Electroweak Corrections to Dilepton Production in Photon Fusion at the LHC

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One-loop electroweak radiative corrections to dilepton production in the channel of photon fusion in hadron–hadron collisions are estimated for the LHC (Large Hadron Collider) experimental program aimed at studying the Drell–Yan process. A detailed numerical analysis of effects associated with electroweak radiative corrections to observables (cross sections and the forward–backward asymmetry) is performed over a wide kinematical region, including that of the CMS experiment at the LHC in the Run3/HL mode, which corresponds to ultrahigh energies and dilepton invariant masses.

Sobre autores

V. Zykunov

Joint Institute for Nuclear Research; Francisk Skorina Gomel State University; Belarusian Trade and Economics University of Consumer Cooperatives

Autor responsável pela correspondência
Email: zykunov@cern.ch
Dubna, Russia; Gomel, Belarus; Gomel, Belarus

Bibliografia

  1. UA1 Collab. (G. Arnison et al.), Phys. Lett. B 122, 103 (1983); UA2 Collab. (M. Banner et al.), Phys. Lett. B 122, 476 (1983).
  2. UA1 Collab. (G. Arnison et al.), Phys. Lett. B 126, 398 (1983); UA2 Collab. (P. Bagnaia et al.), Phys. Lett. B 129, 130 (1983).
  3. J. Wess and B. Zumino, Phys. Lett. B 49, 52 (1974).
  4. E. Witten, Nucl. Phys. B 463, 383 (1996) [hep-th/9512219].
  5. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005) [hep-ph/0404175].
  6. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).
  7. P. Agrawal, M. Bauer, J. Beacham, A. Berlin, A. Boyarsky, S. Cebrian, X. Cid-Vidal, D. d’Enterria, A. De Roeck, M. Drewes, B. Echenard, M. Giannotti, G. F. Giudice, S. Gninenko, S. Gori, E. Goudzovski, et al., Eur. Phys. J. C 81, 1015 (2021) [arXiv: 2102.12143 [hep-ph]].
  8. S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316, 902 (Erratum) (1970).
  9. S. D. Drell and T.-M. Yan, Ann. Phys. (N.Y.) 66, 578 (1971).
  10. В. А. Матвеев, Р. М. Мурадян, А. Н. Тавхелидзе, Препринт №Р2-4543, ОИЯИ (Дубна, 1969).
  11. J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, B. G. Pope, and E. Zavattini, Phys. Rev. D 8, 2016 (1973).
  12. В. А. Зыкунов, ЯФ 84, 348 (2021) [Phys. At. Nucl. 84, 492 (2021)].
  13. В. А. Зыкунов, ЯФ 85, 366 (2022) [Phys. At. Nucl. 85, 500 (2022)].
  14. J. C. Collins, D. E. Soper, and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988) [hep-ph/0409313].
  15. N. M. Shumeiko, A. V. Soroko, and P. M. Starovoitov, J. Phys. G 27, 1735 (2001).
  16. M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986).
  17. Particle Data Group (P. A. Zyla et al.), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  18. John C. Collins and Davison E. Soper, Phys. Rev. D 16, 2219 (1977).
  19. G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
  20. V. A. Zykunov, Phys. Rev. D 75, 073019 (2007) [hep-ph/0509315].
  21. I. Harris and I. M. Brown, Phys. Rev. 105, 1656 (1957).
  22. Y.-S. Tsai, Phys. Rev. 137, B730 (1965).
  23. Frits A. Berends and R. Gastmans, Nucl. Phys. B 61, 414 (1973).
  24. F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
  25. M. Böhm and T. Sack, Z. Phys. C 33, 157 (1986).
  26. CMS Collab. (G. L. Bayatian et al.), J. Phys. G 34, 995 (2007).
  27. A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C 39, 155 (2005) [hep-ph/0411040].
  28. CMS Collab. (S. Chatrchyan et al.), JHEP 1312, 030 (2013); CMS-SMP-13-003, CERN-PH-EP-2013-168; arXiv: 1310.7291.

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies