Calculation of Neutron and Gamma Yields of (@, @) and (@,@) Reactions by Means of a New Version of the NeuCBOT Program for low background Experiments

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

(\(\alpha,n\)) и (\(\alpha,n\gamma\)) reactions induced by the alpha decays of uranium, thorium, and their daughter nuclides generate the intrinsic neutron and gamma backgrounds in modern ultralow background neutrino and dark matter detectors. In order to minimize the background, it is essential to select materials on the basis of a detailed analysis of relative concentrations of radionuclides and calculations of neutron and gamma-radiation yields. The NeuCBOT (Neutron Calculator Based On TALYS) program makes it possible to perform such calculations. The present article gives a review of a new version of the NeuCBOT program and a comparison of the results of calculations with different software tools.

Sobre autores

M. Gromov

Skobeltsyn Institute of Nuclear Physics, Moscow State University;Joint Institute for Nuclear Research

Email: gromov@physics.msu.ru
Moscow, Russia; Dubna, Russia

Sh. Westerdale

Department of Physics and Astronomy, University of California

Email: shawn.westerdale@ucr.edu
Riverside, California, USA

I. Goncharenko

Faculty of Physics, Moscow State University

Email: iv.gonch.0907@gmail.com
Moscow, Russia

A. Chepurnov

Skobeltsyn Institute of Nuclear Physics, Moscow State University;Joint Institute for Nuclear Research; Radiation Physics Laboratory, Belgorod National Research University

Autor responsável pela correspondência
Email: aschepurnov@yandex.ru
Moscow, Russia; Belgorod, Russia

Bibliografia

  1. D. Hollowell and I. J. Iben, Astrophys. J. Lett. 333, L25 (1988).
  2. R. Gallino, M. Busso, G. Picchio, C. M. Raiteri, and A. Renzini, Astrophys. J. Lett. 334, L45 (1988).
  3. F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, Rev. Mod. Phys. 83, 157 (2011), arXiv:1012.5218 [astro-ph.SR].
  4. G. F. Ciani et al., Phys. Rev. Lett. 127, 152701 (2021), arXiv:2110.00303 [nucl-ex].
  5. M. Febbraro et al., Phys. Rev. Lett. 125, 062501 (2020).
  6. K. Brandenburg, G. Hamad, Z. Meisel, C. R. Brune, D. E. Carter, J. Derkin, D. C. Ingram, Y. Jones-Alberty, B. Kenady, T. N. Massey, M. Saxena, D. Soltesz, S. K. Subedi, and J. Warren, arXiv: 2208.12405 [nucl-ex].
  7. E. Mendoza, D. Cano-Ott, V. Pesudo, and R. Santorelli, SaG4n, Simulation of (, ) Reactions with Geant4, http://win.ciemat.es/SaG4n/
  8. S. Westerdale and P. D. Meyers, Nucl. Instrum. Methods Phys. Res. A 875, 57 (2017), arXiv:1702.02465 [physics.ins-det].
  9. E. Mendoza, D. Cano-Ott, P. Romojaro, V. Alcayne, P. Garcia Abia, V. Pesudo, L. Romero, and R. Santorelli, Nucl. Instrum. Methods Phys. Res. A 960, 163659 (2020), arXiv:1906.03903 [hep-ph].
  10. S. Westerdale, NeuCBOT (Neutron Calculator Based On TALYS), https://github.com/shawest/neucbot
  11. () Yield in Low Background Experiments, workshop, Madrid, 2019, https://agenda.ciemat.es/event/1127/
  12. S. S. Westerdale, A. Junghans, R. J. deBoer, M. Pigni, and P. Dimitriou, INDC(NDS)-0836, https://www-nds.iaea.org/publications/indc/indc-nds-0836.pdf
  13. IAEA Technical Meeting on () Nuclear Data Evaluation and Data Needs, online meeting, Vienna, 2021, https://conferences.iaea.org/event/283/
  14. T. Mróz, P. Czudak, M. Wójcik, and G. Zuzel, Studies of Bulk Contamination in High Purity Copper for Low Background Detectors (2021), TAUP conference, Valencia, Spain, https://indico.ific.uv.es/event/6178/ contributions/15941/attachments/9251/12395/ TAUP_conference_2021_Tomasz_Mroz.pdf
  15. W. B. Wilson et al., Tech. Rep. LA-13639-MS (Los Alamos National Laboratory, 1999).
  16. W. B. Wilson, R. T. Perry, W. S. Charlton, T. A. Parish, and E. F. Shores, Radiat. Prot. Dosim. 115, 117 (2005).
  17. G. N. Vlaskin, Tech. Rep. VNIINM 06-1, VNIINM (2006).
  18. G. N. Vlaskin, Y. S. Khomyakov, and V. I. Bulanenko, At. Energy 117, 357 (2015).
  19. G. Vlaskin and Y. Khomiakov, EPJ Web Conf. 153, 07033 (2017).
  20. G. Vlaskin and Y. Khomiakov, At. Energy 130, 104 (2021).
  21. D. M. Mei, C. Zhang, and A. Hime, Nucl. Instrum. Methods Phys. Res. A 606, 651 (2009), arXiv:0812.4307 [nucl-ex].
  22. S. Agostinelli et al. (GEANT4), Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
  23. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).
  24. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016).
  25. A. J. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).
  26. A. Koning, S. Hilaire, and S. Goriely, Talys, Nuclear Reaction Program, https://tendl.web.psi.ch/tendl_2021/talys.html
  27. A. J. Koning, D. Rochman, J. C. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).
  28. A. Koning, D. Rochman, J. Kopecky, et al., TENDL-2015, TALYS-Based Evaluated Nuclear Data Library, https://tendl.web.psi.ch/tendl_2015/tendl2015.html
  29. A. Koning, D. Rochman, and J. Sublet, TENDL-2019, TALYS-Based Evaluated Nuclear Data Library, URL https://tendl.web.psi.ch/tendl_2019/tendl2019.html
  30. T. Murata et al., Tech. Rep. JAEA-Research 2006-052, Japan Atomic Energy Agency (2006), https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html
  31. O. Iwamoto et al., JENDL-5 Alpha-Particle Sublibrary, https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-5-a.html
  32. J. Tuli, Nucl. Instrum. Methods Phys. Res. A 369, 506 (1996).
  33. A. C. Fernandes, A. Kling, and G. N. Vlaskin, EPJ Web Conf. 153, 07021 (2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (51KB)
3.

Baixar (60KB)

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies