Effect of transient thyrotoxicosis and hypothyroidism on the rheoreaction of zebrafish Danio rerio (Danionidae)
- Authors: Pavlov D.S.1, Parshina V.Y.1, Kostin V.V.1, Slivko V.M.1, Shkil F.N.1
-
Affiliations:
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 65, No 4 (2025)
- Pages: 480-492
- Section: Articles
- URL: https://journals.rcsi.science/0042-8752/article/view/353920
- DOI: https://doi.org/10.7868/S3034514625040085
- ID: 353920
Cite item
Abstract
About the authors
D. S. Pavlov
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
V. Yu. Parshina
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
V. V. Kostin
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
Email: povedenie@yandex.ru
V. M. Slivko
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
F. N. Shkil
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
References
- Болотовский А.А. 2018. Роль трийодтиронина в индивидуальном развитии и формировании фенотипа плотвы Rutilus rutilus (L) и леща Abramis brama (L): Автореф. дис. ... канд. биол. наук. Борок: ИБВВ РАН, 24 с.
- Болотовский А.А., Лёвин Б.А. 2011. Влияние темпа развития на формулу глоточных зубов леща Abramis brama (L.): экспериментальные данные // Онтогенез. Т. 42. № 3. С. 172–177.
- Герасимов Ю.В., Смирнова Е.С., Лёвин Б.А. 2012. Роль тиреоидных гормонов в формировании поведенческих реакций у молоди плотвы Rutilus rutilus (L.) (Cyprinidae) // Биология внутр. вод. № 1. С. 84–93.
- Есин Е.В., Шульгина Е.В., Павлова Н.С., Зленко Д.В. 2023. Роль тиреоидных гормонов в адаптации гольцов рода Salvelinus (Salmonidae) к вулканическому загрязнению местообитаний // Вопр. ихтиологии. T. 63. № 6. С. 731–739. https://doi.org/10.31857/S0042875223060036
- Лакин Г.Ф. 1973. Биометрия. М.: Высш. шк., 343 с.
- Моисеева Е.Б. 1989. Дифференцировка тиреотропных клеток и гипофизарно-тиреоидные отношения у молоди кефали Liza saliens // Биология моря. № 1. С. 32–39.
- Павлов Д.С. 1979. Биологические основы управления поведением рыб в потоке воды. М.: Наука, 319 с.
- Павлов Д.С., Лупандин А.И., Костин В.В. 2007. Механизмы покатной миграции молоди речных рыб. М.: Наука, 213 с.
- Павлов Д.С., Костин В.В., Пономарева В.Ю. 2010. Поведенческая дифференциация сеголеток черноморской кумжи Salmo trutta labrax: реореакция в год, предшествующий смолтификации // Вопр. ихтиологии. Т. 50. № 2. С. 251–261.
- Павлов Д.С., Павлов Е.Д., Ганжа Е.В., Костин В.В. 2020а. Изменение реореакции и содержания тиреоидных гормонов в крови молоди радужной форели Oncorhynchus mykiss при голодании // Вопр. ихтиологии. Т. 60. № 2. С. 229–234. https://doi.org/10.31857/S0042875220020186
- Павлов Д.С., Паршина В.Ю., Костин В.В., Прозоров Д.А. 2020б. Сравнение экспериментальных методов оценки мотивационной компоненты реореакции рыб (соотношения типов реореакции) // Вопр. ихтиологии. Т. 60. № 4. С. 478–487. https://doi.org/10.31857/S0042875220040189
- Павлов Д.С., Паршина В.Ю., Костин В.В. 2022. Реореакция Danio rerio (Cyprinidae): влияние скорости потока и доступности зоны без течения // Вопр. ихтиологии. Т. 62. № 5. С. 634–644. https://doi.org/10.31857/S0042875222050150
- Павлов Е.Д., Павлов Д.С., Ганжа Е.В. и др. 2018. Влияние тиомочевины на поведение анабаса Anabas testudineus в потоке воды // Вопр. ихтиологии. Т. 58. № 5. С. 584–588. https://doi.org/10.1134/S0042875218050181
- Павлов Е.Д., Звездин А.О., Павлов Д.С. 2019. Воздействие тиомочевины на миграционную активность анабаса Anabas testudineus и потребление им корма // Вопр. ихтиологии. Т. 59. № 5. С. 606–611. https://doi.org/10.1134/S0042875219050163
- Павлов Е.Д., Павлов Д.С., Ганжа Е.В. и др. 2020. Воздействие мочевины и тиомочевины на миграционную активность анабаса Anabas testudineus // Вопр. ихтиологии. Т. 60. № 6. С. 682–688. https://doi.org/10.31857/S0042875220060053
- Павлов Е.Д., Ганжа Е.В., Павлов Д.С. 2022. Уровень тиреоидных и половых стероидных гормонов у горбуши Oncorhynchus gorbuscha в морской и пресноводный периоды нерестовой миграции // Вопр. ихтиологии. Т. 62. № 3. С. 356–363. https://doi.org/10.31857/S004287522203016X
- Панкова Н.А., Болотовский А.А., Лёвин Б.А., Непомнящих В.А. 2019. Влияние трийодтиронина на стратегии исследовательского поведения трехиглой колюшки Gasterosteus aculeatus L. (Gasterosteidae: Osteichthyes) // Биология внутр. вод. № 4. Вып. 2. С. 102–104. https://doi.org/10.1134/S0320965219060111
- Пономарева В.Ю., Павлов Д.С., Костин В.В. 2017. Разработка и апробирование методики исследования соотношения типов реореакции рыб в кольцевом гидродинамическом лотке // Биология внутр. вод. № 1. С. 100–108. https://doi.org/10.7868/S0320965217010156
- Bagci E., Heijlen M., Vergauwen L. et al. 2015. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction // PLOS ONE. V. 10. № 4. Article e0123285. https://doi.org/10.1371/journal.pone.0123285
- Baggerman B. 1962. Some endocrine aspects of fish migration // Gen. Comp. Endocrinol. V. 1. Suppl. 1. P. 188‒205. https://doi.org/10.1016/0016-6480(62)90091-6
- Bianco A.C. 2013. Cracking the code for thyroid hormone signaling // Trans. Am. Clin. Climatol. Assoc. V. 124. P. 26–35.
- Biddiscombe S., Idler D.R. 1983. Plasma levels of thyroid hormones in sockeye salmon (Oncorhynchus nerka) decrease before spawning // Gen. Comp. Endocrinol. V. 52. № 3. P. 467–470. https://doi.org/10.1016/0016-6480(83)90187-9
- Björnsson B.T., Stefansson S.O., McCormick S.D. 2011. Environmental endocrinology of salmon smoltification // Gen. Comp. Endocrinol. V. 170. № 2. P. 290–298. https://doi.org/10.1016/j.ygcen.2010.07.003
- Blanton M.L., Specker J.L. 2007. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction // Crit. Rev. Toxicol. V. 37. № 1–2. P. 97–115. https://doi.org/10.1080/10408440601123529
- Borisov V., Shkil F. 2024. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development // Anat. Rec. P. 1–25. https://doi.org/10.1002/ar.25592
- Brent G.A. 2012. Mechanisms of thyroid hormone action // J. Clin. Invest. V. 122. № 9. P. 3035–3043. https://doi.org/10.1172/JCI60047
- Brown D.D. 1997. The role of thyroid hormone in zebrafish and axolotl development // Proc. Natl. Acad. Sci. USA. V. 94. № 24. P. 13011–13016. https://doi.org/10.1073/pnas.94.24.13011
- Castonguay M., Dutil J.-D., Audet C., Miller R. 1990. Locomotor activity and concentration of thyroid hormones in migratory and sedentary juvenile American eels // Trans. Am. Fish. Soc. V. 119. № 6. P. 946–956. https://doi.org/10.1577/1548-8659(1990)119<0946:laacot>2.3.co;2
- Cheng S.-Y., Leonard J.L., Davis P.J. 2010. Molecular aspects of thyroid hormone actions // Endocr. Rev. V. 31. № 2. P. 139–170. https://doi.org/10.1210/er.2009-0007
- Clark T.D., Sandblom E., Jutfelt F. 2013. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations // J. Exp. Biol. V. 216. № 15. P. 2771–2782. https://doi.org/10.1242/jeb.084251
- Crane H.M., Pickford D.B., Hutchinson T.H., Brown J.A. 2005. Effects of ammonium perchlorate on thyroid function in developing fathead minnows, Pimephales promelas // Environ. Health Perspect. V. 113. № 4. P. 396–401. https://doi.org/10.1289/ehp.7333
- Cyr D.G., Eales J.G. 1988. Influence of thyroidal status on ovarian function in rainbow trout, Salmo gairdneri // J. Exp. Zool. V. 248. № 1. P. 81–87. https://doi.org/10.1002/jez.1402480110
- De Leo S., Lee S.Y., Braverman L.E. 2016. Hyperthyroidism // Lancet. V. 388. № 10047. P. 906–918. https://doi.org/10.1016/s0140-6736(16)00278-6
- Deal C.K., Volkoff H. 2020. The role of the thyroid axis in fish // Front. Endocrinol. V. 11. Article 596585. https://doi.org/10.3389/fendo.2020.596585
- Eliason E.J., Farrell A.P. 2015. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet // J. Fish Biol. V. 88. № 1. P. 359–388. https://doi.org/10.1111/jfb.12790
- Elsalini O.A., Rohr K.B. 2003. Phenylthiourea disrupts thyroid function in developing zebrafish // Dev. Genes Evol. V. 212. № 12. P. 593–598. https://doi.org/10.1007/s00427-002-0279-3
- Esin E.V., Markevich G.N., Shulgina E.V. et al. 2024. Differences in energy storage in sympatric salmonid morphs with contrasting lifestyles // Evol. Biol. V. 51. № 3. P. 384–394. https://doi.org/10.1007/s11692-024-09641-8
- Fetter E., Baldauf L., Da Fonte D.F. et al. 2015. Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos // Reprod. Toxicol. V. 57. P. 10–20. https://doi.org/10.1016/j.reprotox.2015.04.012
- Gereben B., Zavacki A.M., Ribich S. et al. 2008. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling // Endocr. Rev. V. 29. № 7. P. 898–938. https://doi.org/10.1210/er.2008-0019
- Guo C., Ito S., Yoneda M. et al. 2021. Fish specialize their metabolic performance to maximize bioenergetic efficiency in their local environment: conspecific comparison between two stocks of Pacific chub mackerel (Scomber japonicus) // Front. Mar. Sci. V. 8. Article 613965. https://doi.org/10.3389/fmars.2021.613965
- Hejlesen R., Scheffler F.B., Byrge C.G. et al. 2024. Assessing metabolic rates in zebrafish using a 3D-printed intermittent-flow respirometer and swim tunnel system // Biol. Open. V. 13. № 6. Article bio060375. https://doi.org/https://doi.org/10.1242/bio.060375
- Holzer G., Laudet V. 2013. Thyroid hormones and postembryonic development in amniotes // Curr. Top. Dev. Biol. V. 103. P. 397–425. https://doi.org/10.1016/B978-0-12-385979-2.00014-9
- Holzer G., Laudet V. 2015. Thyroid hormones: a triple-edged sword for life history transitions // Curr. Biol. V. 25. № 8. P. R344–R347. https://doi.org/10.1016/j.cub.2015.02.026
- Holzer G., Besson M., Lambert A. et al. 2017. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos // eLife. V. 6. Article e27595. https://doi.org/10.7554/eLife.27595
- Hutchison M.J., Iwata M. 1998. Effect of thyroxine on the decrease of aggressive behavior of four salmonids during the parr–smolt transformation // Aquaculture. V. 168. № 1–4. P. 169–175. https://doi.org/10.1016/S0044-8486(98)00347-0
- Hvas M. 2022. Swimming energetics of Atlantic salmon in relation to extended fasting at different temperatures // Conserv. Physiol. V. 10. № 1. Article coac037. https://doi.org/10.1093/conphys/coac037
- Johnston M.E., Kelly J.T., Lindvall M.E. et al. 2017. Experimental evaluation of the use of vision and barbels as references for rheotaxis in green sturgeon // J. Exp. Mar. Biol. Ecol. V. 496. P. 9–15. https://doi.org/10.1016/j.jembe.2017.04.002
- Lema S.C. 2020. Hormones, developmental plasticity, and adaptive evolution: endocrine flexibility as a catalyst for ‘plasticity-first’ phenotypic divergence // Mol. Cell. Endocrinol. V. 502. Article 110678. https://doi.org/10.1016/j.mce.2019.110678
- Leonard J.B.K., Iwata M., Ueda H. 2001. Seasonal changes of hormones and muscle enzymes in adult lacustrine masu (Oncorhynchus masou) and sockeye salmon (O. nerka) // Fish Physiol. Biochem. V. 25. № 2. P. 153–163. https://doi.org/10.1023/a:1020512105096
- Little A.G., Kunisue T., Kannan K., Seebacher F. 2013. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio) // BMC Biol. V. 11. Article 26. https://doi.org/10.1186/1741-7007-11-26
- Lucas J., Schouman A., Lyphout L. et al. 2014. Allometric relationship between body mass and aerobic metabolism in zebrafish Danio rerio // J. Fish Biol. V. 84. № 4. P. 1171–1178. https://doi.org/10.1111/jfb.12306
- McCormick S.D. 2001. Endocrine control of osmoregulation in teleost fish // Am. Zool. V. 41. № 4. P. 781–794. https://doi.org/10.1093/icb/41.4.781
- McCormick S.D. 2012. Smolt physiology and endocrinology // Fish Physiol. V. 32. P. 199–251. https://doi.org/10.1016/B978-0-12-396951-4.00005-0
- McKenzie D.J. 2011. Energetics of fish swimming // Encyclopedia of fish physiology: from genome to environment. V. 3. London et al.: Acad. Press. P. 1636–1644. https://doi.org/10.1016/B978-0-12-374553-8.00151-9
- McMenamin S.K., Parichy D.M. 2013. Metamorphosis in teleosts // Curr. Top. Dev. Biol. V. 103. P. 127–165. https://doi.org/10.1016/B978-0-12-385979-2.00005-8
- Mukhi S., Patiño R. 2007. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish // Toxicol. Sci. V. 96. № 2. P. 246–254. https://doi.org/10.1093/toxsci/kfm001
- Norris D.O., Carr J.A. 2021. The hypothalamus-pituitary-thyroid (HPT) axis of mammals // Vertebrate endocrinology. London et al.: Acad. Press. P. 205–230. https://doi.org/10.1016/B978-0-12-820093-3.00006-X
- Pavlov D.S., Kostin V.V., Zvezdin A.O., Ponomareva V.Yu. 2010. On methods of determination of the rheoreaction type in fish // J. Ichthyol. V. 50. № 11. P. 977–984. https://doi.org/10.1134/s0032945210110020
- Pavlov D.S., Pavlov E.D., Kostin V.V., Ganzha E.V. 2022. Influence of water temperature on thyroid hormones and on the movement behavior of juvenile rainbow trout (Oncorhynchus mykiss) in water flow // Environ. Biol. Fish. V. 105. № 12. P. 1989–2000. https://doi.org/10.1007/s10641-022-01336-3
- Prazdnikov D.V., Shkil F.N. 2023. The role of thyroid hormones in the development of coloration of two species of Neotropical cichlids // J. Exp. Biol. V. 226. № 14. Article jeb245710. https://doi.org/10.1242/jeb.245710
- Roux N., Miura S., Dussenne M. et al. 2023. The multi-level regulation of clownfish metamorphosis by thyroid hormones // Cell Rep. V. 42. № 7. Article 112661. https://doi.org/10.1016/j.celrep.2023.112661
- Sachs L.M., Campinho M.A. 2019. Editorial: the role of thyroid hormones in vertebrate development // Front. Endocrinol. V. 10. Article 863. https://doi.org/10.3389/fendo.2019.00863
- Salis P., Roux N., Huang D. et al. 2021. Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes // Proc. Natl. Acad. Sci. USA. V. 118. № 23. Article e2101634118. https://doi.org/10.1073/pnas.2101634118
- Schmidt F., Schnurr S., Wolf R., Braunbeck T. 2012. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish // Aquat. Toxicol. V. 109. № 19. P. 47–58. https://doi.org/10.1016/j.aquatox.2011.11.004
- Shkil F.N., Kapitanova D.V., Borisov V.B. et al. 2012. Thyroid hormone in skeletal development of cyprinids: effects and morphological consequences // J. Appl. Ichthyol. V. 28. № 3. P. 398–405. https://doi.org/10.1111/j.1439-0426.2012.01992.x
- Warner A., Mittag J. 2012. Thyroid hormone and the central control of homeostasis // J. Mol. Endocrinol. V. 49. № 1. P. R29–R35. https://doi.org/10.1530/JME-12-0068
- Youngson A.F., Webb J.H. 1993. Thyroid hormone levels in Atlantic salmon (Salmo salar) during the return migration from the ocean to spawn // J. Fish Biol. V. 42. № 2. P. 293–300. https://doi.org/10.1111/j.1095-8649.1993.tb00329.x
- Zydlewski G.B., Haro A, McCormick S.D. 2005. Evidence for cumulative temperature as an initiating and terminating factor in downstream migratory behavior of Atlantic salmon (Salmo salar) smolts // Can. J. Fish. Aquat. Sci. V. 62. № 1. P. 68–78. https://doi.org/10.1139/f04-179
Supplementary files

