Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions 11B(p, 3a) and 11B(p, n)C11 at the Intensities of Picosecond Laser Radiation in the Range 1018-1019 W/cm2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Results of numerical simulations for acceleration of proton beams at the irradiation of Al target by a superintense laser pulse are presented. There is a good agreement with the experimental data in a broad range of laser intensities from I = 1018 W/cm2 to I = 1019 W/cm2 at the fixed laser pulse duration. The obtained parameters of proton beams were used for calculation of the total yield of a particles and neutrons for the nuclear reactions 11B(p, 3a) and 11B(p, n)C11
C at the collisions of proton beams with boron targets. It is shown that the number of a particles escaping boron target and arriving at track detectors is less than 5
 of the total amount of a particles, because the majority of these particles remain inside the target owing to ionization losses. The derived values of the yield of 
 particles’ which arrive at detectors are in good agreement with the experimental data. We also calculate the total yield of neutrons in the reaction 11B(p, n)C11
C. It is found that, at the intensity I = 1019  W/cm2 of the picosecond laser pulse, the yield is equal to Nn = 1.4 × 108 , this value is approximately of 3%  of the total yield of a  particles.

Sobre autores

S. Andreev

Moscow Institute of Physics and Technology (National Research University); Moscow State Pedagogical University

Email: vpkrainov@mail.ru
Dolgoprudny, Moscow oblast, Russia; Moscow, Russia

A. Matafonov

Central Research Institute for Machine Building

Email: vpkrainov@mail.ru
Korolev, Moscow oblast, Russia

V. Tarakanov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: vpkrainov@mail.ru
Moscow, Russia

V. Belyaev

Central Research Institute for Machine Building

Email: vpkrainov@mail.ru
Korolev, Moscow oblast, Russia

A. Kedrov

Central Research Institute for Machine Building

Email: vpkrainov@mail.ru
Korolev, Moscow oblast, Russia

V. Krainov

Moscow Institute of Physics and Technology (National Research University)

Email: vpkrainov@mail.ru
Dolgoprudny, Moscow oblast, Russia

S. Mukhanov

Moscow Polytechnic University

Email: vpkrainov@mail.ru
Moscow, Russia

A. Lobanov

National Research Nuclear University MEPhI)

Autor responsável pela correspondência
Email: vpkrainov@mail.ru
Moscow, Russia

Bibliografia

  1. Изотопы: свойства, получение, применение, под ред. В. Ю. Баранова (Наука, Москва, 1999), т. 2.
  2. А. Б. Кукушкин, В. И. Коган, Физика плазмы 5, 1264 (1979) [Sov. J. Plasma Phys. 5, 708 (1979)].
  3. V. S. Belyaev, A. P. Matafonov, V. I. Vinogradov, V. P. Krainov, V. S. Lisitsa, A. S. Roussetski, G. N. Ignatyev, and V. P. Andrianov, Phys. Rev. E 72, 026406 (2005).
  4. C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, Nat. Commun. 4, 2506 (2013).
  5. A. Picciotto, D. Margarone, A. Velyhan, P. Bellutti, J. Krasa, A. Szydlowsky, G. Bertuccio, Y. Shi, A. Mangione, J. Prokupek, A. Malinowska, E. Krousky, J. Ullschmied, L. Laska, M. Kucharik, and G. Korn, Phys. Rev. X 4, 031030 (2014).
  6. L. Giuffrida, F. Belloni, D. Margarone, G. Petringa, G. Milluzzo, V. Scuderi, A. Velyhan, M. Rosinski, A. Picciotto, M. Kucharik, J. Dostal, R. Dudzak, J. Krasa, V. Istokskaia, R. Catalano, S. Tudisco, et al., Phys. Rev. E 101, 013204 (2020).
  7. D. Margarone, A. Morace, J. Bonvalet, Y. Abe, V. Kantarelou, D. Raffestin, L. Giuffrida, P. Nicolai, M. Tosca, A. Picciotto, G. Petringa, G. A. P. Cirrone, Y. Fukuda, Y. Kuramitsu, H. Habara, Y. Arikawa, et al., Front. Phys. 8, 343 (2020).
  8. C. Baccou, S. Depierreux, V. Yahia, C. Neuville, C. Goyon, R. De Angelis, F. Consoli, J. E. Ducret, G. Boutoux, J. Rafelski, and C. Labaune, Laser Part. Beams 33, 117 (2015).
  9. В. С. Беляев, А. П. Матафонов, В. П. Крайнов, А. Ю. Кедров, Б. В. Загреев, А. С. Русецкий, Н. Г. Борисенко, А. И. Громов, А. В. Лобанов, В. С. Лисица, ЯФ 83, 370 (2020) [Phys. At. Nucl. 83, 641 (2020)].
  10. В. С. Беляев, А. П. Матафонов, С. Н. Андреев, В. П. Тараканов, В. П. Крайнов, В. С. Лисица, А. Ю. Кедров, Б. В. Загреев, А. С. Русецкий, Н. Г. Борисенко, А. И. Громов, А. В. Лобанов, ЯФ 85, 34 (2022) [Phys. At. Nucl. 85, 31 (2022)].
  11. С. Н. Андреев, В. С. Беляев, А. П. Матафонов, В. П. Тараканов, Б. В. Загреев, В. П. Крайнов, С. А. Муханов, А. В. Лобанов, ЖЭТФ 162, 34 (2022).
  12. V. P. Tarakanov, EPJ Web Conf. 149, 04024 (2017).
  13. Y. Murakami, Y. Kitagawa, Y. Sentoku, et al., Phys. Plasmas 8, 4138 (2001).
  14. T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink, J. Cobble, J. Fernández, J.-C. Gauthier, M. Geissel, M. Hegelich, J. Kaae, et al., Phys. Rev. Lett. 92, 204801 (2004).
  15. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies