@itep.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

A. Yudin

National Research Center Kurchatov Institute

Autor responsável pela correspondência
Email: Yudin@itep.ru
Moscow, Russia

Bibliografia

  1. N. R. Tanvir, A. J. Levan, C. González-Fernández, O. Korobkin, I. Mandel, S. Rosswog, J. Hjorth, P. D’Avanzo, A. S. Fruchter, C. L. Fryer, T. Kangas, B. Milvang-Jensen, S. Rosetti, D. Steeghs, R. T. Wollaeger, Z. Cano, et al., Astrophys. J. 848, L27 (2017).
  2. N. Domoto, M. Tanaka, D. Kato, K. Kawaguchi, K. Hotokezaka, and S. Wanajo, Astrophys. J. 939, 8 (2022).
  3. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, Mon. Not. Roy. Astron. Soc. 426, 1940 (2012).
  4. S. Rosswog, O. Korobkin, A. Arcones, F.-K. Thie- lemann, and T. Piran, Mon. Not. Roy. Astron. Soc. 439, 744 (2014).
  5. D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Rosswog, Astrophys. J. 813, 2 (2015).
  6. J. P. A. Clark and D. M. Eardley, Astrophys. J. 215, 311 (1977).
  7. P. Haensel, A. Yu. Potekhin, and D. G. Yakovlev, Neutron Stars, Equation of State and Structure (Springer, New York, 2007), Vol.1.
  8. С. И. Блинников, И. Д. Новиков, Т. В. Переводчикова, А. Г. Полнарев, Письма в Астрон. журн. 10, 422 (1984) [S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov. Astron. Lett. 10, 177 (1984)].
  9. S. I. Blinnikov, V. S. Imshennik, D. K. Nadyozhin, I. D. Novikov, T. V. Perevodchikova, and A. G. Pol- narev, Sov. Astron. 34, 595 (1990).
  10. B. P. Abbot et al., Astrophys. J. Lett. 848, L12, L13 (2017).
  11. S. Blinnikov, D. Nadyozhin, N. Kramarev, and A. Yudin, Astron. Rept. 65, 385 (2021).
  12. S. Blinnikov, A. Yudin, N. Kramarev, and M. Potashov, Particles 5, 198 (2022).
  13. S. Rosswog, M. Liebendörfer, F.-K. Thielemann, M. B. Davies, W. Benz, and T. Piran, Astron. Astrophys. 341, 499 (1999).
  14. N. Farrow, X-J. Zhu, and E. Thrane, Astrophys. J. 876, 18 (2019).
  15. I. V. Panov and A. V. Yudin, Astron. Lett. 46, 518 (2020).
  16. V. N. Kondratyev, Universe 7, 487 (2021).
  17. Chun-Ming Yip, Ming-Chung Chu, Shing-Chi Leung, and Lap-Ming Lin, arXiv: 2211.14023v1.
  18. K. Sumiyoshi, S. Yamada, H. Suzuki, and W. Hil- lebrandt, Astron. Astrophys. 334, 159 (1998).
  19. J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely, Mon. Not. Roy. Astron. Soc. 481, 2994 (2018).
  20. H. Sotani, K. Iida, K. Oyamatsu, and A. Ohnishi, Prog. Theor. Exp. Phys. 2014, 051E01 (2014).
  21. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).
  22. G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. 36, 1287 (2012).
  23. M. Colpi, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J. 339, 318 (1989).
  24. А. Юдин, Письма в Астрон. журн. 48, 393 (2022).
  25. N. A. Zemlyakov and A. I. Chugunov, Particles 5, 225 (2022).
  26. P. Haensel and A. V. Potekhin, Astron. Astrophys. 428, 191 (2004).
  27. N. N. Shchechilin, N. A. Zemlyakov, A. I. Chugunov, and M. E. Gusakov, Universe 8, 582 (2022).
  28. S. B. Ruster, M. Hempel, and J. Schaffner-Bielich, Phys. Rev. C 73, 3 (2006).
  29. И. Ю. Корнеев, И. В. Панов, Письма в Астрон. журн. 37, 930 (2011) [I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011)].
  30. D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).
  31. И. В. Панов, ЯФ 81, 57 (2018) [I. V. Panov, Phys. At. Nucl. 81, 68 (2018)].
  32. K. Langanke and G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000).
  33. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, 1971).
  34. S. I. Blinnikov and O. S. Bartunov, Astron. Astrophys. 273, 106 (1993).
  35. S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. Roy. Astron. Soc. 266, 289 (1994).
  36. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).
  37. P. Moeller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
  38. P. Moeller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).
  39. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).
  40. I. V. Panov, E. Kolbe, B. Pfeiffer, T. Rauscher, K.-L. Kratz, and F.-K. Thielemann, Nucl. Phys. A 747, 633 (2005).
  41. I. V. Panov, I. Yu. Korneev, T. Rauscher, G. Martinez-Pinedo, A. Kelic-Heil, N. T. Zinner, and F.-K. Thie- lemann, Astron. Astrophys. 513, A61 (2010).
  42. NuDat2, 2009, National Nuclear Data Center, Information Extracted from the NuDat 2 Database, http://www.nndc.bnl.gov/nudat2/
  43. D. Radice, A. Perego, K. Hotokezaka, S. A. Fromm, S. Bernuzzi, and L. F. Roberts, Astrophys. J. 869, 130 (2018).
  44. I. V. Panov and H.-Th. Janka, Astron. Astrophys. 494, 829 (2009).
  45. Г. С. Бисноватый-Коган, В. М. Чечёткин, УФН 127, 2 (1979).

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies