Влияние гипоксии и макромолекулярных краудеров на продукцию внеклеточного матрикса мезенхимными стромальными клетками эндометрия человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Последние десятилетия отмечены интенсивным развитием биологии внеклеточного матрикса (ВКМ), контролирующего основные клеточные функции – от пролиферации и дифференцировки до миграции и апоптоза. Биоактивные свойства ВКМ открывают широкие перспективы его использования в биоинженерии и регенеративной медицине. В этом контексте ключевой технологией является получение ВКМ путем децеллюляризации органов, тканей или клеточных культур. Проблема быстрой наработки больших количеств биоактивных ВКМ культивируемых клеток для медицинских целей представляется весьма актуальной; вместе с тем, в отношении эндометриальных мезенхимных стромальных клеток человека (эМСК) вопрос остается открытым. С целью оптимизации условий продукции ВКМ культивируемыми эМСК мы изучили влияние макромолекулярных соединений (краудеров) – фиколла и полиэтиленгликоля – на эффективность депонирования белков ВКМ в зависимости от времени, концентрации и молекулярного веса краудеров в условиях нормоксии и гипоксии. Как показано методом иммунофлуоресценции, фиколл 400 наиболее эффективен для наработки ключевых компонентов матрикса – фибронектина, коллагена IV типа и в меньшей степени коллагена III типа. При сравнении нормоксических (20% О2) и гипоксических (3% О2) условий культивирования выявлено, что клетки продуцируют ВКМ с более развитой структурой при пониженной концентрации кислорода; существенно, что в этих условиях фиколл 400 способствует депонированию ВКМ только при низком содержании сыворотки в ростовой среде. Суммируя, можно заключить, что сочетание гипоксии, фиколла 400 и низкого содержания сыворотки в ростовой среде обеспечивает оптимальный способ продукции ВКМ. Мы впервые продемонстрировали феномен макромолекулярного краудинга в контексте улучшения депонирования и организации структуры ВКМ у эМСК.

Об авторах

И. Е. Перевозников

Институт цитологии РАН

Автор, ответственный за переписку.
Email: ilyaperevoznikov@gmail.com
Россия, 194064, Санкт-Петербург

Р. Е. Ушаков

Институт цитологии РАН

Email: ilyaperevoznikov@gmail.com
Россия, 194064, Санкт-Петербург

Е. Б. Бурова

Институт цитологии РАН

Email: ilyaperevoznikov@gmail.com
Россия, 194064, Санкт-Петербург

Список литературы

  1. Домнина А.П., Фридлянская И.И., Земелько В.И., Пуговкина Н.А., Ковалева 3.В., Зенин В.В., Гринчук Т.М., Никольский Н.Н. 2013. Мезенхимные стволовые клетки эндометрия человека при длительном культивировании не подвергаются спонтанной трансформации. Цитология. Т. 55. № 1. С. 69. (Domnina A.P., Fridliandskaia I.I., Zemelko V.I., Pugovkina N.A., Kovaleva Z.V., Zenin V.V., Grinchuk T.M., Nikolsky N.N. 2013. Mesenchymal stem cells from human endometrium do not undergo spontaneous transformation during long-term cultivation. Cell Tiss. Biol. V. 7. P. 221.)
  2. Земелько В.И., Гринчук Т.М., Домнина А.П., Арцыбашева И.В., Зенин В.В., Кирсанов А.А., Бичевая Н.К., Корсак В.С., Никольский Н.Н. 2011. Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека. Цитология. Т. 53. № 12. С. 919. (Zemelko V.I., Grinchuk T.M., Domnina A.P., Artzibasheva I.V., Zenin V.V., Kirsanov A.A., Bichevaia N.K., Korsak V.S., Nikolsky N.N. 2012. Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Cell Tiss. Biol. V. 6. № 1. P. 1.)
  3. Матвеева Д.К., Андреева Е.Р. 2020. Регуляторная активность децеллюляризированного матрикса мультипотентных мезенхимных стромальных клеток. Цитология. Т. 62. № 10. С. 699. (Matveeva D.K., Andreeva E.R. 2020. Regulatory activity of decellularized matrix of multipotent mesenchymal stromal cells. Tsitologiya. V. 62. № 10. P. 699.)https://doi.org/10.31857/S004137712010003X
  4. Ahmed M., Ffrench-Constant C. 2016. Extracellular matrix regulation of stem cell behavior. Curr. Stem Cell Rep. V. 2. P. 197. https://doi.org/10.1007/s40778-016-0056-2
  5. Ang X.M., Lee M.H.C., Blocki A., Chen C., Ong L.L.S., Asada H.H., Sheppard A., Raghunath M. 2014. Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tiss. Eng. Part A. V. 20. P. 966. https://doi.org/10.1089/ten.TEA.2013.0337
  6. Antich C., Jiménez G., de Vicente J., López-Ruiz E., Chocarro-Wrona C., Griñán-Lisón C., Carrillo E., Montañez E., Marchal J.A. 2021. Development of a biomimetic hydrogel based on predifferentiated mesenchymal stem-cell-derived ECM for cartilage tissue engineering. Adv. Healthc Mater. V. 10 (8): e2001847. https://doi.org/10.1002/adhm.202001847
  7. Assunção M., Dehghan-Baniani D., Yiu C.H.K., Später T., Beyer S., Blocki A. 2020. Cell-derived extracellular matrix for tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. V. 8: 602009. https://doi.org/10.3389/fbioe.2020.602009
  8. Bateman J.F., Cole W.G., Pillow J.J., Ramshaw J.A.M. 1986. Induction of procollagen processing in fibroblast cultures by neutral polymers. J. Biol. Chem. V. 261. P. 4198. https://doi.org/10.1016/s0021-9258(17)35645-4
  9. Buravkova L.B., Andreeva E.R., Gogvadze V., Zhivotovsky B. 2014. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion. V. 19. P. 105. https://doi.org/10.1016/j.mito.2014.07.005
  10. Chen B., Wang B., Zhang W.J., Zhou G., Cao Y., Liu W. 2013. Macromolecular crowding effect on cartilaginous matrix production: a comparison of two-dimensional and three-dimensional models. Tiss. Engineering. V. 19. P. 586. https://doi.org/10.1089/ten.tec.2012.0408
  11. Chen C., Loe F., Blocki A., Peng Y., Raghunath M. 2011. Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv. Drug Delivery Rev. V. 63. P. 277. https://doi.org/10.1016/j.addr.2011.03.003
  12. Choi K.M., Seo Y.K., Yoon H.H., Song K.Y., Kwon S.Y., Lee H.S., Park J.K. 2008. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J. Biosci. Bioeng. V. 105. P. 586. https://doi.org/10.1263/jbb.105.586
  13. Cigognini D., Gaspar D., Kumar P., Satyam A., Alagesan S., Sanz-Nogués C., Griffin M., O’brien T., Pandit A., Zeugolis D.I. 2016. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture – a step closer to physiologically relevant in vitro organogenesis. Sci. Rep. V. 6. P. 30746. https://doi.org/10.1038/srep30746
  14. Clause K.C., Barker T.H. 2013. Extracellular matrix signaling in morphogenesis and repair. Curr. Opin. Biotechnol. V. 24. P. 830. https://doi.org/10.1016/j.copbio.2013.04.011
  15. Cunningham C.J., Redondo-Castro E., Allan S.M. 2018. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J. Cerebral Blood Flow Metab. V. 38. P. 1276. https://doi.org/10.1177/0271678X18776802
  16. Discher D.E., Mooney D.J., Zandstra P.W. 2009. Growth factors, matrices, and forces combine and control stem cells. Science. V. 324. P. 1673. https://doi.org/10.1126/science.1171643
  17. Dominici M., Le Blanc K., Mueller I., Slaper–Cortenbach I., Marini F., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. V. 8. P. 315. https://doi.org/10.1080/14653240600855905
  18. Dong X., Al-Jumaily A., Escobar I.C. 2018. Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone. Membranes. V. 8. P. 23. https://doi.org/10.3390/membranes8020023
  19. Du H.-C., Jiang L., Geng W.-X., Li J., Zhang R., Dang J.-G., Shu M.-G., Li L.-W. 2017. Growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet with improved in vivo wound repair activity. BioMed Res. Int. V. 2017. https://doi.org/10.1155/2017/2578017
  20. Gaspar D., Fuller K.P., Zeugolis D.I. 2019. Polydispersity and negative charge are key modulators of extracellular matrix deposition under macromolecular crowding conditions. Acta Biomaterialia. V. 88. P. 197. https://doi.org/10.1016/j.actbio.2019.02.050
  21. Hoshiba T., Lu H., Kawazoe N., Chen G. 2010. Decellularized matrices for tissue engineering. Expert Opinion Biol. Ther. V. 10. P. 1717. https://doi.org/10.1517/14712598.2010.534079
  22. Hynes R.O. 2009. Extracellular matrix: not just pretty fibrils. Science. V. 326. P. 1216. https://doi.org/10.1126/science.1176009
  23. Konala V.B., Mamidi M.K., Bhonde R., Das A.K., Pochampally R., Pal R. 2016. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. V. 18. P. 13. https://doi.org/10.1016/j.jcyt.2015.10.008
  24. Kumar P., Satyam A., Fan X., Collin E., Rochev Y., Rodriguez B.J., Gorelov A., Dillon S., Joshi L., Raghunath M., Pandit A., Zeugolis D.I. 2015a. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci. Rep. V. 5. P. 8729. https://doi.org/10.1038/srep08729
  25. Kumar P., Satyam A., Fan X., Rochev Y., Rodriguez B., Gorelov A., Joshi L., Raghunath M., Pandit A., Zeugolis D.I. 2015b. Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tiss. Eng. C Methods. V. 21. P. 660. https://doi.org/10.1089/ten.TEC.2014.0387
  26. Kumar P., Satyam A., Cigognini D., Pandit A., Zeugolis D.I. 2018. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J. Tiss. Eng. Regen. Med. V. 12. P. 6. https://doi.org/10.1002/term.2283
  27. Kuznetsova I.M., Turoverov K.K., Uversky V.N. 2014. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. V. 15. P. 23090. https://doi.org/10.3390/ijms151223090
  28. Lareu R.R., Subramhanya K.H., Peng Y., Benny P., Chen C., Wang Z., Rajagopalan R., Raghunath M. 2007. Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Letters. V. 581. P. 2709. https://doi.org/10.1016/j.febslet.2007.05.020
  29. Li M., Zhang A., Li J., Zhou J., Zheng Y., Zhang C., Xia D., Mao H., Zhao J. 2020. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact. Mater. V. 5. P. 938. https://doi.org/10.1016/j.bioactmat.2020.06.017
  30. Lin H., Yang G., Tan J., Tuan R.S. 2012. Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential. Biomaterials. V. 33. P. 4480. https://doi.org/10.1016/j.biomaterials.2012.03.012
  31. Massaro M.S., Palek R., Rosendorf J., Cervenkova L., Liska V., Moulisova V. 2021. Decellularized xenogeneic scaffolds in transplantation and tissue engineering: Immunogenicity versus positive cell stimulation. Mater. Sci. Eng. C. V. 127. https://doi.org/10.1016/j.msec.2021.112203
  32. Maumus M., Jorgensen C., Noël D. 2013. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. V. 95. P. 2229. https://doi.org/10.1016/j.biochi.2013.04.017
  33. Naba A., Clauser K.R., Hoersch S., Liu H., Carr S.A., Hynes R.O. 2012. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. and Cell. Proteomics. V. 11: M111.014647. https://doi.org/10.1074/MCP.M111.014647
  34. Nellinger S., Mrsic I., Keller S., Heine S., Southan A., Bach M., Volz A.C., Chassé T., Kluger P.J. 2022. Cell-derived and enzyme-based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol. Bioeng. V. 119. P. 1142. https://doi.org/10.1002/bit.28047
  35. Nyambat B., Manga Y.B., Chen C.H., Gankhuyag U., Pratomo Wp A., Kumar S.M., Chuang E.Y. 2020. New insight into natural extracellular matrix: genipin cross-linked adipose-derived stem cell extracellular matrix gel for tissue engineering. Int. J. Mol. Sci. V. 21. P. 4864. https://doi.org/10.3390/ijms21144864
  36. Pinnell S.R. 1985. Regulation of collagen biosynthesis by ascorbic acid: a review. Yale J. Boil. Med. V. 58. P. 553.
  37. Prewitz M.C., Stissel A., Friedrichs J., Traber N., Vogler S., Bornhauser M., Werner C. 2015. Extracellular matrix deposition of bone marrow stroma hanced by macromolecular crowding. Biomaterials. V. 73. P. 60. https://doi.org/10.1016/j.biomaterials.2015.09.014
  38. Rao Pattabhi S., Martinez J.S., Keller Iii T.C.S. 2014. Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation. V. 88. P. 131. https://doi.org/10.1016/j.diff.2014.12.005
  39. Rolandsson Enes S., Krasnodembskaya A.D., English K., dos Santos C.C., Weiss D.J. 2021. Research progress on strategies that can enhance the therapeutic benefits of mesenchymal stromal cells in respiratory diseases with a specific focus on acute respiratory distress syndrome and other inflammatory lung diseases. Front. Pharmacol. V. 12: 647652. https://doi.org/10.3389/fphar.2021.647652
  40. Rashid R., Lim N., Chee S., Png S., Wohland T., Raghunath M. 2014. Novel use for polyvinylpyrrolidone as a macromolecular crowder for enhanced extracellular matrix deposition and cell proliferation. Tissue Eng. C Methods. V. 20. P. 994. https://doi.org/10.1089/ten.TEC.2013.0733
  41. Rozario T., DeSimone D.W. 2010. The extracellular matrix in development and morphogenesis: a dynamic view. Devel. Biol. V. 341. P. 126. https://doi.org/10.1016/j.ydbio.2009.10.026
  42. Satyam A., Kumar P., Cigognini D., Pandit A., Zeugolis D.I. 2016. Low, but not too low, oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human dermal fibroblast culture. Acta Biomaterialia. V. 44. P. 221. https://doi.org/10.1016/j.actbio.2016.08.008
  43. Satyam A., Kumar P., Fan X., Gorelov A., Rochev Y., Joshi L., Peinado H., Lyden D., Thomas B., Rodriguez B., Raghunath M., Pandit A., Zeugolis D. 2014. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Advanced Materials. V. 26. P. 3024. https://doi.org/10.1002/adma.201304428
  44. Schaefer L. 2010. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr. Opin. Pharmacol. V. 10. P. 185. https://doi.org/10.1016/j.coph.2009.11.007
  45. Tsiapalis D., Zeugolis D.I. 2021. It is time to crowd your cell culture media – Physicochemical considerations with biological consequences. Biomaterials. V. 275: 120943. https://doi.org/10.1016/j.biomaterials.2021.120943
  46. Xing H., Lee H., Luo L., Kyriakides T.R. 2020. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol. Adv. V. 42: 107421. https://doi.org/10.1016/j.biotechadv.2019.107421
  47. Xu S., Liu C., Ji H.L. 2019. Concise review: therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses. Stem Cells Transl. Med. V. 8. P. 344. https://doi.org/10.1002/sctm.18-0038
  48. Yang L., Ge L., van Rijn P. 2020. Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells. ACS Appl. Mater. Interfaces. V. 12. P. 25591. https://doi.org/10.1021/acsami.0c05012
  49. Zeiger A.S., Loe F.C., Li R., Raghunath M., Van Vliet K.J. 2012. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. PLoS One. V. 7 P. e37904. https://doi.org/10.1371/journal.pone.0037904
  50. Zhu J., Zheng J., Liu C., Zhang S. 2016. Ionic complexing induced fabrication of highly permeable and selective polyacrylic acid complexed poly (arylene ether sulfone) nanofiltration membranes for water purification. J. Membr. Sci. V. 520. P. 130. https://doi.org/10.1016/j.memsci.2016.07.059

Дополнительные файлы


© И.Е. Перевозников, Р.Е. Ушаков, Е.Б. Бурова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах